پتانسیل معدنی شدن نیتریژن در یک خاک آهکی تیمار شده با دو نوع کود آلی

پژوهش لطفی، فرشید نوربخش و مجید افونی
(تاریخ دریافت: 88/3/7؛ تاریخ پذیرش: 88/2/12)

چکیده
در سالهای اخیر، استفاده از پسماندهای آلی و فراورده‌های جانی کار خانه‌ها به عنوان کود آلی و اصلاح کنته‌های خاک برای تولید محصولات کشاورزی به توجه فراگیر همگرایی است. در کشور ما به‌دلیل فقر موارد آلی خاک‌های کشور از یکسوز و تولید تجاری کودهای آلی از سوی دیگر، تأمین به استفاده از این کودهای افتزایش یافته است. هدف از انجام این مطالعه بررسی و تفکیک اثر نوع کود، اسناد مختلف کودهای اختصاصی و تعداد سال کودهای بر پتانسیل معدنی شدن نیتریژن در یک خاک آهکی (قانی، رومی، لیپک، تیراتک) تاثیر آبی‌ارزید، در منطقه اصفهان یافته است. آزمایشات در قالب طرح 13 واحد به‌کار می‌رفت از جمله گردیده و در سه تکرار انجام گردیده. نتایج اصلی به‌منظوری کرده شده است. گردید و عملیات مترکی در مسیر فراورده‌های آلی به خود نسبت نهایی در سال اول، اینکه به دیگر در دو سال پایین و پشت سوم و در سال متوالی تیمار کود (کود گاوی یا لجن فاضلاب) مشابه (20 و 100 مگاگرم بر هکتار) دریافت گردید. نمونه‌برداری و مکر از خاک، ۶ ماه پس از کوده‌ی نیتریژن را انجام داد. پتانسیل معدنی شدن نیتریژن با استفاده از روش انگل‌سیون با ذخیره نمود-آزمون اندازه‌گیری شد. در پایان نتایج نشان داد تیمار سال پایه‌ای کود گاوی بیشتر از لجن فاضلاب به خود نسبت به این تیمارها نسبت به سازمانات متعادل نخواهد گردید. تفاوت معنی‌داری نداشته و یا در این تیمارها نسبت به سازمانات اکتشافات تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، ناپیدا می‌گردد. اضافه کردن 100 مگاگرم هر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیتریژن را نسبت به تیمار شاهد ۶۲٪ و نسبت به تیمار ۷۵٪ و ۷۵٪ می‌گردد در حالت ۱/۷ تیمار اغازی پایدار همچنین پتانسیل معدنی شدن نیتریژن در تیماری که سال پایه کود آلی دریافت کرده به تیمارهای دو سال کود دریافت کرده، کسی کود دریافت کرده، به ترتیب و ۲/۱۷ و ۰/۵ تیمار اغازی را تاثیر داد. پایین به سال اغازی پایدار یا با پای های گاز و چرب یا نتایج نشان داد. نتایج سیستمیک آن است که اگنگی تأثیر برای نیتریژن کل در تیمارهای مورد مطالعه، منفعت از اگهی تغییرات پتانسیل معدنی شدن نیتریژن است.

واژه‌های کلیدی: پتانسیل معدنی شدن نیتریژن، لجن فاضلاب، کود گاوی، سیستمیک رده او، ثابت سرعت، نگهداری

مقدمه
رشد روزافزون جمعیت و پدیده افجار جمعیتی، یکی از
تاثیر نیازهای غذایی افراد جامعه و ایمنی غذایی با توجه به

1. داشته‌باشی سایل کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان و در حال حاضر عضو هیئت علمی دانشگاه آزاد اسلامی واحد ایلام
2. به ترتیب استادیار و دانشیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

farshid@ec.iut.ac.ir

* مسئول مکانیتی، پست الکترونیکی:
کشاورزی پایدار (Sustainable agriculture) نیازهای غذایی حال و آینده بشر مورد توجه اقتصادی مثنویشان کشاورزی از جمله علم خاک بوده و محور علم تخییق و بررسی ایجاد زمینه‌ها و پیش‌روی ای است که منجر به پایداری تولید کشاورزی می‌گردد (۲۹).

