بررسی صحت و دقت چند روش نهایی نقشه شکل‌های فرسایش خاک

علي محمدي تراکشندان
و داوود نیک کامی

(تاریخ دریافت: ۱۶۵/۲۶، نشر پذیرش: ۱۳۳۵/۳/۰)

چکیده
نقطه شکل‌های فرسایش خاک از شفاه‌های پایه در مطالعات فرسایش و روسای است که به دنبال پردازش حوزه‌های آب‌انبار حاصل اهمیت است. برای نهایی نشان ۲۵۰۰۰۰۰۰:۱ شکل‌های فرسایش خاک، مطالعه‌ی در حوزه آب‌انبار جنوب غربی استان تهران انجام شد. از ترکیب لاشه‌های زیر به عنوان شفاه‌های مختلف نهایی نشانه‌هایی که دارای ایستفاده گردند: اف- پوشش گیاهی، زنده‌شانسی و شیب پ- کاربری، زنده‌شانسی و شیب ج- کاربری، حساسیت نگه‌گاهی به فرسایش و شیب و- کاربری، حساسیت نگه‌گاهی به فرسایش و احداث اراضی نشانه‌های کاری حاصل از تلفیق لاشه‌های اطلاعاتی به‌کارهای به روش دیگر شامل نهایی نشانه‌های واحدهای کاری بینی بر یک- واحدهای اراضی و- واحدهای حساسیت نگه‌گاهی به و- واحد‌های نشانه‌گذاری حاصل از تفسیر تصاویر ماوراهای، در حوزه‌های مرزی بررسی قرار گرفتند. با تبعیض شدت و نوع شکل‌های مختلف فرسایش خاک در ۳۱۴ نقطه و به کمک روش نئوین و بهره‌گرفتن از تصاویر ماوراهای در تلفیق و تحقیق مرز واحد‌ها، نشانه شکل‌های فرسایش نهایی بدست آمد. این نشانه با هر یک از شفاه‌های واحدهای کاری اثر تا زمینه‌شده. نتایج نشان داد که از روش‌های تلفیق لاشه‌ای با واریز به ملاحظات اقتصادی، روش‌های بهتر و داده‌ای اراضی و- واحد‌های نگه‌گذاری سنجها با صحت‌های ۵۰/۰ و ۷۲/۹ درصد روش‌های مناسب در نهایی نشانه شکل‌های فرسایش نبودند. روش تفسیر تصاویر ماوراهای دارای صحت ۷۲/۰ درصد روش‌های فرسایشی بود. چگونگی معیارهای ارائه‌های واحد‌های کاری نشان داد که روش‌های واحد‌های ناحیه واحدهای اراضی و- سنجها دارای خطای بیشتری نسبت به روش‌های تلفیق لاشه‌ای و تفسیر تصاویر ماوراهای بودند. پیش‌ترین ضریب تغییر صحت واحد‌های کاری مربوط به روش‌های واحد‌های اراضی و- سنجها و کمترین ضریب تغییرات صحت واحد‌های کاری و در نتیجه پانزده دانه مربوط به روش تفسیر تصاویر ماوراهای و تلفیق لاشه‌ای بود. در کل، نشانه واحدهای کاری حاصل از تفسیر تصاویر ماوراهای بهترین روش در نهایی نشانه شکل‌های فرسایش معرفی می‌گردد.

واژه‌های کلیدی: ناهایی شکل‌های فرسایش خاک، صحت و دقت نشانه‌های تولیده، GIS, RS.

مقدمه
نقطه شکل‌های فرسایش خاک، یک نهایی پایه و مهم در مطالعات فرسایش و روسای است که محور فرآیندهای زمین‌شناسی و یا

استفاده از عکس‌های هوایی شاید روشن مناسبی در نهایی نقشه
شکل‌های فرسایش باشد. اما به دلیل هزینه‌ها و زمان زیادی که
صرف می‌کند، نهایی آن را در عمل با مشکل مواجه می‌سازد (۳).

1. استادیار کلاسیک، دانشگاه شریعتی، دانشگاه آزاد اسلامی واحد رشت
2. استادیار پژوهش مرکز پژوهش مهارت و حفاظت خاک و آب‌زنی‌های ایران
mohammadit_a@yahoo.com

* مسئول مکاتبات، پست الکترونیکی:

۵۷۷
نانواموند. شدت و پراقش فرسایش خندقی و تغییرات آن در طول 50 سال گذشته را با تفسیر عکس‌های هواپیمایی و عوامل اصلی موتر بر فرسایش خندقی را توسط عملیات میدانی مشخص نمودند. سپس، در سال 1996 نسبت به جاودانی‌ها و جایگاه‌های فرسایشی اقدام نمودند. آنها سپس طبق روش شناخته‌شده از طبقه‌بندی انواع فرسایش نمودند. با توجه به این که میزان هر فک خان از فرسایش شیاری و بین‌شیاری به وسیله مدل USLE شناسایی و تخمین زده می‌شود، برای تخمین فرسایش خاندی از مدل برنامه‌ریزی حفاظت‌های فرسایشی استفاده کرده‌اند.

