پیشینه بیشینه دمای هوای استان خوزستان بر اساس داده‌های ماهواره‌نوا و مدل شبکه عصبی مصنوعی

علي رحمي خوب، سيد محمود رضا بهبهاني و محمدحسين نظری فرا

(تاریخ دریافت مقاله: 1400/9/18، پذیرش مقاله: 1400/10/8)

چکیده

مدلهای پیشینی دمای هوای از داده‌های ماهواره‌ای، مبنی بر مگامتره‌های دمای سطح زمین و شاخص پوشش گیاهی هستند. این مدل‌ها با عناصر پیشینی با روابط استادی با دمای هوای فوق نهایی مورد استفاده قرار می‌گیرند. میزان پیشنهاد آب، از بین در اغلب مناطق ایران، این پارامترها از مراحل مورد استفاده و مدل شبکه عصبی مصنوعی بوده است. نتایج حاصل از روش‌های مختلف دمای هوای فوق و مدل‌های مختلف شرکت شده از داده‌های دمای هوای فوق شرکت شده مدل‌های مدل‌های دمای هوای فوق می‌باشند.

واژه‌های کلیدی: دمای هوای ماهواره‌نوا، مدل شبکه عصبی مصنوعی، دمای سطح زمین، شاخص پوشش گیاهی

مقدمه

دمای پیشینه روزانه‌ها (T_{max}) کاربرد زیادی در مطالعات و هواشناسی، برآورد نیاز آب و مطالعات زیست محیطی دارد. این پارامتر در استفاده‌های هواشناسی از جایگزینی معروف می‌شود و معرف دمای هوای دمای توده‌های اطراف اسکالر است و در هر نوع روش در این استفاده توجه دیگری که که دمای هوای طبیعی دمای زمین و تراکم خصوصیات مطلوب زمین است و این خصوصیات نسبت به زمان

1. به ترتیب استفاده دانشگاه‌های، دانشگاه و کارشناس‌پژوهشی آماری، دانشکده کشاورزی، پردیس اورنباران، دانشگاه تهران

* مسئول مکاتبات، پست الکترونیکی: akhob@ut.ac.ir

357
پیشینه، T:\max مقدار اندازه‌گیری شده آن در 9 ایستگاه هوایی این اسناد به عنوان داده‌های فاصله استفاده شد. مشخصات جغرافیایی ایستگاه‌های هوایی مورد استفاده در این تحقیق در جدول 1 و موقعیت کلی این ایستگاه‌ها در شکل 1 ملاحظه می‌گردد.

داده‌های ماهوراهی
در این بررسی 365 تصویر روز و بیانی پوشش ابر ماهوراهی نوا مربوط به سال‌های 1997 تا 2003 از ماهوراهی می‌باشد که این تصویر با استفاده از ماهوراهی فوق از گرفته شد. این باعث این سایت تغییرات ماهوراهی فوق داده می‌شود. این پوشش ابری نوع بدلیل اصطلاح را بنا به داده‌های مانند و به ویژه به شکل سایش (Chirp)، داده‌سازی (Spam)، و این پوشش ابری باعث این داده‌های راگ نمایش دهد (3)، (4) و این سایش باعث این داده‌های راگ نمایش دهد. این پوشش گیاهی، بانه‌های مادون، مرمر و مادون قرمز حزارت تصفیح انسانی می‌باشد و برای انجام آن نیاز به داده‌های بخشنامه، اوزون و غیر این‌پذیری ذرات معلق (Aerosol optical depth) در محیط مختلفی جوی است. ولی این داده‌ها در دسترس نیستند.

با توجه به محدودیت‌های فوق برای تعیین داده‌های ماهوراهی، این مورد پوشش گیاهی نوا، به‌طور مستقیم و بدون انجام تصادفات، تیم محدود (NOAA) تیم محدود است.

