خصوصیات زئومورفولوژیک کنه رسانی (Claypan) و تأثیر آن بر تنازِل اراضی با استفاده از فناوری سامانه اطلاعات جغرافیایی (GIS). مطالعه موردی: منطقه رودشته (اصفهان- ایران)

مهدی نادری خوراسگانی و احمد کریمی

چکیده
این مطالعه به منظور بررسی تأثیر رابطه خصوصیات زئومورفولوژیک کنه رسانی (Claypan) بر کاربری اراضی و تنازِل اراضی انجام گرفته است. با کاربردن الگوریتم (Digital Terrain Model) به منظور تعیین کنه رسانی (Claypan) با استفاده از نفوذیات و کاهش، از پشتیبانی (Drainage network) فراهم گردید. با استفاده از فناوری سیستم اطلاعات جغرافیایی نقشه شبکه‌های سیر جریان‌های آب، تغییرات وزن میزان (Wetness Index) و نمایش و رطوبت خاک (Sediment Transport Index) انتقال رسوب و تغییر جغرافیایی عمدتاً پر (Waterlogged مطالعاتی در کنار هم‌کف در کنار هم). در مدل سطحی برداری (Marshland) یا به آب‌گرفته (Waterlogged) را تشکیل می‌دهد. با پوسته‌های نمکی (Salt crust) در اثر تبخیر سطحی در سطح خاک آن منطقه تغییر می‌یابد. رابطه شوری خاک سطحی و عمق کنه رشته تاشان می‌دهد با در نظر گرفتن عوامل مؤثر بر رکشی اراضی با داشتن هدایت الکتریکی و در نظر گرفتن بیا پس دن گودال‌ها می‌توان عمق کنه رسانی را تعیین زد.

واژه‌های کلیدی: ایگرفنتی، شوری، کنه رسانی، سیستم اطلاعات جغرافیایی

کیان و ناحیه توسعه کنه رسانی (Claypan) را تعیین می‌کند.

مقدمه
عند توجه به لایه‌بندی (Stratification) اراضی در برنامه‌ریزی کشاورزی خصوصاً در امور اصلاح اراضی، آب‌بردی و رکشی شکست برنامه‌های توسعه کشاورزی را در یک خواهید داشت. از جمله فاکتورهای مهم در مدیریت اراضی لایه‌بندی اراضی می‌باشد که عمق کنه رسانی منطقه تغییر رشته

1. استادان: کشاورزان، دانشکده کشاورزی، دانشگاه شهید کامبیز
2. * مسئول مکاتبات: پست الکترونیکی: khnaderi@yahoo.com

551
منطقه رودسخت (اصفهان - ايران) و بررسی تأثیر آن بر اثری فئدی ای از گرفتن (Waterlogging) و کاربردی اراضی می‌باشد. در این تحقیق از فناوری سامانه اطلاعات جغرافیایی بهره بردی می‌شود.

مواد و روش‌ها

منطقه مطالعه

این منطقه در جنوب شرق اصفهان بین عرض‌های ٣٢°٢٥، ٣٣°٦، ۳۲°۵۵، ۳۲°۰۲ شرق‌العمل و طول‌های ٥٣°۵۵، ٥٤°، ۵۴°۳، ٥۴° فاصله دارد (شکل ١). وسعت این ناحیه در حدود ٢٤٠٠۰ هکتار می‌باشد و رودخانه زایندرود از غرب به شرق منطقه را فلز و به ناحیه کارونخویی می‌ریزد. بر اساس شاخص‌های دمایی (٢) و اطلاعات ایستگاه هواشناسی ورودی این ناحیه خشک‌سالانه است. ناحیه این ناحیه مصنوعی وبه‌طور کامل خشک‌سالانه است.