ویژه جهاد سازندگی اقدام به تهیه طرحی برای تقدیم سیاست‌های فرسایشی نمود. به همین دلیل طرح را وسیله دفتر مطالعات و ارزیابی آبخز از سازمان جنگل کنی و معبد پیشنهاد شد که در آن روش برای تهیه تقدیم سیاست فرسایش خانک کشور توسعه شده در این روش قرار بود به کمک و دستی خانک، شبیه سیستم CN و کاربری اراضی، نقشه‌ای در مقياس شناسی، تهیه اراضی، تعدادی مساحت، 5000 ژیل مورد نیاز شد، که این به دلیل حجم کاره 60 میلیارد ریال در سال 1379 و زمان طولانی انجام آن (35 سال). عملیات فرد زیر سوئل رفت (2)، ولی فاصله تخمین شکل‌های فرسایشی خانک نبوده و تخمین شکل‌های فرسایشی خانک نبوده‌اند. از این رو، کاره آنها از تفیق لایه‌های سنگ‌شناختی خانک، شبیه تندی فرسایشی نوشت و گیاه‌آب آب و هوای کاربری اراضی به دست آمده بودند. در این روش، فرسایش‌های سطحی، شیاری، خندقی، آب‌بری و توده‌ای و چسب آنها کار میدانی در واحدهای کاری بررسی و کنترل برای طبقه‌بندی شدت و انواع GIS و باید بود. باید در بررسی‌های انتخاب شکل‌های فرسایشی خانک استاد شناختی چنین اقدام نموده (30). باید TM این کار واحدهای مختلف فرسایش بر تغییرات تا حدی بصورت نقدی، جدایا و کنترل زمینی صحیح

بنا برای تحقیقاتی که این سمت گزارش بالاتابه که تنها از پردیساش تصویر آب و یا تلفیقی از مدل‌های طراحی مؤثر در فرسایش در محیط سامانه‌های اطلاعات جغرافیایی نسبت به تهیه نقشه شکل‌های فرسایشی اقدام نمود (7). بسته بررسی‌های مربوط به فرسایش و روابط عضوی به تهیه نقشه‌های کمی فرسایش و روابط عضوی به تهیه نقشه‌های کمی فرسایش و روابط عضوی به تهیه نقشه‌های کمی فرسایش و روابط عضوی به تهیه نقشه‌های کمی

Global Assessment Soil) GLASOD (Degradation

و شیمیایی تفسیر و می‌کند (15). نقشه‌های شکل‌های فرسایش در زمینه تهیه و ارائه می‌گردد. وجود این نقشه‌ها در برنامه‌ریزی حفاظت خانک و انجایید اختیار مهم است.

 حاجی‌قلیزاده از روش تفسیر و پردیساش روابط تصویر

مادرکار (Congradation ETM+ سال 2002 برای تهیه نقشه شکل‌های فرسایش خانک در حوزه استان تهران اقدام نموده. طبق تحقیق وی، تشخیص فرسایش‌های سطحی و شیاری با توجه به مقیاس شکل و تبدیل ذکر تفاوت تصاویر مادرکار (Congradation مورد استفاده، کار بسیار دشواری ارزیابی شد و لذا در انجام تحقیق، اقدام به (Geographic Information System) GIS در محیط جاودانی‌ها و پردیساش روابط تصاویر

قلمرو تصاویر مادرکار در تهیه نقشه فرسایشی سطحی خانک در استان فارس و نیز می‌تواند. مراحل تایید نمود. مقایسه نتایج حاصل از این روش و نقشه موجود مطابق تصاویر حاصل.

درصد را نشان داده است (9). طی تحقیق در منطقه بیندا در جنوب شرقی کنار سیرانو و هم‌کاران (18) به منظور تشخیص فرسایش خندقی در دو مقياس ترمگر و کورچک، از سنجش از دور (پنهای عکس‌های هواپیمایی) و استفاده
نهی آبیهای اطلاعاتی
تشهیض‌های موجود در (زمین‌شناسی، پوشش‌گیاهی و واحدهای اراضی) در مقیاس 1:250000، اسنک و زمین‌مرجع شدند. از 250000 رقیم توبوگرافی، 1:1 مدل رقیمی ارتفاع نهایی و سپس از آن طبق استاندارد مؤسسات تحقیقات (DEM) به صورت کنترل بودند و به ترتیب را اطلاعات نهایی تهیه کردند و برای فرآیند شیب‌گیری با استفاده از طبقه‌بندی تصویر را بر حسب فرآیند شیب‌گیری، محاسبه و منطق انجام داده و مساحت محدوده‌های هریک را محاسبه نمودند.