قسمت علمه‌کناره به دلیل نقش فعالیت‌های مدیریتی انسان بر یکی از خاصیت‌های توانایی تولید کشاورزی. توانایی تولید کشاورزی به دلیل و ایستاکی شدید آن به کیفیت و کمیتی مواد آلی، توانده‌کننده در تأمین ابزار و مواد کشاورزی به‌طور مستقیم و غیر مستقیم متأثر از انسانیتکه کشاورزی به سرعت روز به‌روز می‌روید و گاه به گونه‌ای است که شاخص کیفیت خاک با گذاشتن زمان ارتقا می‌یابد. لذا نوع و شدت تأثیر انسان بر تحولات جریان تنیروز، به صورت مستقیم تأثیر می‌گذارد (۲۵).

در مطالعه عمدی شدن تنیروز، مقدار تنیروز معدنی رها شده برابر تجویزی مواد آلی تعیین می‌شود که مفیدترین اطلاعات کمی در مورد مقدار تنیروز در دسترس یک باقر می‌شود (۲۶). یکی از اهداف مهم این نوع پژوهش‌ها به دست آوردن برنامه مناسب از منابع پس‌اندازه آلی است که با پیش‌روی به حال اصلاحات گردد تا بکس سطح بهینه تولید محصول را به‌مراتب داشته باشد و از برای بهره‌وری مانند مقدار تنیروز کشاورزی مناسبی برای تشکیل بیشینه بهره‌وری دما و رطوبی از سینتیک مرتبه یکی از پروری کننده و رطوبیت کشاورزی (۱۱) چهار تا به مدت ۱۴ هفته به روش استاندارد و اسمه‌گر دنگه ای‌اکوپاسیون) کرده و مقدار تنیروز معدنی شده خالص را انداده‌گیری کرده‌اند. برای تامین نیازهای غذایی حال و آینده بشر مورد توجه خاص تحلیل‌های مثنویشان کشاورزی از جمله علم خاک بوده و محور علم تخییق و بررسی ایجاد زمینه‌ها و پیش‌روی ای است که منجر به پایداری تولید کشاورزی می‌گردد (۲۹).

دانلاده می‌شود به سیستم‌های استاندارد برای انتخاب مناسبی برای بسته‌برداری و سپسیفیک (Mineralization) از موجودات هتروتوفر و انوتشر شامل باکتری‌ها، قارچ‌ها و اکتیوم‌ها به شکل معدنی تبدیل می‌شود در خاک‌های

۳۶۸
نتایج نشان داد بالاترین توانالی معنادی شدن نیترولی در میلی گرم نیترولی در کیلوگرم خاک، مربوط به خاک بود که سالهای زیادی تحت آبیاری انجام شده بود و کمترین مقادیر توانالی معنادی شدن نیترولی در میلی گرم نیترولی در کیلوگرم خاک، مربوط به خاکی بود که به سطحی هنگامی آن به وسیله فرسایش از دست رفته بود.
گوهر و همکاران (۱۶) مقدار ۲۴۰ و ۱۴۰ نت در هکتار
لجن فاصله‌ای را به خاک اضافه کردن و خاک را به مدت ۱۲ ماه همگن در دمای ۱۳۵ درجه سانتی‌گراد انکوپاسیون کردن. مقادیر تجمع نیترولی معنادی شده برای تیمارها به ترتیب ۱۰/۵ و ۱۰/۴ میلی گرم نیترولی به‌طور متوسط
و مقادیر مربوط به تیمار سرعت به ترتیب ۲/۱۴ و ۰/۳۰ و ۰/۲۹ فهرست گزارش گردید.
با توجه به اینکه اضافه کردن کودهای آلی هم‌ساند لجن
فاصله و کود گاوی به زمین‌های کشاورزی در سال‌های اخیر
مورد توجه قرار گرفته است (۱۹)، این تحقیق با هدف بررسی
اثر کودهای آلی مختلف (لجن فاصله و کود گاوی)، سطوح
مختلف کودهای آلی و آثار تجمع و افزایش معنادی کودهای
آلی مختلف بر توانالی معنادی شدن نیترولی، عملکرد و جذب
نیترولین توسط گیاه‌ها در نتایج انجام گردید.

