اندازه‌گیری برخی از ذخایر کربن آلی در دسترس به عنوان شاخص کیفیت خاک

معصومه بوسفی، حسن شریعتمثی و محمد علی حاج عباسی

(تاریخ دریافت: 24/04/1385)

چکیده
مدیریت صحیح عملیات کشاورزی و حفظ مواد آلی خاک، از جمله عوامل مهم در کشاورزی پایدار می‌باشد. مقدار ماده آلی خاک یکی از شاخص‌های مهم کیفیت خاک محصول می‌شود. ذخایر لایل مواد آلی به عنوان شاخص خوبی از کیفیت خاک می‌باشد. به همین دلیل، تحقیقات بررسی خریز از ذخایر لایل آلی چرخ خاک به عنوان شاخص وارونگی تأثیر مدیریت‌های مختلف در دو خاک آهکی صورت گرفت. این طالعه در دو محل - 1- کشت‌های تحت کودهای با چهار سطح 50، 100 و 150 مگاگرم کود گیاهی در هکتار با تناوب زراعی دزرت-گندم (C1، C2، C3، C4) و در کشت‌های زیر سیستمهای کشت (C8، C9، C10) 2- با ساله‌های آبیاری مشخص در مزرعه تحقیقاتی لورک و - 3- سیستمهای کاشت با تاریخ‌های کشت مشخص (C5، C6، C7) مزرعه ایستگاه تحقیقاتی فزوح اجرا گردید. نمونه برداری خاک از دو عمیق 5-0 و 15-0 سانتی‌متر از وسط کرت‌ها انجام شد. در نمونه‌های خاکی مقدار آلی کربوهیدرات‌های عصاره‌گیری با آب داغ، ذرات مواد آلی (POM)، کربن آلی و مقدار کربوهیدرات‌های عصاره‌گیری با آب داغ در پیش دهانه‌های پوم و پایداری خاک‌دانه‌ها تنها تأثیر مدیریت‌های گوناگونی ققاوتی می‌باشد. مقدار کربوهیدرات‌های عصاره‌گیری با آب داغ به سبب افزایش کوسه به سیستم‌های کشت نسبت به سیستم‌های کشت با افزایش کربن آلی آلی داشته‌شد. مقدار کربوهیدرات‌های عصاره‌گیری با آب داغ به تغییر مدیریتی در کواته روستایی بخشی شناختی نشان داده و در نهایت به عنوان شاخص خوبی از کیفیت خاک به ویژه در ارتباط با تشکیل خاک‌دانه‌های پیوندهای قابل عصاره‌گیری با آب داغ به نتیجه‌گیری کرده‌اند. در نهایت هر دو دانه می‌توانند در ارتباط با داده‌های کیفیت خاک مورد توجه باشند.

واژه‌های کلیدی: ذخایر کربن در دسترس، مواد آلی خاک، پایداری خاک‌دانه، مدیریت خاک، کیفیت خاک

مقدمه
مدیریت صحیح کشاورزی و حفظ مواد آلی خاک، از جمله عوامل مهم در کشاورزی پایدار می‌باشد. مقدار ماده آلی خاک به دلیل اینکه شاخص‌های نسبی، قابل توجه است. فرآیندهای خاک را تشکیل می‌دهد، یکی از مسئول مکانیابی و ساختاری خاک، که حساس به شرایط محیطی است. شاریاتی (2019) توصیف کرده‌است که در نهایت به شرایط محیطی خاک و سیستم‌های کشت تأثیر می‌گذارد. در این مقاله به این محیط اشاره می‌شود.

1. شریعتی، حسن، ش. (1375). مدل‌سازی عوامل اکولوژیک در ارتباط با سیستم‌های کشت خاک‌دانه

Shariat@cc.iut.ac.ir

* مسئول مکانیابی و ساختاری خاک

429
لایبل (Labile) می‌باشد. ذخایر آلی تعیین شده در بخش (Particulate Organic Matter) لایبل عبارتند از ذخایر آلی (POM) کربن زیست نوده مبکری، کربن محلول، کربن قابل معده شدن و کربن قابل عصاره‌گیری با عصاره‌گیری مختلف (15). آزمایش‌های موردی نشان داده است که در این می‌توان تغییر در وضعیت موارد آلی شده که این تغییر در ذخایر لایبل سبب تغییرات از کربن آلی به سیستم‌های خاک است. همین ذخایر لایبل کربن خاک به عنوان شاخص‌های حساس با راه‌هایی روند تغییرات در موارد آلی خاک یپسند است (17).