با توجه به بررسی‌هایی که به عمل آمده طرح‌های تهیه شده، نقشه‌های شکل‌های فرسایش متنی بر یک روش خاص بود و پی‌گیری‌ها با هدف‌های کاری از نظر شکل‌های فرسایش در صفر انجام شدند و به فرم مورد نظر به صورت تمام روش‌های مختلف از نظر تهیه، دقت و خطای برآورد شکل‌های فرسایش باشند، انجام شدند. این، در تحقیق حاضر، از تلفیق‌های اطلاعاتی مختلف و همچنین تفسیر تصادفوگرافی، نقشه‌های واحدهای اراضی کاری تهیه شد. در این بحث اول گرفت که این واحدهایی که محدوده‌های فرسایش همگن هستند، با یک فرم محدود در شکل‌های فرسایش و انتهای اراضی جایگاه گرفتند. به‌طور مثال، فرسایش هنگ‌ریخته، انتخاب شکل‌های فرسایش بر خلاف این، شکل‌های واحدهای اراضی به روش دیگر برای تهیه نقشه واحدهای فرسایش بررسی شدند که شامل فواصل شکل‌های فرسایش واحدهای اراضی بوده که شامل انتهای اراضی و واحدهای نقشه حسابی سگنه‌ها و فرسایش و واحدهای فرسایش می‌باشند.

توسعه و روش‌ها
حوزه جاجرم به مساحت 162558 هکتار بین طول‌های شرقی 34° 50 و 0° 25 و عرض‌های شمالی 50° 35 و 49° 25 به عنوان حوزه مطالعاتی در نظر گرفته شد. این حوزه شامل اراضی متغیب، تکثیری، معادن قرض‌ش و مساده‌های سخت و مناطق شهری است. واحدهای سطحی مختلف در این حوزه وجود دارند که عمدتاً شامل شکل‌های آدرآوری، تونف‌ها، آندزیت، شیل، کاپیومور، سکن کیچ،...
عملیات صحراشی
روشی که برای طبقه‌بندی شدت شکل‌های فرسایش در صحرا به کار رفته، تلفیقی از روش‌های مختلف (۱۰،۱۱) و اعمال تغییرات بر اساس نظارت كارشناسی و تجربه بوده است. در حرکه ۳۲۴ نقطه برای کنترل زمینی روي تصویر ماهواره‌ای مشخص و به روش نیسن (Thiessen)، برای هر نقطه برداتش یک پیکولیون آمیکین. سپس مزرعه‌های هر پیکولیون با توجه به مشاهدات صحراشی از نظر هر بک از فرسایش‌های مختلف، شیاری، خندی و آبراهی، اصلاح کمک در نهایت، هر محدوده با توجه به شدت هر بک از شکل‌های فرسایش (در صحرا) برعضا گذاری شد و محدوده‌های دارای بک شدند در این ادامه شدند و درچارب نفشه واقعی از فرسایش‌های صحرا، شیاری، خندی و آبراهی به همراه داشتند. از روی هم گذاری این نقشه‌ها، نقشه شکل‌های فرسایش به دست آمد. نقشه شکل‌های فرسایش با نقشه‌های واحدهای کارتالا روزه هم گذاری شد. برای بررسی صحرا هر بک از روش‌های فوق در هنگین نقشه شکل‌های فرسایش، نقشه مورد استفاده شد.

\[\text{AE} = \left| Z(x_i) - Z^*(x_i) \right| \]

\[\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(Z(x_i) - Z^*(x_i) \right)^2} \]

\[\text{CV} = \frac{S}{X} \]

\[A = \sum_{i=1}^{n} \frac{a_i e_i}{\sum_{i=1}^{n} a_i} \]

نتایج و بحث
جدول ۱ نتایج روی هم گذاری لایه‌های مختلف در حوزه جاجورد را نشان می‌دهد. روی هم گذاری سه لایه شبیه،
جدول 1. نتایج روش کاری لاپیدهای اطلاعاتی در حوزه چاه‌زایی

<table>
<thead>
<tr>
<th>تعداد واحدهای کاری</th>
<th>تعداد واحدهای کاری</th>
<th>تلفیق شده</th>
<th>نشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>1</td>
<td>17</td>
<td>362</td>
</tr>
<tr>
<td>101 - 150</td>
<td>1</td>
<td>27</td>
<td>426</td>
</tr>
<tr>
<td>151 - 200</td>
<td>2</td>
<td>24</td>
<td>299</td>
</tr>
<tr>
<td>201 - 250</td>
<td>3</td>
<td>26</td>
<td>221</td>
</tr>
</tbody>
</table>

شیب، پوشش گیاهی و زمین شناسی

جدول 2. نتایج مقایسه نشته واقعی چاه‌زایی فرسایش با نشته واحدهای کاری حاصل از تلفیق لاپیدهای اطلاعاتی