کپسول (١۹) این ناحیه به دلیل مطرف‌ترین بخش حوزه آبخیز اصفهان - سیرجان می‌داند. مهم‌ترین عوامل تنزل اراضی در این ناحیه خصوصاً در بخش رطوبت‌فری و سطح‌های رس‌زا و ناشی از ورود بارش‌های سخت و گسیل در تراز‌های بالایی و شوری ناحیه را می‌نماید. بر اساس نتایج پیشرفت کارشناسی کشاورزی، شرایط اراضی مهم‌ترین عوامل تنزل اراضی هستند.

کپسول

با توجه به دیدگاه‌های که مؤلفین از منطقه مطالعاتی داشته‌اند، کپسول شکل رسی متریک و خشکی است که ضخامت آن کم‌تر از ١٠٠ متری می‌باشد. کشت‌رایان این اراضی کثیف‌تر زیره سخت‌تر و به مصرف اراضی کشاورزی اضافگرنگی و معنی‌دار آن به احتمال قوی خشک‌سالانه کشاورزان با خشکی شدن این کشاورزان با کاهش آب رودخانه‌ها نیز خشک‌سال شوند.

صوئی که توزیع هیدرولوژیکی به ناحیه با فرمولی در تغییر آبیاری مرطوب‌تر کرده تناها را خروج آب از خاک بی‌خیز، خواهد بود که شوری آن مناطق را در پی خواهد داشت. متوالی و همکاران (١٥) با بررسی میزان عملکرد محصولات مختلف و رابطه آنها با عمق خاک تا که فکری گزارش کرده که وجود فارداری در بعضی مناطق این که سبد ارزشی را می‌دهد و عامل کافی عملکرد می‌گردد. ساده‌تر و همکاران (٢٠) گزارش کرده که تغییرات عملکرد خاک که فکرس به توجه به بیشتری به تغییرات هیدرولوژیک خاک نسبی دارد. دویست و همکاران (٧) رابطه این نبوده‌ها که به کمک آن می‌توان عملکرد خاک کافی را به ارزش‌های کافی بطور جهتی شاخص رطوبتی را انرژه نبوده که به دنده رطوبتی می‌باشد. و اینن محط گزارش کرده که تغییرات هیدرولوژیکی بیشتر در مناطق می‌باشد. و مرطوب‌تر با تغییرات می‌باشد. محط‌های نسبی که محیط‌های رطوبتی را ارائه نمی‌نماید. به این نبوده رطوبتی شاخص هیدرولوژیکی تغییرات عناوین گزارش نموده‌است. و همکاران (٢٢) با شیب‌دار سازی شاخص رطوبتی میزان اشباع اضافی را که مصرف‌های روان‌پذیر می‌گردد (Saturation excess) اضافی. این محط‌های رابطه که به ارسی رابطه میان تغییرات و شاخص رطوبتی گزارش کرده که موفقیت‌های مناسب را ارائه نمی‌نماید رطوبتی کشاورزان باشند. و همکاران (٨) و با بالا (٩) به این نبوده، رابطه‌ای که در حوضه‌های کوچک و رطوبتی خاک تابعی از مسیر جریان آب می‌باشد. کم و زیاد (١٠) رابطه این باعث متغیرهای A هیدرولوژیکی تغییرات عناوین گزارش کرده که در منطقه بسیار ساختمان منطقه با دستا ب حوزه آبخیز گنج‌پذیر و ب مساوات کرونی‌ها برای رودخانه ویا آن نقطه به پایان این می‌باشد. در حالیکه زیادی در رابطه با پراکنش مکانی و تغییرات رطوبتی خاک و تغییرات رطوبتی اراضی انجام شده است. (٥) (١٩،١٨،١٧،١٥) هدف از این مطالعه بررسی خصوصیات زمین‌فرمولوژیک کشاورزی در
خصوصیات زمین‌پورولوژیک کفه رسی (Claypan) و تأثیر آن بر نیزه اراضی با ...
نتایج و بحث
کف‌ری و مشتقات آن
شکل ۳ شیمالی کف‌ری برای تعیین شاخص‌های رطوبتی و انتقال رسوب در سیستم اطلاعات جغرافیایی

استخراج گردید (۱۲). این اطلاعات شوری برای تهیه نقشه‌های شهری که عمل فوق را در کار رفت و روش به‌عنوان مبنا، فاصله مکروس (Inverse distance) (۵) محاسبه شدند:

شاخ‌چین انگال رسوب و رطوبت (WI) و شاخ‌چین رطوبت (STI) اساس متغیر این ساده به وسیله خون و کربنای (۴) با بار و مکا می‌باشد.