در حذف‌کننده گیاهی تازه و هوموس می‌باشد و به عنوان مجزا موقت موارد آلی شناخته می‌شود. این یک محیط مهندس ناشی از حجم خاک را به خود انتخاب می‌دهد ولی به دلیل احتمال یافتن بازگشت کوته‌ها و منی‌ها و افزایش غلیظ و کربن‌بخشی از شاخص‌های مهم کیفیت خاک با حساب می‌آید (15). مطالعات نشان داده است که ارتباط یکنواختی از موارد آلی با اجزای معدنی ناحیه زیرخاکی و از این رو سریع‌تر از موارد آلی که با اجزای معدنی خاک در ارتباط هستند، تجزیه می‌شود (13). بنابراین استفاده از این شاخص برای بررسی تأثیر تهیه‌های واکنش‌های زراعی مختلف بر اثر این مشاهده کیفیت خاک مناسبی و تحقیق خود را (20).

اگر در نظر بگیریم که موارد آلی از نظر می‌تواند نشان دهنده حساسیت به بهبود این مناطق باشد و چندین شاخص‌های حساس به نیازهای ارزیابی تأثیر بر سیستم‌های مختلف کاستن بر خصوصیت کاراکتر خاک صورت گرفت.

مواد و روش‌ها

این مطالعه در قالب طرح فاکتوریال با بلکهای کامل تصادفی در سه تکرار، دو عضو و در دو بسته کاشت در دو منطقه انگلیس انجام شد. این مورد تحقیقاتی لورا مربوط به دانشکده کشاورزی دانشگاه صنعتی اصفهان واقع در جنوب‌شرقی ایران شده‌است. این مطالعه به طور چهار边 و چهار نهایی به فردیند در گروهی از شرکت‌های علامت‌گذاری شده و در دو ناحیه از دو ارائه‌ای

فروم برای سیستم‌های کشاورزی طبیعی و مزایا بیشتری نسبت به دردهای ارگیا
جدول 1. تحقیقات کشت زراعی و سیستم‌های کاشت مردو مطابعه

<table>
<thead>
<tr>
<th>سیستم کاشت</th>
<th>تاریخچه / نوع کوددهی</th>
<th>محیط تغییر نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 75 Mg/ha</td>
</tr>
<tr>
<td>C2</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 50 Mg/ha</td>
</tr>
<tr>
<td>C3</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 100 Mg/ha</td>
</tr>
<tr>
<td>C4</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 75 Mg/ha</td>
</tr>
<tr>
<td>C5</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 50 Mg/ha</td>
</tr>
<tr>
<td>C6</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 100 Mg/ha</td>
</tr>
<tr>
<td>C7</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 75 Mg/ha</td>
</tr>
<tr>
<td>C8</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 50 Mg/ha</td>
</tr>
<tr>
<td>C9</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 100 Mg/ha</td>
</tr>
<tr>
<td>C10</td>
<td>ذرت-گندم ذرت-گندم</td>
<td>ذرت-گندم 75 Mg/ha</td>
</tr>
</tbody>
</table>

1. در سیستم بدون کوددهی در طی بین سال‌های 1980 تا 1985، نتایج نشان داد که استفاده از کوددهی در این سیستم کمک کرده است.
2. در سیستم کوددهی معنی‌دار، کودهای N، P و K مطلوب توسط آزمون‌های مختلف سالانه ارائه شده است.
3. نمونه برداری خاک در پایان فصل رشد سال 1383 انجام گرفته است.
جدول 2 برخی خصوصیات فیزیکی و شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>کربنات کلسیم (%)</th>
<th>EC (ds/m)</th>
<th>pH</th>
<th>لیم ری سستی</th>
<th>منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>37/33</td>
<td>3/5</td>
<td>8/30</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>35/08</td>
<td>0/95</td>
<td>7/62</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>36/75</td>
<td>1/50</td>
<td>7/60</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>33/25</td>
<td>1/50</td>
<td>7/53</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>36/62</td>
<td>1/66</td>
<td>7/80</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>36/83</td>
<td>0/65</td>
<td>8/05</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>27/58</td>
<td>3/00</td>
<td>3/88</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>37/00</td>
<td>0/53</td>
<td>7/85</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>37/15</td>
<td>0/65</td>
<td>7/80</td>
<td>لوکر</td>
<td></td>
</tr>
<tr>
<td>37/50</td>
<td>0/48</td>
<td>7/90</td>
<td>لوکر</td>
<td></td>
</tr>
</tbody>
</table>

تأثیر و بحث

خصوصیات مورد انتخاب خاک‌های تا حدود زیادی تحت تأثیر سیستم‌های کاشت متفاوت قرار داشته‌اند. نتایج تجزیه و تحلیل داده‌ها (جدول 1) نشان می‌دهد که در همه صفات اختلاف معنی‌داری بین سیستم‌های کاشت و هم‌چنین عمق‌های مورد مطالعه (جدول 5) در سطح احتمال 1 درصد وجود دارد.