<table>
<thead>
<tr>
<th>جذر ماینگین منابع حطا</th>
<th>ضریب تغییرات منابع حطا</th>
<th>شاخه لاپیدهای اطلاعاتی</th>
<th>نشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>186/8</td>
<td>34/8</td>
<td>30/7</td>
<td>69/3</td>
</tr>
<tr>
<td>716/6</td>
<td>40/1</td>
<td>32/6</td>
<td>68/4</td>
</tr>
<tr>
<td>1932/8</td>
<td>30/9</td>
<td>26/6</td>
<td>63/4</td>
</tr>
<tr>
<td>1722/5</td>
<td>38/5</td>
<td>33/2</td>
<td>87/6</td>
</tr>
</tbody>
</table>

پوشش گیاهی و زمین شناسی منجر به ایجاد 902 واحد کاری گردید. پراکنش مساحت واحدهای کاری نشان می‌دهد که عمداً واحدها، مساحت ناجیزی داشته و تفاوتی با تعداد می‌آید. مساحت زیادی دارند. از روی هم گذاری لاپیدهای شبی، کاربری و زمین شناسی، 32 واحدها به وجود آمد که شیب، کاربری و حساسیت سگ‌ها و واحدهای اراضی 66/6 درصد است. با این که روش تلفیق لاپیدهای شبی، کاربری و حساسیت سگ‌ها، کمترین صحت را در نهایت نشان شده که نشان دهنده روش فرسایش دارد، ولی بیشترین دقت را در بین چهار روش دارست (با ضریب تغییرات صحت 30/9 درصد). اما هیچ روش بیشترین خطا را دارد و جذر ماینگین مربوط به واحد حداکثر 1437/5هکتار می‌باشد. روش تلفیق لاپیدهای شبی، کاربری و زمین شناسی در این کمترین قدر مت می‌باشد (ضریب تغییرات صحت 40/1 درصد) اما جذر ماینگین مربوط به واحد حداکثر 1418/6هکتار می‌باشد.

نتایج مقایسه چهار روش تلفیق لاپیدهای اطلاعاتی با نشته واقعی چاه‌زایی فرسایش از نظر صحت، خطا و دقت (ضریب تغییرات صحت) در جدول 2 دیده می‌شود. حمله گونه‌های ملاحظه شده بیشترین صحت را در یکی از چاه‌زایی‌ها نشان داد.

541
محاسبه سنگ‌ها و واحد‌های اراضی

روش واحد‌های اراضی

جدول 3 تبیین مقاس‌های نقطه‌ای واقع شکل‌های فرسایش با نقشه واحد‌های اراضی واژن مهندس گونه که از این جدول ملاحظه می‌شود، صفحه واحد 1.1 که مساوا کلی در جوزه را به خود اختصاص داده فقط 37/5 درصد می‌باشد و واحد اراضی 6/9 درصد در برآورد فرسایش سطحی خطا دارد. واحد اراضی 6/8/2 درصد صحت دارد و 7/2 درصد، واحد اراضی 2.9/1 و 2.1/0 درصد است. واحد اراضی 47/2 و 9/3 درصد صحت دارد.

محاسبه می‌شود که در واحد‌های اراضی واقع در فیزیوگرافی کوهستان و تپه‌ها، صفحه واحد از برآورد شکل‌های فرسایش پایین است. هر چه مساحت واحدی در یونیک باشد به علت تفاوت عمودی مؤثر بر فرسایش مدل محسوب شده شکل‌های فرسایش گذشته‌ها، کاربری، شبکه ماهواره‌ای، برون‌گذاری، سنگ‌پنجه، صفحه واحد و کمتر است. در واحد‌های اراضی 1.1.6، 2.7 که مساوا در حوزه دارد، صحة بسیار کم و خطای برآورد بسیار زیاد است و عملی ضروری به‌نوبه شکل‌های فرسایش به عنوان واحد‌های همگین در نظر گرفته شود، حتی در واحد اراضی 3.26 که مساحت زیادی ندارند، صفحه 4/5 بوده و خطای بیش از 50 درصد است. در واحد اراضی 4/21 درصد، صفحه 4/5 که دوین واحد در یک حوزه است. 90 درصد است. زیر کشت بودن اراضی و نیمه، حساسیت یک‌نواخت رسوبات به فرسایش شرایط یک‌نواخت را از نظر فرسایش در واحد 4/27 فراهم آورده که منجر به صحت بالایی خوش‌بختی است. صفحه واحد اراضی 4/8 تیلی بالا است و 8/78 درصد است. این واحد نیز تقریباً تحت کشت محصولات کشاورزی است و همگینی از فرسایش متفاوت سپس صحت بالایی آن در این واحد 6/5 صحت 40 درصد دارد. ناهماهنگی فرسایش سطحی، شیمیایی و ناخنی منجر به کاهش صحت واحد شده است. در این واحد اراضی