مواد و روش‌ها
این انجام تحقیق در مروره تحقیقاتی دانشگاه صنعتی اصفهان (لوک)
تنفیج آباد واقع در ۴۰ کیلومتری جنوب غربی شهر اصفهان انجام
شد. این خاک متعلق به فاصل فاین لویی میکسکد، ترموک، تیپیک
(fine loamy mixed, thermic, Typic Hapludoll)
ایل آرچید
می‌باشد. برخی ویژگی‌های فیزیکی و شیمیایی خاک مروره
لوک در جدول ۱ آراش وارد است. میانگین دمای سالانه هوا در
ایستگاه لوک تنفیج آباد ۱۴۵ درجه سانتی‌گراد و متوسط
بارندگی ۱۴۰ میلی‌متر می‌باشد. این خاک آهکی (۲۹۵ گرم بر
کیلوگرم، معادل کربنات کلسیم) بوده و مقادیر ظرفیت زراعی و
نقطه پذیردگی دام در این خاک به ترتیب ۲۳/۵ و ۱۰/۵ درصد

۳۶۹
جدول ۱. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه (۴)

<table>
<thead>
<tr>
<th></th>
<th>ECE dS m⁻¹</th>
<th>pH</th>
<th>CEC cmol kg⁻¹</th>
<th>کربن آلی g kg⁻¹</th>
<th>رساله g kg⁻¹</th>
<th>سیلیت g kg⁻¹</th>
<th>شن</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیلیت</td>
<td>۱/۶</td>
<td>۸/۳</td>
<td>۳۳/۶</td>
<td>۵</td>
<td>۵۰/۸/۲</td>
<td>۱۶/۷</td>
<td>۱/۶</td>
</tr>
</tbody>
</table>

در عصاره اشیاء اندازه‌گیری شد.

جدول ۲. برخی خصوصیات شیمیایی کودهای آلی مورد استفاده

<table>
<thead>
<tr>
<th>کودهای آلی</th>
<th>واحد</th>
<th>pH</th>
<th>ECE dS m⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>کریک</td>
<td>-</td>
<td>۸/۶</td>
<td>-</td>
</tr>
<tr>
<td>۹۴</td>
<td></td>
<td>۱۷</td>
<td></td>
</tr>
<tr>
<td>۱۷۸/۸</td>
<td>۲۴۹/۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۹/۵۴</td>
<td>۱۲۳/۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳۰/۵۴</td>
<td>۸/۶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روش قطع‌طلبی خاک (Steam distillation) ابزار-گیری شد (۲۱). مدل استفاده شده برای ارزیابی مقدار مولکول‌های بیان‌شده در روش استفاده است. در این روش اکتشاف کردن این روشهای اشیاء اندازه‌گیری شد.

N_min = N_i (1- e^{-K_i t})

[۱]

در این معادله N_min تریبونهای مولکولی شده در زمان t و N_i تریبونهای شرطی مولکولی شده در زمان ۰ را نشان می‌دهد. مقدار K_i و t با استفاده از نرم‌افزار Curve Expert به تغییر گردید.

یافته‌ها و بحث

۱. خصوصیات خاک مورد مطالعه و کودهای آلی

برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه در جدول ۱ آراپیا گردیده است. بافت خاک، لوم رس سیلیت بوده و pH AN در محدوده pH خاک‌های آهکی است. قابلیت هیدرولوژی هیدرولوسی کردن به اکتشاف آلی نشان می‌دهد که خاک مورد نظر جزء خاک‌های غیرشورس محسوب می‌شود. مقدار اندک کربن آلی خاک، نشان درباره این بوده که در اندازه‌گیری از

۳۷۰
پتانسیل معدنی شدن نیتروزن در یک خاک آهکی تیمار شده با دو نوع کود آئی

دهنه فقر آن از نظر موارد آئی است. برخی خصوصیات شیمیایی
کودهای آئی کاربردی در جدول ۲ نشان داده شده است.
کودگاوی در مقایسه با لنج فاضلاب دارای هندایک الکتریکی
بهترین می‌باشد. لنج فاضلاب نسبت به کودگاوی دارای
امیدی‌تری است. لنج فاضلاب دارای مقدار نیتروزن کل
بهترین نسبت به کود گاوار می‌باشد و لنج کودگاوی دارای
مقدار کمتر آئی بیشتری است.