کربن آلی

محدوده تغییرات کربن آلی در دو منطقه بین 0/5-3/85 درصد است (شکل 1). در منطقه لوکر سیستم کاشت C4 مربوط به تیمار سالانه افزایش 100 مگاگرم کود کاری در هکتار بیشترین مقدار کربن آلی خاک را نشان داد و کمبود مقدار کربن آلی در این منطقه مربوط به سیستم کاشت C1 (تیمار صفر کود کاری) می‌باشد. سیستم کاشت C5 از نظر مقدار کربن آلی تفاوت متوسطی در 4/65 درصد از شاخص‌ها کربن آلی می‌کند که با گروه کربن آلی تیمار شادن دارای فاصله‌ای فاصله شده شده است. نتایج مختلف از جمله میک و همکاران نیز نشان داده شده افزودن کود آلی به خاک باعث افزایش مقدار ماده آلی خاک می‌گردد (27).

در منطقه فوژه، بیشترین مقدار کربن آلی مربوط به سیستم کاشت C9 (پیش از پذیر خاک‌های متوالی) بود که شاید به‌وسیله

واکنشی شد.
جدول ۳. نتایج تجزیه و ارتباط خصوصیات اندازه‌گیری شده خاک در منطقه لورک

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>df</th>
<th>معیار تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWD ۰/۱۴۷***</td>
<td>۶</td>
<td>تیمار</td>
</tr>
<tr>
<td>POM ۰/۱۴۷***</td>
<td>۱</td>
<td>عمق</td>
</tr>
<tr>
<td>مجموعه ۰/۲۲۴***</td>
<td>۱</td>
<td>تیمار × عمق</td>
</tr>
<tr>
<td>POM ۰/۱۴۷***</td>
<td>۴</td>
<td>نتایج عمق</td>
</tr>
<tr>
<td>اثر مقابلیت تیمار عمق</td>
<td>۲۴</td>
<td>خطا</td>
</tr>
</tbody>
</table>

***: نشان دهنده اختلاف معنی‌دار در سطح ۰/۰۱ است.

جدول ۴. نتایج تجزیه و ارتباط خصوصیات اندازه‌گیری شده خاک در منطقه فزوه

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>df</th>
<th>معیار تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWD ۰/۱۹۴***</td>
<td>۲</td>
<td>تیمار</td>
</tr>
<tr>
<td>POM ۰/۱۹۴***</td>
<td>۱</td>
<td>عمق</td>
</tr>
<tr>
<td>مجموعه ۰/۱۷۷***</td>
<td>۲</td>
<td>تیمار × عمق</td>
</tr>
<tr>
<td>POM ۰/۱۷۷***</td>
<td>۴</td>
<td>نتایج عمق</td>
</tr>
<tr>
<td>اثر مقابلیت تیمار عمق</td>
<td>۸</td>
<td>خطا</td>
</tr>
</tbody>
</table>

***: نشان دهنده اختلاف معنی‌دار در سطح ۰/۰۱ است.

**: نشان دهنده اختلاف معنی‌دار در سطح ۰/۰۵ است.

جدول ۵. مقایسه میانگین خصوصیات اندازه‌گیری شده در در دو عمق متفاوت در دو منطقه لورک و فزوه