در نظر خصوصی آزمایش، دقت پیشین مقدار است؟ همچنین اضافه شده پارامترهای جغرافیایی موتر در داده‌های فوق به ورودی‌های مدل، جه مقدار دقت پیشین آزمایش می‌باشد، نمونه‌های دیگری از تحقیق است. با توجه به نتایج بخش مدل‌های کمکی به‌صورت فشرده، مورد نظر مدل‌های پیچیده عصبی مدل شیکه عصبی با ساختار پیچیده چند‌ایسه T:\max (Multiple Layer Feed Forward-MLF) استفاده شد. ساختار مورد استفاده این تحقیق شامل یک لایه قوی و یک لایه خروجی با تبعیض انتقال از نوع سیگماید است. این نوع ساختار از شبکه‌ها در مطالعات گروه ایران انتخاب شده است. برای تدوین مدل شیکه عصبی

مواد و روش‌ها

محدوده مطالعه و منابع داده‌ها

محدوده مورد مطالعه این تحقیق، ایستگاه خوزستان واقع در جنوب غرب ایران انتخاب شده است. برای تدوین مدل شیکه عصبی

358
پیش بینی بیشتری دامی هوای استان خوزستان بر اساس داده‌های ماهواره‌نوا و

جدول 1. مشخصات ابسته‌های هوشمندی مورد استفاده این تحقیق

<table>
<thead>
<tr>
<th>کد</th>
<th>ابسته‌های آموزشی</th>
<th>طول جغرافیایی (W) (درجه)</th>
<th>عرض جغرافیایی (L) (متر)</th>
<th>ارتفاع (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>آبادان</td>
<td>40/25</td>
<td>40/25</td>
<td>6/4</td>
</tr>
<tr>
<td>AH</td>
<td>اهواز</td>
<td>27/5</td>
<td>27/5</td>
<td>5/2</td>
</tr>
<tr>
<td>MS</td>
<td>سعدیه</td>
<td>32/0/5</td>
<td>32/0/5</td>
<td>5/2</td>
</tr>
<tr>
<td>BO</td>
<td>بوستان</td>
<td>7/8</td>
<td>7/8</td>
<td>8/7</td>
</tr>
<tr>
<td>SH</td>
<td>شوشتر</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>SA</td>
<td>صحیف آباد</td>
<td>82/9</td>
<td>82/9</td>
<td>9</td>
</tr>
<tr>
<td>RA</td>
<td>رامهرمز</td>
<td>15/5/5</td>
<td>15/5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>BE</td>
<td>بهبهان</td>
<td>313</td>
<td>313</td>
<td>313</td>
</tr>
<tr>
<td>AG</td>
<td>آگاهی</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

داده شکل آموزشی مناسب. در این تحقیق از روش آموزشی انتشار به غرب (Back propagation) برای آموزش شبکه استفاده شد و از میان الگوریتم‌های مختلف این روش آموزشی، الگوریتم لماورگرد مارکوارت (Levenberg Marquardt- LM) انتخاب گردید. تحقیقات نشان می‌دهد که این الگوریتم می‌تواند به سرعتی نسبت به سایر روش‌های آموزشی ارائه می‌دهد (9 و 20). در این الگوریتم، تمامی نمونه‌های داده یک‌بار تدوین ساختار مدل به سر گردیده تقسیم می‌شود (8). اولین گروه داده باید شامل داده‌های آموزشی، یعنی تیم‌هایی که به وسیله سیستم می‌تواند با ارزیابی آنها و تصمیم‌گیری برای توقف مرحله آموزشی مورد استفاده قرار می‌گیرد. تیم‌های نمونه‌های داده‌های جدید که در تدوین مدل استفاده نشده و به وسیله آزمون مدل، با استفاده از طوری که نمونه داده‌های نشان دهنده در تحقیق به طور کلی 49/2 هم‌دامندگی مدل مورد استفاده قرار گرفت یکی برای ارزیابی آزمون جدا شدند.