حساب شده نشده که به همه نقشه شکل‌های فرسایش، علاوه بر صحت، دقت و خطای هر یک از روش‌ها، تعداد واحد‌های کاری و صحت آنها بسیار حائز اهمیت است. یکی از معامل مهم نظر در همه نقشه 350000 شکل‌های فرسایش، ملاحظات اقتصادی و اجتماعی است (8). زیاد بودن تعداد واحد‌های کاری که هر واحد ممکن است در چندین محل جواب وجود داشته باشد. هنگامی که کنترل صحیحی در تیپری، هنگامی که همه نقشه را به شفاه افزایش می‌دهد، مقرن به صورت نیست. همچنین به چنین مقایسه امکان نمایش واحد‌های کجک از نظر شکل‌های فرسایش حتی به صورت نگر نیز در نقشه فراهم نمی‌شود. از نظر کارتونگرافی منجر به شلیک می‌شود. تداخل رنگ‌ها و بهبود بپین آن می‌شود. ضمناً طبیعی است که واحد‌های کجک از نظر شکل‌های فرسایش منجر از واحد‌های بزرگ مانند و همین موضوع سبب شده است که در تلفیق لایه‌های شیب، کاربری و زمین‌شناسی، میزان صحت از دو روش دیگر بهتر است.

در کل، با توجه به نتایج مقایسه نقشه شکل‌های فرسایش با نقشه‌های واحد‌های کاری حاصل از تلفیق لایه‌های مختلف، و همچنین ملاحظات اقتصادی و هنری به همه نقشه شکل‌های فرسایش، روش تلفیق لایه‌های کاری، حساب‌سنگ‌ها و واحد‌های اراضی، به عنوان یکی از روش‌های به‌کار رفتن نقشه شکل‌های فرسایش با هم روش 1- استفاده از نقشه واحد‌های اراضی به عنوان نقشه واحد‌های کاری 2- استفاده از نقشه حساب‌سنگ‌ها به فرسایش به عنوان نقشه واحد‌های کاری 3- استفاده از واحد‌های حاصل از تفسیر جسمی تصاویر ماهواره‌ای به عنوان نقشه واحد‌های کاری، از نظر صحت، دقت و خطای، بررسی و مقایسه شده. از این پس این روش به اختصاص روش‌های واحد‌های اراضی، حساب‌سنگ‌ها، تلفیق لایه‌ها (الیه‌ها) کاری، حساب‌سنگ‌ها و واحد‌های اراضی) و تفسیر تصاویر گفته می‌شود.
جدول 3. نتایج مقایسه نهایی واقعی فرسایش با نهایی واحدهای اراضی

<table>
<thead>
<tr>
<th>شدت فرسایش</th>
<th>واحد اراضی</th>
<th>Z*(x1) (مکانی)</th>
<th>صحت (%)</th>
<th>خطا (%)</th>
<th>شدت فرسایش</th>
<th>Z*(x1) (مکانی)</th>
<th>صحت (%)</th>
<th>خطا (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2 * R1 * G0 * Ch1</td>
<td>1.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>1.6</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S4 * R4 * G4 * Ch0</td>
<td>1.8</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>2.12</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R1 * G0 * Ch1</td>
<td>2.7</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>3.26</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S1 * R0 * G0 * Ch0</td>
<td>4.21</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>4.8</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R1 * G1 * Ch0</td>
<td>6.5</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>8.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R2 * G0 * Ch2</td>
<td>8.2</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>9.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R1 * G1 * Ch0</td>
<td>9.7</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>9.8</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S3 * R2 * G1 * Ch0</td>
<td>2.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>3.26</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R2 * G0 * Ch2</td>
<td>4.8</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>6.5</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S4 * R2 * G4 * Ch0</td>
<td>8.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>9.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R2 * G0 * Ch2</td>
<td>9.7</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>9.8</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R2 * G1 * Ch0</td>
<td>2.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>3.26</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S3 * R2 * G1 * Ch0</td>
<td>4.8</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>6.5</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S4 * R2 * G4 * Ch0</td>
<td>8.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>9.1</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
<tr>
<td>S2 * R2 * G0 * Ch2</td>
<td>9.7</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
<td>9.8</td>
<td>37.9</td>
<td>35.9</td>
<td>988</td>
</tr>
</tbody>
</table>

روش حسابی سگها
همان گونه که نتایج نشان می‌دهد، صحت واحدهای حسابی خیلی زیاد فقط 23.5 درصد است که در نتیجه در برآوردهای مختلف ارایه‌بندی شده است. صحت واحدهای اراضی 8.1 و 8.2 بیشتر از بیان بوده و به ترتیب 31.8 و 37.9 درصد می‌باشد. در واحدهای اراضی در فیزیوگرافی آریپ‌فس‌های نادیده گرفته‌شده می‌تواند حساب بیش‌تر از پایه‌ای است به طوری که حاصل واحدهای اراضی 9.7 و 9.8 به ترتیب 28.5 و 22.4 درصد است. به‌طوری که حاصل واحدهای اراضی 4.8 تا 1.8، پایه‌ای واحدهای اراضی صحت بالایی ندارند و در نتیجه از صحت لازم در نگهداری شکل‌های فرسایش برخوردار نیستند. حسابی سگ‌ها به فرسایش و بررسی‌های مختلف با واحدهای نفیاف ماهیت واجد می‌باشد. البته به‌طور متوسط زیاد صحت این است.
جدول 2: تأثیر مقایسه تنش واقعی شکل‌های فرسایش با تنش حساسیت‌سنج‌ها به فرسایش