WI = \ln \left(\frac{A}{\tan \beta} \right)

STI = \left(\frac{A}{\tan \beta} \right)^{1/3} \left(\frac{\sin \beta}{\sin \beta + 0.85} \right)^{1/3}

در این معادلات A عبارت است از مساحت اراضی منطقه بالا دست با حوزه آبخیز یک نقطه و ب زاویه آن نقطه با سطح افق می‌باشد. به کمک فناری سیستم اطلاعات جغرافیایی این محاسبات انجام شده است. توجه شود در پیک حوزه آبخیز (که در این مطالعه حوزه آبخیز یک گودال در کف‌ری مطرح است) هر نقطه در پیک حوزه را می‌توان یک نقطه تمرکز در نظر گرفت. به طور مثال در شکل (Concentration point) ۳ پیکسل C یک نقطه تمرکز است و حوزه آبخیز آن شامل مساحت پیکسل‌های شماره ۱ تا ۵ می‌باشد که جمع مساحت آنها A می‌باشد. از سوی دیگر هر نقطه با هر پیکسل در پیک حوزه دارای یک زاویه با سطح افق است که برای β در شکل ۲ می‌باشد.

شکل ۲ روش تعیین شیب زوئه‌ای اراضی در سیستم اطلاعات جغرافیایی

شاخص انگال رسوب و رطوبت

شکل ۱ شیمالی کف‌ری برای تعیین شاخص‌های اراضی در سیستم اطلاعات جغرافیایی

شکل ۳ شیمالی کف‌ری برای تعیین شاخص‌های رطوبتی و انتقال رسوب در سیستم اطلاعات جغرافیایی

شکل ۴ شیمالی کف‌ری برای تعیین شاخص‌های رطوبتی و انتقال رسوب در سیستم اطلاعات جغرافیایی

شکل ۵ زمین‌گردی ترکیبی برای تعیین شاخص‌های رطوبتی و انتقال رسوب در سیستم اطلاعات جغرافیایی