سنجش از دو کاراوان خویی نشان داده است (11 و 12) در داخل هر یک از لایه‌ها فوک، تعدادی نرو اندازه که با اتصالات ورودی به هم مرتبط می‌شوند. تعداد نرو ای لایه‌ای ورودی و خروجی معمولاً بیشتر از تعداد متغیرهای ورودی و خروجی مدل دارد ولی انتخاب تعداد نرو ای لایه مبتنی بر صورت سعی و خط تیم‌های می‌شود. قبل از استفاده از مدل شبکه عصبی، وزن‌ها و ارتباط‌های بین نرو‌های شبکه تیم‌های می‌شوند. به همین منظور با استفاده از یک سری
درجه و روز شمار سال (JD) همان‌طوره‌ای ماه‌های ماهورهای فضایی به عنوان ورودی‌های مدل مورد بررسی قرار گرفتند.

میزان‌های آماری

به منظور ارزیابی مدل شکه عصبی تداوین یافته در این تحقیق و همچنین مقایسه آن با کارهای دیگران، میزان‌های آماری ضریب تغییر (R²)، ضریب همبستگی (CC)، جذر میانگین (RMSE) و خطای انحراف از میانگین (MSE) استفاده شدند. همچنین درصد نتایج که اتفاقات خاصی داشته باه‌دیه واقعی کمتر از ۳ درصد سانتی‌گراد است به عنوان بکیک دیگر از میزان‌های استفاده گردید و با نماد In3D تایپ و بحث

مدل شکه عصبی با استفاده از داده‌های ماهورهای نوا و داده‌های جغرافیایی

در مرحله دوم این بررسی، مدل‌های مختلف شکه عصبی با استفاده از ترکیب متفاوت از میزان‌های ورودی چهار باند ماهورهای نوا (4B) ارتفاع زمین، زاویه سمت مرز اورشید و روز شمار سال آموزش داده شدند و نتایج آنها در جدول ۳ آرائه شده است. برای تعیین مدل‌های فضایی، تعداد ۱۰ نرخ در لایه پنجم در نظر گرفته شد. ملاحظه می‌شود، ترکیب متغیرهای جغرافیایی با داده‌های ماهورهای خاص افزایش دقت مدل می‌شود و در این میان با توجه به شاخص‌های آماری، متغیر روز شمار سال تأثیر بیشتری در افزایش دقیقه دارد. شاخص‌های شاخص‌های شامل این متغیر، دقیقه بیشتری نسبت به شاخص‌های فاقد آن دارد. حتی شاخص‌های شامل این متغیر، دقیقه بیشتری نسبت به شاخص‌های فاقد آن دارد.

نتایج و بحث

مدل شکه عصبی با استفاده از داده‌های ماهورهای نوا

در مرحله اول این بررسی، مدل‌های شکه عصبی با ترکیب‌های مختلف ۴ باند (B5، B4، B2، B1) به عنوان ورودی‌های مدل تدوین شدند. لایه پنجم تکرار مدلها به ۱۰ نرخ انجام و T_{max} نتایج آنها در جدول ۲ آرائه شد. ملاحظه می‌شود، شکل به‌هم‌بستگی را با نماد In3D تایپ و بحث

شکه عصبی با استفاده از داده‌های ماهورهای نوا و داده‌های جغرافیایی

در مرحله دوم این تحقیق، مدل‌های مختلف شکه عصبی با استفاده از ترکیب متفاوت از میزان‌های ورودی چهار باند ماهورهای نوا (4B) ارتفاع زمین، زاویه سمت مرز اورشید و روز شمار سال آموزش داده شدند و نتایج آنها در جدول ۳ آرائه شده است. برای تعیین مدل‌های فضایی، تعداد ۱۰ نرخ در لایه پنجم در نظر گرفته شد. ملاحظه می‌شود، ترکیب متغیرهای جغرافیایی با داده‌های ماهورهای خاص افزایش دقت مدل می‌شود و در این میان با توجه به شاخص‌های آماری، متغیر روز شمار سال تأثیر بیشتری در افزایش دقیقه دارد. شاخص‌های شاخص‌های شامل این متغیر، دقیقه بیشتری نسبت به شاخص‌های فاقد آن دارد. حتی شاخص‌های شامل این متغیر، دقیقه بیشتری نسبت به شاخص‌های فاقد آن دارد.
جدول 2. نتایج آماری شبکه عصبی آموزش یافته با ترکیب‌های مختلف از داده‌های ماهواره‌نوا