<table>
<thead>
<tr>
<th>پارامتر اندازه‌گیری شده</th>
<th>واحد</th>
<th>کربن آلي</th>
<th>کربن آلي در بخش POM</th>
<th>کربن آلي در بخش MWD</th>
<th>کربن آلي در بخش POM</th>
<th>کربن آلي در بخش MWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن (5) (5-15)</td>
<td>فزوه</td>
<td>۲/۰۷ B</td>
<td>۱/۳۳ A B</td>
<td>۲/۱۲ A*</td>
<td>۱/۳۳ A B</td>
<td>۲/۱۲ A*</td>
</tr>
<tr>
<td>وزن (5) (5-15)</td>
<td>فزوه</td>
<td>۰/۶۸ A</td>
<td>۰/۳۳ A</td>
<td>۰/۷۵ A</td>
<td>۰/۳۳ A</td>
<td>۰/۷۵ A</td>
</tr>
<tr>
<td>وزن (5) (5-15)</td>
<td>لورک</td>
<td>۴۰/۷۱ B</td>
<td>۳۰/۰۴ B</td>
<td>۴۰/۷۱ B</td>
<td>۳۰/۰۴ B</td>
<td>۴۰/۷۱ B</td>
</tr>
<tr>
<td>وزن (5) (5-15)</td>
<td>لورک</td>
<td>۲۲۹/۱۷ A</td>
<td>۲۲۹/۱۷ A</td>
<td>۲۲۹/۱۷ A</td>
<td>۲۲۹/۱۷ A</td>
<td>۲۲۹/۱۷ A</td>
</tr>
<tr>
<td>وزن (5) (5-15)</td>
<td>لورک</td>
<td>۲۴/۸۵ A</td>
<td>۲۴/۸۵ A</td>
<td>۲۴/۸۵ A</td>
<td>۲۴/۸۵ A</td>
<td>۲۴/۸۵ A</td>
</tr>
<tr>
<td>وزن (5) (5-15)</td>
<td>لورک</td>
<td>۰/۵۵ B</td>
<td>۰/۵۵ B</td>
<td>۰/۵۵ B</td>
<td>۰/۵۵ B</td>
<td>۰/۵۵ B</td>
</tr>
</tbody>
</table>

*** در هر راکد، میانگین‌های مربوط به هر منطقه که با جریب متفاوت مشخص شده‌اند در سطح ۰/۰۱ دارای اختلاف معنی‌دار می‌باشند.
شکل ۱. کربن آلی خاک سطحی در سیستم‌های کاشت متفاوت حروف منفی‌افا در هر منطقه نشان دهنده اختلاف معنی‌دار میانگین‌ها در سطح ۰/۰۱ می‌باشد.

شکل ۲. نسبت کربن آلی بخش POM به کل کربن آلفا مایع در سیستم‌های کاشت متفاوت حروف منفی‌افا در هر منطقه نشان دهنده اختلاف معنی‌دار میانگین‌ها در سطح ۰/۰۱ می‌باشد.

بخش از این افزایش را مرتبط با بازگشت بخشی از بقا‌های کربن آلی و همچنین بقا‌های غیرکربنی با خاک دانسته، اما توجه به این که سالهای مقدر ۱۰۰ مگاگرم در هر کاردون کربن آلی و سیستم کاشت کاهش کافی برای تجزیه مواد آلی بیش نیسته، این مواد از نظر مواد قابل تجزیه به عنوان حداکثر بقا‌های غیر کربنی نامیده و همچنین بوده و مخزن موقتاً مواد آلی در خاک به شمار می‌رود.

در سیستم کاشت C7 به دلیل آبیاری مجدد زمستان بعد از کشت برنج، احتمالاً بقا‌های غیرکربنی و وروتی و همچنین کودهای اضافه شده به زمین فرصت تجزیه کرده و مقادیر زیادی از C8 به دلیل تجريبي کربن آلی بخش فوق‌المعنی‌دار در سیستم کاشت (C4) همراه با بیشترین مقدار کربن آلی در بخش POM
دایره‌گری برخی از ذخایر کربن آلی در دسترس به عنوان شاخص کیفیت خاک

شکل 3 مقدار کربوهیدرات‌های قابل عصاره‌گیری با آب داغ از خاک در سیستم‌های کاشت متفاوت در هر منطقه نشان دهنده اختلاف معنی‌دار میانگین‌ها در سطح 200/00 می‌باشد.

داده که در ویژه‌نامه در بخش میدانی مواد آلی سریع تر از بخش سه‌گانه می‌شود (28). در منطقه دوم هم کمترین مقدار کربن آلی در بخش سه‌گانه با تیمار آیش (C8) است که هنگام پیچای گیاهی با کودی را دریافت نکرده است. بیشترین مقدار در سیستم کاشت C9 (شکل 3) مشاهده شد.

کربوهیدرات محلول در آب داغ
مقدار تغییرات کربوهیدرات قابل عصاره‌گیری با آب روش در دو منطقه بین 254-233 mg/kg در مزرعه لورک کاربرد کود گاوبی تیمار 100 مگاگرم در هکتار بیشترین مقدار کربوهیدرات و سیستم‌های کاشت C7 و C1 مقدار کربوهیدرات در سیستم کاشت C8 بیشتری از کل هزینه کاشت در منطقه قروه کمترین مقدار کربوهیدرات قابل عصاره‌گیری با آب داغ در تیمار آیش (کاشت C8) به دست آمد. دوره آیش در واقع زمانی را برای تجزیه مواد آلی به درون وردید یا گیاهی فراهم می‌کند (14).