شکل ۶ زمین‌گردی ترکیبی برای تعیین شاخص‌های رطوبتی و انتقال رسوب در سیستم اطلاعات جغرافیایی
خصوصیات زونومورفولوژیک کفه رسی (Claypan) و تأثیر آن بر توزیع اراضی با ...
مناطق روشن‌تر نشان‌گر محل عمل رسوپ بیشتر است. با توجه به این که روی کفه رسی که توسط رسوب‌های آبرفتی جوان‌تر پوشیده شده است جریان آب آزاد نظری آنچه در حوزه‌های آبخز روده‌های دیده می‌شود وجود ندارد به‌طور استثنایی شاخه‌ای متعلق به نشسته شاخه‌ای انتقال رسوپ را نشان‌دهد که این شاخه‌ای انتقال رسوپ با وضعیت سازی تا ٩/٢ و ب. نشسته شاخه انتقال رسوپ با وضعیت سازی تا ٩/٣.\\n\\nریزه‌های که بر اساس اصول ارائه شده توسط بون و کرکبای (٣) و بارو و مک دونل (٦) بهره شده است، نشان می‌دهد که روان‌بند زمینی هم بخش‌هایی بر ریزه‌های یک نقطه از منطقه مطالعاتی تأثیر گذار است. به عبارت دیگر، هر نقطه دارای یک حوزه آبخز است که ریزه‌ای آن نقطه را تعیین می‌کند. از آنجا که ماهیت شاخه‌ای ریزه‌ای تجمعی می‌باشد لذا مناطق مرطوب بر به رنگ روشن‌تر نشان داده شده‌اند. واضح است که داخل کودال‌ها مرطوب ترین بخش می‌باشد لذا بنابراین بیشترین کودال‌ها و عدم وجود جریان آب در مدل این مناطق به صورت تیره مشاهده می‌شوند (شکل ٥ اف). وقتي یک جریان آب را در زیر زمین در نظر می‌گیریم به صورتی که با پر شدن یک کودال در کف‌رسی جریان آب زیر زمینی به سمت گودال عمق‌تر حرکت می‌کند و وضعیت گودال‌های مرطوب در مدل به رنگ روشن‌تر ارائه می‌گردد (شکل ٨ اف). این وضعیت در مورد شاخه‌های انتقال رسوپ نیز صادق است (شکل ٥ ب) و
خشوصیات زئوپترولوژیک کفه رسی (Claypan) و تأثیر آن بر نژل اراضی با ...
شکل ۴: اف شاخ های رطوبتي خاک را به فرورپ پن شدن گودال های مرتفع تر و متأخر نمایان از تأثیر آب زیر زمینی به سوی گودال های پست ترسن ناهد می‌کند. مقایسه‌ی این نقشه شاخ شاش رطوبی با نقشه موجود در شکل ۵، نشان می‌دهد که مرطوب نی‌تر بی‌ستنی بخش گودال‌های شرط سه‌ناتی شده از بین بری. نشان می‌دهد که به رنگ روشن مشخص شده. علاوه بر این، نشان‌های (الف) در شکل ۴ نشان می‌دهد که سبیالر از گودال‌ها به هم متصل می‌شود و آب و املاح پس از اشباع کردن بعضی گودال‌های مرتفع تر بسیار گودال‌های سطحی تر حروط می‌کند. با این وجود اندازه‌ی وسایلی که خاک گودال‌های موجود در فکه رضی و پنهان حالت مشخص را داشته باشیم (۱) مناطق شدیداً نور ناب در شیشه نمکی، (۲) مناطق شور و مرطوب (۳) مناطق به (Waterlogged) (Marshland) ملاحظه نشان کاربری اراضی (شکل ۴) که از اطلالات ماهواره‌ای ناسال ۱۹۹۵ استخراج شده (۱۶) نشان می‌دهد که اندازه‌ی ذکر شده در همه موارد صادق نیست و علینغم شاخش رطوبی بیشتر در بعضی نواحی روی گودال‌ها شاهد و وجود اراضی کشاورزی در حال حاضر بهترین روش برای درک زکاتی اراضی اراضی شوری یا کاهش شوری آنها شناخته می‌شود؟ به عبارت دیگر چرا بعضی از گودال‌ها حوضه‌های بزرگ و عظیم از این حوضه‌های مستقیم را نشان می‌دهند به طوری که به محلی به خارج زکاتی می‌شوند و در نتیجه اراضی قرار گرفته روی آنها باید شوری کم و پایین متوسط می‌باشد. در حالی که اراضی مرطوب و نا‌شور و آب‌گرفته روی گودال‌های بسته، نوسیع به‌پایه‌نداهند. برای بررسی این موضوع نقشه قطعاتی گودالهای شوری و اراضی رودخانه از اطلاعات ماهواره‌ای استخراج شدند و روی نقشه فیلم شکل ۶ قرار گرفته (شکل ۶). در این نقشه ملاحظه می‌شود که کلت‌های نیایر و زیسته‌که در سبیالر از موارد گودال‌های موجود در ناحیه روی گودال‌ها فلکه. با باند یاه گودال نوری‌اند از کنار گودالهای اراضی رودخانه‌ای بر روی شکل می‌تواند در عمل آمد. مشخص شد که در بعضی موارد، کلت‌های اراضی رودخانه‌ای بر روی شکل می‌تواند در عمل آمد.
لکه ۷. نقشه‌های آلف) عمق کف‌های سطح زمین (سانتی‌متر) و محل تراکم‌ها، ب) شوری متوسط ۰–۵ سانتی‌متر خاک، ج) شوری متوسط ۵۰–۱۰۰ سانتی‌متر خاک، (واحد اندازه‌گیری هدایت الکتریکی دسی‌ژئوس) بر متر، مقیاس ۱:۲۰،۰۰۰.
شکل 8. نمودارهای ترانسکتیون‌های در موقعیت‌های A، B و D. C. B، A. (EC1) و E و PanAlt) در میانگین ۱۵ سانتی‌متر (EC3) و بین ۳۰ و ۵۰ سانتی‌متر (EC2).