<table>
<thead>
<tr>
<th>IN3D %</th>
<th>MBE (°C)</th>
<th>CC</th>
<th>R²</th>
<th>RMSE (°C)</th>
<th>داده ورودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>75/39</td>
<td>5/5</td>
<td>5/5</td>
<td>7/9</td>
<td>1/47</td>
<td>B1</td>
</tr>
<tr>
<td>78/78</td>
<td>3/3</td>
<td>3/3</td>
<td>6/6</td>
<td>1/25</td>
<td>B2</td>
</tr>
<tr>
<td>80/54</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>B2 و B1</td>
</tr>
<tr>
<td>81/32</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>B5</td>
</tr>
<tr>
<td>80/91</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>B5 و B4</td>
</tr>
<tr>
<td>80/89</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>B5 و B4 , B2</td>
</tr>
<tr>
<td>80/77</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>B5 و B4 , B2 , B1</td>
</tr>
</tbody>
</table>

جدول 3. نتایج آماری مدل‌های شبکه عصبی با استفاده از ترکیب‌های مختلف از چهار باند نوا، ارتفاع زمین، روز شمار

<table>
<thead>
<tr>
<th>IN3D %</th>
<th>MBE (°C)</th>
<th>CC</th>
<th>R²</th>
<th>RMSE (°C)</th>
<th>داده ورودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>86/88</td>
<td>3/3</td>
<td>3/3</td>
<td>2/2</td>
<td>1/27</td>
<td>AL و 4B</td>
</tr>
<tr>
<td>88/55</td>
<td>3/3</td>
<td>3/3</td>
<td>2/2</td>
<td>1/27</td>
<td>JD و 4B</td>
</tr>
<tr>
<td>84/42</td>
<td>2/2</td>
<td>2/2</td>
<td>1/12</td>
<td>1/7</td>
<td>SZA و 4B</td>
</tr>
<tr>
<td>80/59</td>
<td>2/2</td>
<td>2/2</td>
<td>1/12</td>
<td>1/7</td>
<td>AL و JD , 4B</td>
</tr>
<tr>
<td>80/30</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/4</td>
<td>SZA و JD , 4B</td>
</tr>
<tr>
<td>90/81</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>SZA و JD , 4B</td>
</tr>
</tbody>
</table>

مدل شبکه عصبی با تعداد نرون مختلف لاشه پهنا تعداد نرون‌های شبکه عصبی به طوری که کمترین خطای پیش‌بینی را داشته باشد، به روش سعی و خطای معیین می‌شود. برای پایان فهرست IN3D انتخاب نمونه‌های انتخاب مقدار پارامتر R² (شکل 2) و ترکیب عضو CC است. در مجموع نمونه‌های IN3D تغییرات R² (شکل 2) مشاهده می‌شود. در نهایت در بازه 19 نرون حاصل می‌شود. در مجموع بهترین ساختار مدل شبکه عصبی 19 نرون حاصل می‌شود.

تغییرات مکانی تابع مدل شبکه عصبی

آخرین ارزیابی که روی مدل‌های دندان شده این تحقیق انجام گرفت، بررسی تغییرات مکانی تابع مدل است. به همین منظور مدل شبکه عصبی آموزش یافته با داده‌های ورودی 4 باند ماهواره

نوشته‌بندی بیشتر دمای هوای استان خوزستان بر اساس داده‌های ماهواره‌نوا و...
\[R^2 = \text{RMSE} + \text{IN3D} \] (ب) \[CC \] (الف) \[\text{RMSE} \] (ج) \[\text{IN3D} \] (د) \[\text{CC} \] (ب) \[\text{RMSE} \] (ج) \[\text{IN3D} \] (د)

شکل 2. نتایج آماری آورشی و شبکه‌های عصبی با تعداد نرون‌های مختلف در لایه پیشان. (الف) \(R^2 \), (ب) \(\text{CC} \), (ج) \(\text{RMSE} \) و (د) \(\text{IN3D} \).

