مقایسه روند یابی سیل با دو روش ماسکینگام و ماسکینگام-کانز در بخشی از رودخانه لیقوان

حمیدرضا مرادی، مهدی واخواجه و علی اکبر باویل

(تاریخ دریافت: 8/3/1388، پذیرش: 9/11/1388)

چکیده
رودنیایی جریان به عنوان یک فرآیند ریاضی برای پیش بینی تغییرات بزرگی، سرعت و شکل موج سیل به صورت ثابتی از زمان در یک پیچنت نقطه در طول آب ره، کانال یا مخزن می‌باشد. برای انجام روندیایی سیل از روش هیدرولوژیکی هیدرولوژیکی استفاده می‌شود. روش هیدرولوژیکی گرچه دقت روش هیدرولوژیکی را ندارد ولی بر سر به سادگی از آن بوده و در طراحی سازمانه و کنترل سیلی اطمینان قابل قبولی به کار می‌رود. تصویر حاضر در ادامه از رودخانه لیقوان (حدود فاصله‌های هیدرولوژیکی لیقوان و هروی) در استان آذربایجان شرقی به طول 12 کیلومتر انجام گرفت. در این تصویر با استفاده از اطلاعات ثبت شده در استگاه‌های لیقوان و هروی، دو سیل برای دوره‌های بازگشت 9705 و 9706 محاسبه شد. سپس روندیایی سیل از دیدگاه هیدرولوژیکی در دو روش ماسکینگام و ماسکینگام-کانز انجام گرفت. نتایج نشان داد که دیه‌های روندیایی شده با دو روش یکدیگر متفاوت بوده ان. در این ارائه کار اولیه از ارائه متفاوت بوده تا نشان دهنده بوده در نتیجه متوسطی باید که از آن جمله می‌توان به کوهستانی بودن منطقه و وجود شاخه فرعی در بین دو استگاه اشاره نمود.

واژه‌های کلیدی: روندیایی سیل، ماسکینگام، ماسکینگام-کانز

مقدمه
رودنیایی جریان در یک رودخانه به عنوان یک فرآیند ریاضی برای پیش بینی تغییرات بزرگی، سرعت و شکل موج سیل به صورت ثابتی از زمان در یک پیچنت نقطه در طول آب ره، کانال یا مخزن می‌باشد. برای انجام روندیایی سیل از روش هیدرولوژیکی هیدرولوژیکی استفاده می‌شود. روش هیدرولوژیکی گرچه دقت روش هیدرولوژیکی را ندارد ولی بر سر به سادگی از آن بوده و در طراحی سازمانه و کنترل سیلی اطمینان قابل قبولی به کار می‌رود. تصویر حاضر در ادامه از رودخانه لیقوان (حدود فاصله‌های هیدرولوژیکی لیقوان و هروی) در استان آذربایجان شرقی به طول 12 کیلومتر انجام گرفت. در این تصویر با استفاده از اطلاعات ثبت شده در استگاه‌های لیقوان و هروی، دو سیل برای دوره‌های بازگشت 9705 و 9706 محاسبه شد. سپس روندیایی سیل از دیدگاه هیدرولوژیکی در دو روش ماسکینگام و ماسکینگام-کانز انجام گرفت. نتایج نشان داد که دیه‌های روندیایی شده با دو روش یکدیگر متفاوت بوده ان. در این ارائه کار اولیه از ارائه متفاوت بوده تا نشان دهنده بوده در نتیجه متوسطی باید که از آن جمله می‌توان به کوهستانی بودن منطقه و وجود شاخه فرعی در بین دو استگاه اشاره نمود.
سیلاب‌ها در حضور‌های کوچک در مقایسه با رودهای بزرگ، به‌هم‌بندی سیل برای مدل‌سازی صحت‌دار و کنترل ساخت و ساز در این منطقه ضروری به نظر می‌رسد. جهت تعیین بهینه سیل آگاهی از تغییر ارتفاع سیل در طول رودخانه لازم می‌باشد (۵). یا توجه به اهمیت رودخانه‌ای و وجود ایستگاه‌های هیدرومتری در بالادست و پایین سطح حرکت آن‌ها، در این تحقیق از دو روش معمول رودخانه‌ای سیل‌اسکیمی و ماسکیمیک-کنترل در طراحی کاهش سد، شبکه ولایت و آثار برکشک آب مطروح نمی‌شود.

استفاده شده و پیشنهاد یافته این در روش‌های با هم مقایسه شده است.