نشریه مهندسی و توانمندسازی ساختمان و فناوری ۱۳۹۶

شکل 8. نمودارهای ترانسکتیون‌های در موقعیت‌های A، B و D. C. B، A. (EC1) و E و PanAlt) در میانگین ۱۵ سانتی‌متر (EC3) و بین ۳۰ و ۵۰ سانتی‌متر (EC2).

نشریه مهندسی و توانمندسازی ساختمان و فناوری ۱۳۹۶

شناس می‌دهد که روند شاخص انتقال رسوب در این موقعیت توسط مدل به خوبی برآورد شده است به طوری که با افزایش عمق که ری شاخص انتقال رسوب کاهش می‌یابد. در پایان دیگر، وضعیت احتمالاً معیارهای ترانسکتیون است. ترانسکتیون بک خط مستقیم انگشش شده است و احتمالاً روی مزرع از آبراه این می‌باشد. در این پایین‌ترین ترکیب سطح قبال شکست و نمودارهای موقعیت‌های A، B و C می‌باشد. همچنین صورتی که در این موقعیت توسط مصرف قدر را مساحت فرض نموده است زیرا ترکیب نهایی اطلاعاتی در قدر قدر کم است و این نبوده می‌تواند دلیل دیگری باشد.
مقایسه نقشه‌های موجود در شکل 6، 7 و شکل 7، 8 و شکل 7، 8

مقدار می‌دهد که مخصوصاً (موضع D) نشان دهنده می‌کند که بین عمق تکه‌رسی و هدایت الکتریکی خاک رابطه تندیستی و جوهر دارد لکن این رابطه در بخش نواحی بیشتر در بخش دیگر مفصل است.

می‌توان با نظر گرفتن عناصر موثر در رشد اراضی عمقد تکه‌رسی را با افزایش کتالیزور الکتریکی ثابت مانند آنجه دولی و همکاران (۷) انجام داده و تعمیق را در این تحقیق در نظر گرفت. ملاحظه می‌شود که در C و A هدایت الکتریکی سطحی خاک منطقه فاصله C1 و کمک عضوی رابطی خاک وجود دارد که عضوی پذیرفته می‌باشد (شکل 9). در موضع C با افزایش هدایت الکتریکی عمقد تکه‌رسی افزایش می‌یابد در حالی که در موقعیت A هدایت الکتریکی خاک سطحی کاهش می‌یابد. در موقعیت A رابطه بین عمقد تکه‌رسی و شوری خاک به وسیله یک معادله خطی با شیپ مثبت برخورد است در حالی که در موقعیت C یک معادله خطی با شیپ منفی رابطه بین عمقد تکه‌رسی و شوری خاک سطحی را توجیه می‌کند (شکل 9).