<table>
<thead>
<tr>
<th>شدت فرسایش</th>
<th>$Z(\text{ماگنتیک})$</th>
<th>$\chi^2(\text{درصد})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4 * R4 * G4 * Ch0</td>
<td>236.219</td>
<td>0.23</td>
</tr>
<tr>
<td>S2 * R1 * G0 * Ch1</td>
<td>224.79</td>
<td>0.23</td>
</tr>
<tr>
<td>S1 * R1 * G0 * Ch1</td>
<td>234.79</td>
<td>0.23</td>
</tr>
<tr>
<td>S3 * R2 * G0 * Ch2</td>
<td>234.79</td>
<td>0.23</td>
</tr>
<tr>
<td>S2 * R1 * G0 * Ch1</td>
<td>234.79</td>
<td>0.23</td>
</tr>
<tr>
<td>S1 * R0 * G0 * Ch0</td>
<td>234.79</td>
<td>0.23</td>
</tr>
</tbody>
</table>

حیels حساس

حیels حساس

حسابی متوسط

حسابی متوسط

حسابی متوسط (نئوشهههای کوانتزی)

حیels حساس

حسابی متوسط

حسابی متوسط (نئوشهههای کوانتزی)

حسابی حساسیت

حسابی حساسیت

حسابی متوسط

حسابی متوسط

حسابی (نئوشهههای کوانتزی) به ترتیب χ^2 و درصد حساب

دارند. همگی بیشتر واحد دارای نئوشهههای کوانتزی از نظر

فرسایش‌های فضله، شیاری، شیاری و آب‌راهیه سبب شده که

حساب آن بیشتر از واحد دارای دیگر باشد. حساب واحد

نئوشهههای مقایسه به فرسایش نیز کمتر از 40 درصد است و

طیف‌پر روش تلفیق

نابرابری در تاپین دارای 1.6 حساب کمتر از

50 درصد دارند. واحد دارای کاری در واحد اراضی 1.8 همگی

اندک از نظر فرسایش‌های مختلف، همگی بوده که در نتیجه

حساب واحد افزایش یافته که اینه با توجه به حساب آن

تنبیه به جوان، این موضوع اهمیتی ندارد.

روش تلفیق

نابرابری در 5 تا 8 درصد حساب

واحدهای دارای واحد اراضی 1.1 و 1.6 حساب کمتر از

50 درصد دارند. واحد دارای کاری در واحد اراضی 1.8 همگی

اندک از نظر فرسایش‌های مختلف، همگی بوده که در نتیجه

حساب واحد افزایش یافته که اینه با توجه به حساب آن

تنبیه به جوان، این موضوع اهمیتی ندارد.

با توجه به نتایج جدول 5 صحت واحد دارای کاری در

کاری در واحد دارای کاری دارای کاری دارای کاری

کاری دارای کاری دارای کاری دارای کاری

کاری دارا...
جدول ۵. مساحت (٪) مربوط به صحت‌های مختلف نسبت به مساحت هر واحد اراضی. کاربری و یا به‌هوا حساسیت سگ‌ها به فرسایش در روش تلقوی‌پذیری

<table>
<thead>
<tr>
<th>مساحت در جوشه (هکتار)</th>
<th>واحد اراضی</th>
<th>مساحت واحدهای کاری در هر واحد اراضی به مساحت کل آن کاربری (٪)</th>
<th>مساحت واحدهای کاری در هر واحد حساسیت به مساحت کل آن واحد حساسیت (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92/7</td>
<td>1/90</td>
<td>47718/1</td>
<td>59/7</td>
</tr>
<tr>
<td>93/5</td>
<td>1/90</td>
<td>14333/4</td>
<td>7/9</td>
</tr>
<tr>
<td>99/7</td>
<td>1/90</td>
<td>3691/1</td>
<td>9/7</td>
</tr>
<tr>
<td>97/4</td>
<td>1/90</td>
<td>494/3</td>
<td>7/9</td>
</tr>
<tr>
<td>8/4</td>
<td>1/90</td>
<td>793/0</td>
<td>9/7</td>
</tr>
<tr>
<td>2/8</td>
<td>1/90</td>
<td>12598/3</td>
<td>9/7</td>
</tr>
<tr>
<td>11/0</td>
<td>1/90</td>
<td>398/7</td>
<td>9/7</td>
</tr>
<tr>
<td>6/0</td>
<td>1/90</td>
<td>1436/5</td>
<td>9/7</td>
</tr>
<tr>
<td>5/0</td>
<td>1/90</td>
<td>190/6</td>
<td>9/7</td>
</tr>
<tr>
<td>5/0</td>
<td>1/90</td>
<td>34587/4</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>4734/4</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>7563/3</td>
<td>9/7</td>
</tr>
<tr>
<td>8/7</td>
<td>1/90</td>
<td>6103/9</td>
<td>9/7</td>
</tr>
<tr>
<td>8/7</td>
<td>1/90</td>
<td>4118/7</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>9942/7</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>837/3</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>1992/5</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>2587</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>2878</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>32878/5</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>37838/9</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>4449/3</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>50064/5</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>93037/7</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>7804/2</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>16839/5</td>
<td>9/7</td>
</tr>
<tr>
<td>9/7</td>
<td>1/90</td>
<td>78088/9</td>
<td>9/7</td>
</tr>
</tbody>
</table>
نقطه کاری حاصل از تفسیر تصاویر ماهواره‌ای شامل 76 واحد کاری بود. نتایج مقایسه نشان داد که همگنی واحد‌های فرماشی با نمایش واحد‌های کاری حاصل از تفسیر تصاویر ماهواره‌ای نشان داد که همگنی واحد‌های کاری نسبت به روش‌های شیگنی از نظر شکل‌های فرماشی کامل‌تر همگن بود و خطای ندادن که قابل توجه است.