۲ اثر نوع کود بر پتانسیل معدنی شدن نیتروزن

در شکل ۱ روند زمانی معدنی شدن نیتروزن برای هریک از
تیمارهای درون مطالعه نشان داده شده است. در هر شکل تیمار
شامل زیر آورده شده تا این تیمارهای کودی مقدار گردید. مدل
تمایپی (۱-۱۰۰۰) به طور مستقیم آزم (با ضریب
همبستگی معنی دار، variance) در تمام تیمارها برآورد گردید.

و در پارامتر N و K به دست آمد.

پتانسیل معدنی شدن نیتروزن (N۰) در تیمار شاهد به طور
معنی داری کمتر از تیمارهای مربوط به کود گاوار و لنج
فاضلاب می‌باشد. همان کونه که در جدول ۲ مشاهده می‌شود
پتانسیل معدنی شدن نیتروزن در لنج فاضلاب اندکی بیشتر از
کود گاوار است. لیکن این تفاوت معنی دار نمی‌باشد. از آنجا که
سطح ماهی آلی در خاک مرور مطالعه اندک است، به نظر
می‌رسد به دلایل عدم کاربرد کود آلی در تیمار شاهد، پتانسیل
معدنی شدن نیتروزن در آن نسبت به تیمارهای که کود آلی
دریافت کرده پایینتر است. علی‌رغم آنکه مقدار نیتروزن
موجود در لنج فاضلاب بیش از کود گاوار است، بین پتانسیل
معدنی شدن آنها اختلاف معنی داری مشاهده نمی‌شود. این عدم
تفاوت معنی دار پیشگیری از است که در کود گاوار و لنج
فاضلاب مقدار به دست آمده پتانسیل معدنی شدن نیتروزن پس
از یک کدگاوی هوایی درازمدت اختلاف چندانی ندارد. به
عبارت دیگر، اگر تفاوت در مقدار کل نیتروزن دو کود
به فعالیت نیتروزن این در کود اختلال زیادی ندارند.
برخی محققین اثر لنج فاضلاب (۲۴ و ۲۳) و کود گاوار

۳ اثر نوع کود بر خصوصیات مربوط به گیاه درت

عکسکد (وزن خشک کل بخش هوانی) گیاه درت در تیمار
شاهد به طور معنی‌داری از تیمارهایی که کودی دریافت کرده
بودند کمتر بود. در حالی که تفاوت معنی‌داری بین میزان
عکسکد در تیمارهایی که کود آلی دریافت کرده بودند مشاهده
تگردید (جدول ۳).

جدول ۲ اثر نوع کود بر چسب نیتروزن توسط گیاه درت

نشان می‌دهد. این نشان نشان دهنده اثر انژیل فیتیکی
نیتروزن توسط گیاه درت در دوم کود گاوار و لنج
فاضلاب به دیده نمی‌شود. ولی در تیمار شاهد میزان چسب
نیتروزن توسط گیاه درت از تیمارهایی است که کود آلی
دریافت کردها در موانع مختلف میزبان است. لنج
فاضلاب (۲۴ و ۲۳) و کود گاوار (۲۰ و ۲۸) بر علیکرد و
جذب نیتروزن توسط گیاهان مختلف به خصوص گیاه درت
اشته و گردیده است. لبیپی و همکاران (۲۳) کود گزارش کرده که
اضافه کرد کود گاوار به خاک افزایش معنی‌دار در عملکرد و
جذب نیتروزن توسط گیاه درت نسبت به تیمار شاهد می‌گردد.
روند اثر نوع کود بر چسب نیتروزن، تقریباً مشابه روند اثر

۳۷۱
شکل ۱. اثر نوع کود، سطح کودی و تعداد سال کوده‌ی بر مقدار تجمعی نیتروژن معدنی شده (\(N_m\)) شاهد = B. کودگاری = C \\

جدول ۳. میانگین اثرات مختلف دو نوع کود بر پتانسیل معدنی شدن نیتروژن (\(N_n\))، عملکرد و جذب نیتروژن به وسیله میانگین هایی که در هر سوئن در یک حرف مسکروک هستند در سطح ۵ درصد آزمون دانک تفاوت معنادار ندارند.