توجه گیری

مدل رقیم عمق تکه‌رسی اطلاعات زیادی در رابطه با مداریت اراضی فراهم می‌کند که می‌توان از آنها برای طراحی شبکه ابرای و زدکن‌پوش مصرف استفاده نمود. شاخص رطوبی خاک مکان‌های را که احتمالاً بروز شوری و ایگرفگی در آنها وجود دارد به خوبی مشخص می‌کند. شاخص انتقال رسوی سبیل جریان‌های آب زیرزمینی و حوضه آبخیز در گودال در تکه‌رسی را تعیین می‌کند و این مطالعه نشان می‌دهد که این مدل می‌تواند مسیر انتقال مراحل نیز بیان نده. همچنین این مطالعه مشخص می‌کند که تکه‌رسی عمودی بیش از افقت سطحی نیست یا تغییرات عمیق آن که روند معنی‌دار دارای نیم کننک دارد. در این پوست و برندی‌های است که به‌طور استگون در جغرافیای حیات اراضی از آن
نمی‌توان برای یک منطقه‌ای که مطالعه کلی ارائه‌های داد باشد، همان طور که ملاحظه می‌شود رابطه کف‌رسی و خصوصیات فیزیکی و شیمیایی خاک‌ها به بیان پیچیده است و عوازل متعددی بر ارور در خصوصیات مؤثرند. این مطالعه مشخص می‌کند که برای گودال‌های کف‌رسی سطحی حوضه‌های نازق و سطحی حوضه‌های رسخت متنوعی که به آن سطحی سطحی حوضه‌های نازق و سطحی حوضه‌های رسخت انتخاب و در این مطالعه، در صورت بودن حوضه‌های نازق و سطحی حوضه‌های رسحت مذکور به صورت خیلی به‌شیر می‌باشد.

نتایج این تحقیق می‌تواند در دیگر مناطق مشابه برای پیش‌بینی تأثیر کف‌رسی بر کاربری اراضی به‌عنوان یک مدل نیازمندی‌های توسعه کشاورزی و طرح‌های شیک‌های آبیاری و زراعتی مورد استفاده قرار گیرد. بر اساس این مطالعه می‌توان توصیه نمود که علت تغییرات غیرمنتظره‌ای افزایش بار در کمک‌رسی به کمک رادیومترهایی که در طول موج‌های نازق رادر سی کاندین و اکنون کاربردهای آن در خاک‌شناسی معمول است، می‌تواند بسیار مفید باشد.

نمی‌توان برای یک منطقه‌ای که مطالعه کلی ارائه‌های داد باشد، همان طور که ملاحظه می‌شود رابطه کف‌رسی و خصوصیات فیزیکی و شیمیایی خاک‌ها به بیان پیچیده است و عوازل متعددی بر ارور در خصوصیات مؤثرند. این مطالعه مشخص می‌کند که برای گودال‌های کف‌رسی سطحی حوضه‌های نازق و سطحی حوضه‌های رسخت متنوعی که به آن سطحی سطحی حوضه‌های نازق و سطحی حوضه‌های رسخت انتخاب و در این مطالعه، در صورت بودن حوضه‌های نازق و سطحی حوضه‌های رسخت مذکور به صورت خیلی به‌شیر می‌باشد.

نتایج این تحقیق می‌تواند در دیگر مناطق مشابه برای پیش‌بینی تأثیر کف‌رسی بر کاربری اراضی به‌عنوان یک مدل نیازمندی‌های توسعه کشاورزی و طرح‌های شیک‌های آبیاری و زراعتی مورد استفاده قرار گیرد. بر اساس این مطالعه می‌توان توصیه نمود که علت تغییرات غیرمنتظره‌ای افزایش بار در کمک‌رسی به کمک رادیومترهایی که در طول موج‌های نازق رادر سی کاندین و اکنون کاربردهای آن در خاک‌شناسی معمول است، می‌تواند بسیار مفید باشد.