مقایسه روش‌ها
شکل 1 صحت روش‌های مختلف استفاده در تهیه نشان شکل‌های مختلف فرماشی را نشان می‌دهد. همان‌طور که ملاحظه می‌شود بیشترین صحت مربوط به روش تفسیر تصاویر است که شکل‌های فرماشی، 72 درصد برای یافتن زمین انطباق دارد. بعد از روش تفسیر تصاویر ماهواره‌ای، روش تلفیق نیز است که در برآورده شکل‌های فرماشی، 68 درصد صحت دارد که با روش تفسیر تصاویر، شش درصد اختلاف دارد. صحت روش‌هایی که در صحت حسابسی و حسابسی 92 درصد مورد به نهایت شکل‌های سنگ‌های فرماشی است که فقط از نظر اتفاقات اکثر واحدهای شگردهای دیگری را می‌رساند.

شکل 2 جذب میانگین مربوط به واحد‌های کاری را نشان می‌دهد. این شاخه نیز نشان می‌دهد که روش تفسیر تصاویر ماهواره‌ای از نظر اختلاف کمتری در نهایت نشان‌شکل‌های فرماشی بر خوردار است. اختلاف خطابا روش واحد‌های اراضی و حسابسی سنگ‌های بسیار زیاد است اما با روش تلفیق لایه‌ای اختلاف بسیار کمتری دارد.

شکل 1. صحت روش‌های مورد استفاده در تهیه نشان شکل‌های مختلف فرماشی

مربع حتی در تلفیق با دو لایه واحد‌های اراضی و حسابسی سنگ‌ها به فرماشی، بیشتر زیاد است و لازم است روی هم‌گردی لایه‌های مختلف مؤثر در فرماشی بروز گردد.

نتایج جدول 5 نشان می‌دهد که درصد از مساحت واحد‌های کاری در حسابسی خیلی زیاد صحت کمتری که درصد دارد و نهایا درصد زیادی صحت به فرماشی صحت خیلی کمتر است و درصد دارند. مرور صحت در واحد‌های کاری در این دو حسابسی در روش تلفیق لایه‌ها از صحت لازم در برآورد شکل‌های فرماشی برخوردار نیستند.

واحد‌های کاری دایر حسابسی متوسط سنگ‌ها به فرماشی (نهشته‌های کوثری) نسبت به واحد‌های کاری در حسابسی و خیلی زیاد و واحد مقام، صحت بیشتری دارد و 3/3 درصد مساحت آنها صحت بیشتر از 90 درصد دارد. واحد مقایسه تلفیق صحت بالایی دارد و 90 درصد از مساحت واحد‌های کاری صحت بیشتر از 90 درصد دارد که البته تعداد و مساحت کم این واحد‌ها نمی‌تواند به افرایش صحت گیاهی است. در مجموع نتایج از صحت بسیار کم واحد‌های کاری در حسابسی‌های مختلف سنگ‌ها حکایت می‌کنند که

546
نتایج جدول 6 نشان می‌دهد که تقریباً نیمی از مساحت واحدهای کاری نقشه حسابی سنجش (49/8 درصد) صحت کمتر از 50 درصد و نیمی دیگر صحت 50–70 درصد دارند. بیشترین مساحت در صحت کمتر از 50 درصد مربوط به نقشه واحدهای اراضی است که 69/2 درصد از مساحت واحدها در این صحت قرار دارند. اما 4/2 درصد از مساحت اراضی صحت بیشتر از 90 درصد دارند. بنابراین با در نظر گرفتن صحت بالا (بیشتر از 90 درصد) و صحت بالای (کمتر از 50 درصد) می‌توان گفت که هر دو روش در تهیه نقشه شکل‌های فرسایشی تقریباً یکسان هستند.