مواد و روش‌ها
منطقه مورد مطالعه در حوزه آب‌ابان دریاچه ارومیه، زیر حوزه تلخی در حوزه شرقی رود، در جنوب شرقی تبریز و بین طول‌های جغرافیایی ۳۷ و ۳۴ درجه بحرین و عرض‌های جغرافیایی ۵۰ تا ۴۷ درجه بحرین و عرض‌های جغرافیایی ۵۰ تا ۴۷ درجه بحرین و عرض‌های جغرافیایی ۵۰ تا ۴۷ درجه بحرین است، این منطقه از بالادست به رودخانه لیقوان و از پایین دست به رودخانه هرودی ختم می‌شود. وسعت منطقه ۲۷/۶۹ کیلومتر مربع بوده و بلندترین نقطه ارتفاعی آن ۱۹۵۰ متر در جنوب غرب منطقه و کوچکترین نقطه ارتفاعی آن ۱۹۴۰ متر در استگاها خروجی (هربORG) است. باره انتحاب شده بخشی از رودخانه لیقوان می‌باشد که بین دو ایستگاه هیدرومتری لیقوان و هرودی قرار گرفته است (شکل ۱). طول باره مورد مطالعه ۱۲ کیلومتر بوده که ۹۹ مقطع عرضی در آن برداشت شده است. در این تحقیق از آمار ۸۸ روز مالیک، گرفته شده است. این داده‌ها با یکی از این سلایپ سیل‌برداری از ایستگاه‌ها مالیک است. این سلایپ با یکی از این سلایپ‌ها مالیک است. این سلایپ با یکی ار
مقایسه روند باین سیل با در روش ماسکیگام و ماسکیگام- کاند در ...

یقان و هوری برای مدت ۲۸ سال جمع آوری شده و پس از تعیین دوره آماری مشترک و کنترل داده‌ها، آزمون همگنی به روش را نت انجام گرفته. داده‌های ناقص (۲ سال) با استفاده از معادله رگرسیونی که به وسیله نرم افزار SPSS به دست آمده بازسازی گردید. برای به دست آمده مبتنی، به دست آمده به دوره‌های بازگشت مختلف از نرم افزار Hyfl می‌تواند مشابه باشد. پس از وارد کردن داده‌ها به نرم افزار و اجرای آن به هر توزیع با توجه به معیارهای کیفی، میانگین مربع احرازات نسبی و میانگین احرازات نسبی تعیین گردید و به دنبال آن توزیع برای هر دوره باز گشت استخراج شد. هیدروگراف سیل برای هر دیس اوی بعد از کسر دیس پایه از روش ماسکوس (Mockous) به دست آمد (۵).

تعیین ضربت زیری بستر
پرای تعیین ضربت زیری مانیگان از روش کوان (Cowan) و جدول چو (Chow) استفاده شد. در این روش مقادیر ضربت زیری در کانال اصلی و سیلاب دشت‌ها از پرنسیپ شش گام:

\[S = KQ + KX(1 - Q) \]

\[S = K[Q + (1 - Q)Q] \]
روش ترسیمی برای تعیین X و K استفاده می‌شود (5 و 12).

\[
K = \frac{\Delta t}{X \left(\left(\frac{Q_{j+1}}{j+1} - \frac{Q_j}{j} \right) \left(\frac{Q_{j+1}}{j+1} - \frac{Q_j}{j} \right) \right)}
\]

مقادیر X با محاسبه میانگین مسافت مسکن‌گذار در نقطه ناپایداری هیدروگراف‌های ورودی و خروجی و معادلات صفر قرار دادن عبارت به دست می‌آید (5 و 14):

\[
X \left(\frac{dQ}{dt} \right)_c = -\frac{1}{\Delta t} \left(Q_j + Q_{j+1} \right)
\]

که محل نواجع هیدروگراف‌های ورودی و خروجی است. مقادیر $\frac{dQ}{dt}_c$ از شیب خط مسافر به دست می‌آید (2) (3).