<table>
<thead>
<tr>
<th>جذب نیتروژن (kg ha(^{-1}))</th>
<th>عملکرد (Mg ha(^{-1}))</th>
<th>(N_0) (mgN kg(^{-1}) soil)</th>
<th>ویژگی</th>
<th>نوع کود</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>لجن فاضلاب</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۵۳۶۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>کود گاری</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۵۵۸۶۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>شاهد</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۸۰۶۰</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

نوع کود بر عملکرد گیاه ذرت می‌یابد (جدول ۳). به عبارت دیگر در تفسیر نتایج آزمون حاکی می‌باشد که باید از عامل موجودیت روزن به نیتروژن و در نتیجه تأمین دراز مدت نیتروژن گیاه است.

۲. اثر سطح کودی بر پتانسیل معدنی شدن نیتروژن

جدول ۴ اثر سطح مختلف کودی بر پتانسیل معدنی شدن نیتروژن (\(N_n\))، را نشان می‌دهد. همان‌طور که ملاحظه می‌شوید، نیتروژن (\(N_n\)) را نشان می‌دهد. همان‌طور که ملاحظه می‌شوید،
دانشنامه شدن نیتروژن در یک حاکمیت تیمار شده با دو نوع کود آنی

پانتاسیون معدنی شدن نیتروژن در یک حاکمیت تیمار شده با دو نوع کود آنی

\[N_0 \]

در تیمارهای که ۱۰۰ مگاگرم بر هکتار کود دریافت کردند نسبت به تیمارهای که ۲۵ مگاگرام بر هکتار دریافت کردند به صورت معنی‌داری بیشتر است و مقدار این عامل برای تیمار شامل نیز به صورت معنی‌داری پایین تر از تیمارهای است.

که مقدار ۲۵ مگاگرام در هکتار دیده شده است.

از آنجا که مستقل از تفاوت نوع کود، سطح بالایی کود آنی (۲۰۰ مگاگرام بر هکتار) در مقایسه با سطح بالایی کود آنی (۲۵ مگاگرم بر هکتار) معادل بیشتر نیتروژن آنی به خاک می‌افزاید، بنابراین انزیمی \[N_0 \]

یافته بود مقداری این عامل در دلیل عدم ورود ترکیبات آنی کودی است که حاصل نیتروژن می‌باشد. نتایج تحقیقات سالی و همکاران (۲۳) نشان داد که با افزایش تیمارهای کربرد لحی فلزات، معنی‌دار شدن نیتروژن افزایش می‌یابد. آنان به این ترتیب دست‌یافته‌اند که شدت کاربرد لحی فلزات اثر معنی‌داری بر معنی‌داری شدن نیتروژن دارد. هرندز و همکاران (۱۹) گزارش کرده‌اند که با افزایش سطح لحی فلزات نسبت به حاکمیت کربرد سطح مقدار لحی فلزات را بر معنی‌داری شدن نیتروژن مورد بررسی قرار دادند. نتایج نشان داد که با افزایش شدت کاربرد لحی فلزات از ۲۰ تا ۱۵۰ گرم بر کیلوگرم، معنی‌داری شدن نیتروژن افزایش می‌یابد.

اثر سطح کودی بر یوگرایتی گیاهی ذرت

کاربرد ۱۰۰ مگاگرام بر هکتار بیشترین مقدار عامل‌های سیب گردد که به‌طور معنی‌داری بیشتر از عامل‌های سیب از کاربرد ۲۵ مگاگرام بر هکتار می‌باشد. تیمار ۲۵ مگاگرام بر هکتار با تیمار شامل نیز به صورت معنی‌داری پایین تر از تیمارهای است.

که مقدار ۲۵ مگاگرام در هکتار دیده شده است.