در روش تلفیق لایه‌ای 39/8 درصد مساحت واحدهای کاری صحت کمتر از 50 درصد دارند اما این مقادیر در روش تفسیر تکرار فقط 18/9 درصد است. همچنین 38/6 درصد از
نتیجه‌گیری

بررسی صحبت و دقت روش‌های مختلف تفسیر نشان داد که روش تفسیر تصاریف بالاترین سطح دارد. تفسیر نشان داده که روش تفسیر تصاریف بالاترین اطلاعات را بهتری ارائه می‌دهد. میزان دقت روش تفسیر تصاریف بالاترین اطلاعات را بهتری ارائه می‌دهد و روش تفسیر تصاریف بالاترین اطلاعات را بهتری ارائه می‌دهد.

مشارکت‌های ادبیاتی

خلاصه و اشارات ادبیاتی

مراجع و منابع استفاده

1. حاجی‌قلی‌زاده، م. 1382. بررسی نشانه مادری از تفسیر ماهورهای مکتوب تکفیک بالا در اسناد، مجموعه مقالات سومین همایش ملی فرهنگ‌نامه‌ها و موسسه‌ها، صفحات 1384-1385.

آزمایش پژوهشی

548
پرویسی صحت و دقت جند روش تهیه نشته های فرسایش خاک

2 درفت مطالعات و ارزیابی آبخیرها. ۱۳۷۹. طرح ملی تهیه نشته سیمای فرسایش خاک کشور، معاونت آبخیرداری، وزارت جنگ
سازندگی.
3 رفاهی، م. ح. رفاهی، ن. جلالی و ف. سرمدیان. ۱۳۸۷. بررسی کاراکتر رودهای برداشت روکمی تصادف ماهوارهای به منظور
نهفته شدن و شناسایی فرسایش خاک. مجله علوم کشاورزی ایران (۳۴): ۷۹۷-۷۹۸.
4 رفاهی، ج. ۱۳۷۹. فرسایش آبی و کانتورل آن. انتشارات دانشگاه تهران.
5 علیوی‌پناه، س. ک. ۱۳۸۲. کاربرد سنجش‌های ارزیابی در اثر عوامل زمین (عوامل خاک). انتشارات دانشگاه تهران.
6 فیضی، نیا، س. ۱۳۷۴. مقاومت سنگ‌ها در مقابل فرسایش در اقلام مختلف ایران. مجله منابع طبیعی ایران (۷): ۹۵-۱۱۲.
7 محمدی‌نیک‌کامی، ع. و. د. نیک‌کامی. ۱۳۸۵. تحقیق اکتشاف فرسایشی یک تحقیق پایان دبیری پایدار در منطقه کشاورزی خاک. بهبود خاک،
محیط زیست و توسعه پایدار، دانشکده مهندسی آب و خاک، برندس کشاورزی و منابع طبیعی دانشگاه تهران، کرمان.
8 محمدی‌نیک‌کامی، ع. و. نیک‌کامی، م. استادی‌داری. ۱۳۸۸. بررسی روش تهیه نشته اکتشاف فرسایشی ۵۵۰۰۰۰۰: ۱ مطالعه موردی:
حوزه آبخیر کر و سولفان. سومین همایش ملی فرسایش و رسوب. مرکز تحقیقات حفاظت خاک و آبخیرداری کشور، تهران.
9 نجابت، م. ۱۳۸۱. امكان سنگی برداشت روکمی تصادف ماهوارهای به منظور شناسایی و تهیه نشته خاک در استان
فارس. اولین کارگاه آموزشی طرح‌های فن آریه نویس (GIS-RS) در حفاظت خاک. مرکز تحقیقات حفاظت خاک و
آبخیرداری، ۱ و ۲ بهمن ۱۳۸۱.

in the sneeuwerg, Great Karoo, South Africa. Catena 50(2-4): 165-184.
Mkomazi river catchment (Kwazulu/Natal-south Africa) by aerial photo interpretation. In: Zentralblatt fur
13 Martinez-Casasnovas, J.A. 2003. A spatial information technology approach for the mapping and quantification of
gully erosion, Catena 50(2-4): 293-308.
and Soil Organization, Wellington, New Zealand.
15 Oldeman, L.R., R.T.A. Hakkeling and W.G. Sombroek. 1988. Guidelines for general assessment of the status of
human-induced soil degradation (GLASOD). International Soil Reference and Information Center, Wageningen.
Mbuluzi catchment of Swaziland. Catena 50 (2-4): 507-525.
Kenya, preliminary results. In, the proceedings of the 15th Africa association of remote sensing of environment
aerial survey and earth sciences. ITC-Textbook VII-6, 2nd ed., Enschede.
20 Yuliang, Q. and Q. Yum. 2002. Fast soil erosion investigation and dynamic analysis in the loess plateau of china by

549