نمی‌توان برای یک منطقه‌ای که مطالعه کلی ارائه‌های داد باشد، همان طور که ملاحظه می‌شود رابطه کف‌رسی و خصوصیات فیزیکی و شیمیایی خاک‌ها به بیان پیچیده است و عوازل متعددی بر ارور در خصوصیات مؤثرند. این مطالعه مشخص می‌کند که برای گودال‌های کف‌رسی سطحی حوضه‌های نازق و سطحی حوضه‌های رسخت متنوعی که به آن سطحی سطحی حوضه‌های نازق و سطحی حوضه‌های رسخت انتخاب و در این مطالعه، در صورت بودن حوضه‌های نازق و سطحی حوضه‌های رسخت مذکور به صورت خیلی به‌شیر می‌باشد.

نتایج این تحقیق می‌تواند در دیگر مناطق مشابه برای پیش‌بینی تأثیر کف‌رسی بر کاربری اراضی به‌عنوان یک مدل نیازمندی‌های توسعه کشاورزی و طرح‌های شیک‌های آبیاری و زراعتی مورد استفاده قرار گیرد. بر اساس این مطالعه می‌توان توصیه نمود که علت تغییرات غیرمنتظره‌ای افزایش بار در کمک‌رسی به کمک رادیومترهایی که در طول موج‌های نازق رادر سی کاندین و اکنون کاربردهای آن در خاک‌شناسی معمول است، می‌تواند بسیار مفید باشد.

نتایج این تحقیق می‌تواند در دیگر مناطق مشابه برای پیش‌بینی تأثیر کف‌رسی بر کاربری اراضی به‌عنوان یک مدل نیازمندی‌های توسعه کشاورزی و طرح‌های شیک‌های آبیاری و زراعتی مورد استفاده قرار گیرد. بر اساس این مطالعه می‌توان توصیه نمود که علت تغییرات غیرمنتظره‌ای افزایش بار در کمک‌رسی به کمک رادیومترهایی که در طول موج‌های نازق رادر سی کاندین و اکنون کاربردهای آن در خاک‌شناسی معمول است، می‌تواند بسیار مفید باشد.

نتایج این تحقیق می‌تواند در دیگر مناطق مشابه برای پیش‌بینی تأثیر کف‌رسی بر کاربری اراضی به‌عنوان یک مدل نیازمندی‌های توسعه کشاورزی و طرح‌های شیک‌های آبیاری و زراعتی مورد استفاده قرار گیرد. بر اساس این مطالعه می‌توان توصیه نمود که علت تغییرات غیرمنتظره‌ای افزایش بار در کمک‌رسی به کمک رادیومترهایی که در طول موج‌های نازق رادر سی کاندین و اکنون کاربردهای آن در خاک‌شناسی معمول است، می‌تواند بسیار مفید باشد.

نتایج این تحقیق می‌تواند در دیگر مناطق مشابه برای پیش‌بینی تأثیر کف‌رسی بر کاربری اراضی به‌عنوان یک مدل نیازمندی‌های توسعه کشاورزی و طرح‌های شیک‌های آبیاری و زراعتی مورد استفاده قرار گیرد. بر اساس این مطالعه می‌توان توصیه نمود که علت تغییرات غیرمنتظره‌ای افزایش بار در کمک‌رسی به کمک رادیومترهایی که در طول موج‌های نازق رادر سی کاندین و اکنون کاربردهای آن در خاک‌شناسی معمول است، می‌تواند بسیار مفید باشد.

نتایج این تحقیق می‌تواند در دیگر مناطق مشابه برای پیش‌بینی تأثیر کف‌رسی بر کاربری اراضی به‌عنوان یک مدل نیازمندی‌های توسعه کشاورزی و طرح‌های شیک‌های آبیاری و زراعتی مورد استفاده قرار گیرد. بر اساس این مطالعه می‌توان توصیه نمود که علت تغییرات غیرمنتظره‌ای افزایش بار در کمک‌رسی به کمک رادیومترهایی که در طول موج‌های نازق رادر سی کاندین و اکنون کاربردهای آن در خاک‌شناسی معمول است، می‌تواند بسیار مفید باشد.