از آنجا که مستقل از تفاوت نوع کود، سطح بالایی کود آنی (۲۰۰ مگاگرام بر هکتار) در مقایسه با سطح بالایی کود آنی (۲۵ مگاگرم بر هکتار) معادل بیشتر نیتروژن آنی به خاک می‌افزاید، بنابراین انزیمی \[N_0 \]

یافته بود مقداری این عامل در دلیل عدم ورود ترکیبات آنی کودی است که حاصل نیتروژن می‌باشد. نتایج تحقیقات سالی و همکاران (۲۳) نشان داد که با افزایش تیمارهای کربرد لحی فلزات، معنی‌داری شدن نیتروژن افزایش می‌یابد. آنان به این ترتیب دست‌یافته‌اند که شدت کاربرد لحی فلزات اثر معنی‌داری بر معنی‌داری شدن نیتروژن دارد. هرندز و همکاران (۱۹) گزارش کرده‌اند که با افزایش سطح مقدار لحی فلزات را بر معنی‌داری شدن نیتروژن مورد بررسی قرار دادند. نتایج نشان داد که با افزایش شدت کاربرد لحی فلزات از ۲۰ تا ۱۵۰ گرم بر کیلوگرم، معنی‌داری شدن نیتروژن افزایش می‌یابد.

اثر سطح کودی بر یوگرایتی گیاهی ذرت

کاربرد ۱۰۰ مگاگرام بر هکتار بیشترین مقدار عامل‌های سیب گردد که به‌طور معنی‌داری بیشتر از عامل‌های سیب از کاربرد ۲۵ مگاگرام بر هکتار می‌باشد. تیمار ۲۵ مگاگرام بر هکتار با تیمار شامل نیز به صورت معنی‌داری پایین تر از تیمارهای است.

که مقدار ۲۵ مگاگرام در هکتار دیده شده است.

اثر سطح کودی بر یوگرایتی گیاهی ذرت

کاربرد ۱۰۰ مگاگرام بر هکتار بیشترین مقدار عامل‌های سیب گردد که به‌طور معنی‌داری بیشتر از عامل‌های سیب از کاربرد ۲۵ مگاگرام بر هکتار می‌باشد. تیمار ۲۵ مگاگرام بر هکتار با تیمار شامل نیز به صورت معنی‌داری پایین تر از تیمارهای است.

که مقدار ۲۵ مگاگرام در هکتار دیده شده است.
جدول 2: اثر سطوح مختلف در نوع کود پنالتی معنی‌دار شدن نیتروژن (N0)، عملکرد و جذب نیتروژن به وسیله درت (اعداد جدول میانگین اثر کود گاوی و لجن فاضلاب است)

<table>
<thead>
<tr>
<th>جذب نیتروژن (kg ha⁻¹)</th>
<th>عملکرد (Mg ha⁻¹)</th>
<th>N0 (mg N kg⁻¹ soil)</th>
<th>وزنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح کود</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاهد</td>
<td>٢/٩٤٢</td>
<td>١٠/٤٨</td>
<td>١٨٠/٣٤</td>
</tr>
<tr>
<td>١٠/٩٧</td>
<td>١٤/٣٧</td>
<td>٤٧١/٣٧</td>
<td></td>
</tr>
<tr>
<td>٢/٥٥٣</td>
<td>٣٧/٢٨</td>
<td>٧٢٠/٣٧</td>
<td></td>
</tr>
<tr>
<td>٠/٩٧</td>
<td>١٠/٤٨</td>
<td>١٨٠/٣٤</td>
<td></td>
</tr>
<tr>
<td>١٠/٩٧</td>
<td>١٤/٣٧</td>
<td>٤٧١/٣٧</td>
<td></td>
</tr>
<tr>
<td>٢/٥٥٣</td>
<td>٣٧/٢٨</td>
<td>٧٢٠/٣٧</td>
<td></td>
</tr>
</tbody>
</table>

۱. واحدهای تیمارهای کود آی مگاکرم به هکتار می‌باشند.