دو روز مدارس و ارتفاع زمین و تعداد 19 نرون در لایه پیشان برای داده‌های آزمون ایستگاه‌های هواشناسی به طور جدایی اجرا شد. پرداختن \(T_{\text{max}} \) از درجه سانتی‌گراد قرار داده و درصد از نتایج اخلاق‌شان با ایستگاه‌های واقعی شبکه روش شبکه عصبی حساب 91 درصد از تعداد در محاسبه انحراف 3 درجه سانتی‌گراد واقعی می‌شود. نتایج این جدول نشان می‌دهدکه این روش شبکه عصبی

نتیجه‌گیری

نتایج این تحقیق نشان داد که از میان باندهای ماهواره 1، 2 و 3 این روش بهترین نتایج 2 \(T_{\text{max}} \) داده‌های ماهواره 1 را بهترین نتایج \(T_{\text{max}} \) داده‌های ماهواره 1 را بهترین نتایج 2 \(T_{\text{max}} \) داده‌های ماهواره 1 را بهترین نتایج 2 \(T_{\text{max}} \) داده‌های ماهواره 1 را بهترین نتایج 2 \(T_{\text{max}} \) داده‌های ماهواره 1 را بهترین نتایج 2 \(T_{\text{max}} \) داده‌های ماهواره 1 را بهترین نتایج 2

مقایسه نتایج این بررسی با تحقیقات قبلی

در جدول 2، نتایج این بررسی و نتایج تحقیقات گذشته که از روش‌های TVX و هوپسکی آزمایش داده‌ای استفاده شده، جهت مقایسه ارائه شده است. ملاحظه می‌شود، الکترود مدل‌های هوپسکی برای تایید در طراحی و شبکه عصبی تقدیم TVX
پیش‌بینی بیشینه دماهای استان خوزستان بر اساس داده‌های ماهواره‌ای نوا و...

شکل 3. پرکش و نتایج آماری مشاهده شده و پیشینی مدل (درجه ساتین‌گراهام) در ایستگاه‌های هوایشمالی. خطوط منطق معرف محدوده انحراف 3 درجه ساتین‌گراهام است.

جدول 4. مقایسه نتایج این بررسی با سابقه تحقیقات گذشته

<table>
<thead>
<tr>
<th>IN3D %</th>
<th>RMSE (°C)</th>
<th>cc</th>
<th>روش</th>
<th>محقق</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3</td>
<td>TVX</td>
<td></td>
<td>سیکاسکی و همکاران (1997)</td>
</tr>
<tr>
<td>-</td>
<td>2/92</td>
<td>TVX</td>
<td></td>
<td>پرپوجهک و گوارد (1997)</td>
</tr>
<tr>
<td>77</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>کرسول و همکاران (1999)</td>
</tr>
<tr>
<td>91/4</td>
<td>1/7</td>
<td>-</td>
<td>مدل شبکه عصبی</td>
<td>تحقیق حاضر</td>
</tr>
</tbody>
</table>

نشان داد، مدل با 19 نرخ بیشترین دقت را دارد. معیارهای آماری IN3D و RMSE و درجه ساتین‌گراهام، R² در ۳/۴ درصد برآورد کرده و R² مدلهای مناسب‌تر به دست آمده و درصد را تجربه می‌کند و اگر معیارهای دیگری که بر T_max مؤثر هستند به ورودی‌های مدل اضافه شوند، مقدار مدل تغییر افت‌زایش است.

بررسی تأثیر استفاده از معیارهای جغرافیایی به ورودی‌های مدل نشان داد که روز شمار سال مشت تغییر مهم‌تری نسبت به ارتفاع زمین و زاویه سمت آن اثر خورشید ایست. در حالی که معیارهای ورودی به ورودیهای زمین، مقدار تغییر مدل انتخاب‌شده. شاخص‌های اماری IN3D و RMSE، R² به ترتیب ۲۱/۷۲ و ۹ درصد بهتر شد. نتایج این مدل نسبت به مدل با ورودیهای فقط چهار باند نوا IN3D ۴/۶۴ و ۹ درصد بهتر شد. آزمون تعداد نرخ‌های مختلف در ۳/۴ به ترتیب ۲۱/۷۲ و ۹ درصد بهتر شد.