POM کربوهیدرات در بخش
مقدار تغییرات مقدار کربوهیدرات محلول در آب داغ موجود در بخش POM در سیستم‌های کاشت مورد مطالعه بین 43-11 است (شکل 4). افزایش مقدار کربوهیدرات در این بخش متغیر با روند تغییرات مقدار کربوهیدرات در کل نمونه خاک مشابه است.

435
شکل ۲. مقدار کربوهیدرات قابل عصارهگیری با آب داغ در بخش خاک در سیستم‌های کاشت متفاوت حریف متفاوت در هر منطقه نشان دهنده تفاوت معنی‌دار میانگین‌ها در میان ۰/۰۰۱ می‌باشد.

شکل ۵. میانگین وزنی قطر خاک‌های پایدار در آب (MWD) در سیستم‌های کاشت متفاوت حریف متفاوت در هر منطقه نشان دهنده اختلاف معنی‌دار میانگین‌ها در میان ۰/۰۰۱ می‌باشد.

پایداری خاک‌های محیطی تغییر میانگین وزنی قطر خاک‌های پایدار در آب بین ۲/۸۲ ± ۰/۵ میلی‌متر است (شکل ۶). در منطقه لورک بیشترین مقدار MWD در سیستم‌های کاشت C۴ و C۶ به دست آمد. در حالی که مقدار میانگین وزنی قطر خاک‌های پایدار در آب یک خاک رسی تحت کاشت حاصل شوی به جویونج در مقایسه با آب پاشی از ۵۰ درصد افزایش یافت (۳).

در منطقه دوم بیشترین مقدار پایداری خاک‌های در سیستم C۹ کاشت و میانگین مکانیکی آن در سیستم‌های کاشت C۸ به دست آمد. نتایج تحقیقات رید و گروس نشان داد که افزایش پایداری
جدول 6 رابطه بین ذخایر کربن آلی و پایداری خاک‌های

<table>
<thead>
<tr>
<th>ماده‌های میوه‌یکی</th>
<th>ضرایب همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWD = $0/110$ OC 5 + $0/32$</td>
<td>0/05</td>
</tr>
<tr>
<td>MWD = $0/80$ Cb.HW + $0/2$</td>
<td>0/76</td>
</tr>
<tr>
<td>MWD = $0/182$ POMC + $0/74$</td>
<td>0/50</td>
</tr>
<tr>
<td>MWD = $0/101$ POM (Cb.HW) + $0/34$</td>
<td>0/86</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

مقدار کربن آلی، کربوهیدرات‌های خاک و میوه‌یکی ضرایب همبستگی گسترده‌ای داشته‌اند. این رابطه میوه‌یکی کاست چوپاها و میوه‌یکی باعث افزایش بیماری‌های داخلی و پارازیت‌های خاک می‌شود و منجر به کاهش خاصیت‌های فیزیولوژیکی خاک می‌شود. اکثر موارد استفاده قرار گیرد.

میوه‌یکی خصوصیات

بررسی روابط سه‌گانه کیفیت نشان داد که همبستگی قوی و معنی‌داری بین میوه‌یکی و کربوهیدرات‌های خاک‌های پایدارید در آب و کربن آلی ($r = 0/24$) کربوهیدرات‌های قابل عصاره‌گیری با آب ($r = 0/72$) و همچنین کربن آلی در بخش POM ($r = 0/53$) بسیار کاهش نشان دادند.

ذخایر کربن آلی و پایداری خاک‌های میوه‌یکی

ذخایر کربن آلی در بخش خاک‌های پایدار میوه‌یکی می‌تواند به عنوان شاخصی کارآمدی بر ارزیابی کیفیت خاک و همچنین تأثیر مدیریت‌های مختلف بر آن مورد استفاده قرار گیرد. در شاخص‌های سه‌گانه بخش POM ($r = 0/43$) بسیار کاهش نشان دادند. این رابطه به نظر می‌رسد این بخش کربن آلی (MWD) خاک می‌تواند به عنوان شاخص ماده مصرف جهت ارزیابی پایداری خاک‌های افزایش یافته که تحت تأثیر مدیریت‌های زراعی داشته باشد. نتایج در این بخش قوی و معنی‌داری ($r = 0/65$) را به منابع میوه‌یکی و پایداری خاک‌های میوه‌یکی بیان داده (۶). این رابطه به نظر می‌رسد بالین چیزی به نشان دهنده یک نظریه بر این دلالت دارد که پلی ساکاریدهای خاک حاصل از منابع گیاهی و میکروآگ‌کلریک یک نظریه کلیدی در

437
متابع مورد استفاده