جدول 5: اثر تعداد سال کوددهی بر پنالتی معنی‌دار شدن نیتروژن (N0)، عملکرد و جذب نیتروژن به وسیله درت (اعداد جدول میانگین اثر کود گاوی و لجن فاضلاب است)

<table>
<thead>
<tr>
<th>جذب نیتروژن (kg ha⁻¹)</th>
<th>عملکرد (Mg ha⁻¹)</th>
<th>N0 (mg N kg⁻¹ soil)</th>
<th>وزنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کوددهی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>یک سال کوددهی</td>
<td>٢/٩٤٢</td>
<td>١٠/٤٨</td>
<td>١٨٠/٣٤</td>
</tr>
<tr>
<td>دو سال کوددهی</td>
<td>١٠/٩٧</td>
<td>٤٧١/٣٧</td>
<td></td>
</tr>
<tr>
<td>سه سال کوددهی</td>
<td>١٠/٩٧</td>
<td>٤٧١/٣٧</td>
<td></td>
</tr>
</tbody>
</table>

۱. میانگین‌هایی که در هر ستون در یک حرف مشترک هستند در سطح ۵ درصد آزمون دانکن تفاوت معنی‌دار دادند.
شکل 2. رابطه بین عملکرد گیاه درخت (N₀) و پتانسیل معنی‌داری شدن نیتروژن (N₀)

زنت (33) نشان داد که کلارک رابین می‌تواند لینج فاضلاب در دو سال متوالی، غلظت نیتروژن را در گیاه جدید افزایش می‌دهد. اثر دفعات کوددهی بر جذب نیتروژن توسط گیاه درخت، مانند آنچه پیش از این در باید تأثیر نتیجه‌گیری‌ها و سطح کود فراهم شد، تنش افزایشی نگریزه عملکرد درخت در نیتروژن را نشان داد (جدول 5).

همین‌گاهی ساده‌ترین بین پارامترهای گیاهی و پارامترهای سیستمیکی معنی‌داری شدن نیتروژن

عملکرد گیاه درخت رابطه معنی‌داری را با N₀ (N₀=521/3+0) و حاصل ضرب N₀ (N₀=0\times N₀) تنش می‌دهد (شکل 2 و 3). بنابراین، هیچ‌گونه بارداری عملکرد گیاه در N₀ با کل‌تلقیه از دو پارامتر یک‌تایی معنی‌داری شدن و ثابت سرعت معنی‌داری شدن نیتروژن می‌باشد نتیجه‌گیری که ما در پارامترها با نتیجه‌گیری وارد مدل می‌شود.

به طور کلی، می‌توان نتیجه گیری کرد که کلارک کودهای آلی (لینج فاضلاب و کود‌گازی) سبب افزایش پتانسیل معنی‌داری شدن نیتروژن در نتیجه عملکرد و جذب نیتروژن توسط گیاه درخت می‌شود. اگر این نتیجه‌گیری‌ها به‌طور کلی‌ای حقایقی باشند، می‌تواند این نتیجه‌گیری‌ها مفاهیم از الگوی تغییرات پتانسیل معنی‌داری شدن نیتروژن بود که هر گونه اختلاف ماهیت ذخیره نیتروژن کل از ذخیره نیتروژن فعل خاک است. ویژگی‌های گیاهی عملکرد و جذب نیتروژن توسط گیاه
سپاسگزاری

هیچ‌یک انجام این تحقیق از محل اعضا با فرهنگ از دانشگاه صنعتی اصفهان تأمین نمی‌شده که بدن وسیله قادراستی می‌گردد. از جنبه آقای مهندس صدر ارحامی نیز به دلیل همکاری ایشان در آزمایشگاه سپاسگزاری می‌شود.

منابع مورد استفاده

1. براهمی، ن. 1385. بررسی آبگیرهای آلی بر خصوصیات شیمیایی شکر و جذب عناصر به وسیله ذرت و گندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشگاه صنعتی اصفهان.
2. خدیوی، ا. 1382. اثر آلاینده‌های آلی بر اشکال شیمیایی عناصر سنگین و جذب این عناصر توسط گندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشگاه صنعتی اصفهان.
3. ملکوتی، م. ج. و. همایون. 1373. حالت‌بندی‌های خاک‌های مناطق خشک (شکلات‌ها و راه‌خرازها). انتشارات دانشگاه تربیت مدرس. تهران.