روش‌های به روش ماسکینگام - کانون

کلون (Cunge) برای اولین بار در سال 1969 نشانه‌بین معادله انتقال ماسکینگام و معادله انتقال پخشی را بانک کرد. او معادله (ربع) را به صورت تقریبی و متقابل ای از معادله مرج سیماتیکی با جایگزین اختلاف محدود استاندارد برابر Q/X با استفاده از الگوی جعبه‌ای انتخاب فاکتورهای ورودی و خروجی و فاکتور ورودی و خروجی را در تابع با مقایسه پخش عدیدی و پخش فیزیکی به دست آورد. سپس تحلیل‌های جزئی دو وسیله‌ای مختلف برای تکمیل و بهبود آن صورت گرفت (10):.

\[
\frac{\partial Q}{\partial t} + \frac{Q_j}{\partial x} = 0
\]

از تفاوت‌های این روش به روش ماسکینگام می‌توان به تغییر اساس روش ماسکینگام با تعیین پارامترهای آن به طبیعی خاص توسط کلیه و همکاران بر اساس پخشی و امکان در نظر گرفته جریان‌های جانی اشاره نمود. از سوی دیگر با توجه به تعیین پارامترها از طریق داده‌های هیدرولکی و قابل اندازه‌گیری در رودخانه، این روش به سادگی می‌تواند برای رودخانه‌های ناپایدار و پاپین تنها تا گازی بود و دیگر اندازه‌گیری از رودخانه برداشته نمی‌شود و به آن وارد نمی‌گردد. بر اساس روش ترسیمی و تغییر متغیر (مقدارهای 4 و 5) مقدار ضریب K برای رودخانه لیتوژان بدست آمد. در مواردی که مقادیر X جریان ورودی و خروجی برای رودخانه مشخص باشد، از

\[
\begin{align*}
\text{ذخیره رودخانه} &= S \\
\text{دبی ورودی} &= I \\
\text{دبی خروجی} &= Q \\
\text{ضریب تناوب} &= \frac{K}{S}
\end{align*}
\]

بوده و معادل بند انتقال و مه است. عامل ونی است که مقادیرشان دیگر رو و خروجی را به صورتی که بدست یکند و حدود آن کمتر از X به دست می‌آید (Prism storage).

که نخواهند دیگر رو و خروجی که به مکانیکی ورودی و خروجی بستگی دارد تشریح می‌گردد. در معادله 1 ذخیره مسکن‌گذار و ذخیره نیخی (1-X)Q به دو که در شکل 2 مساف شده است.

(6) و (12).

همان گونه که مسیر مایلی می‌شود و قبلاً ورودی و خروجی برای پیش‌بینی (0، $X=0$) تهاجم هبادار و در صورتی که درجه جریان ورودی از خروجی بیشتر در استخوان به خروجی پدیده گیا شود و چنانچه جریان ورودی از جریان خروجی کمتر از دخیل خروجی مسئله به وجود می‌آید. با توجه به تابع:

\[
\frac{dS}{dt} = I - Q \Rightarrow \frac{\Delta S}{\Delta t} = \frac{1}{\Delta t}\left(I_j - I_{j+1} \right) + \frac{Q_j}{\Delta t} - \frac{Q_{j+1}}{\Delta t} = S_{j+1} - S_j
\]

با توجه به رابطه 2 و معادله ذخیره در فاصله زمانی t معادله ماسکینگام به صورت رابطه 3 در می‌آید (12):

\[
Q_{j+1} = C I_j + C I_{j+1} + C_i Q_j
\]

در معادله بالا از دیدگاه زمانی است و مانند پایانه‌ها قابل اندازه‌گیری کرده و در این تحقیق با توجه به شرایط مطقه، سه هیدر و گراف سیال انتخاب شده که در آن جرم سیال در بالا و پایین دست تقریباً ثابت بود و دیگر اندازه‌گیری از رودخانه برداشته نمی‌شود. با آن وارد نمی‌گردد. بر اساس روش ترسیمی و تغییر متغیر (معادله‌های 4 و 5) مقادیر K برای رودخانه لیتوژان بدست آمد. در مواردی که مقادیر X جریان ورودی و خروجی برای رودخانه مشخص باشد، از
شکل ۲- انواع ذخیره در موقع حركت موج سیل

لازم به ذکر است که روش ماسکینگ کانترل برا ی باید توزیع مورد استفاده قرار می‌گیرد. معمولاً که در باین دانشاده استفاده می‌شود در روابط \(7\) تا \(13\) ارائه شده است.

\[Q_{i+1}^{j+1} = C_i Q_{i+1}^j + C_i Q_{i}^j + C_i^{j+1} \]

\[C_i = \frac{\Delta t + rKX}{rK(-X) + \Delta t} \]

\[C_i = \frac{\Delta t + rKX}{rK(-X) + \Delta t} \]

\[C_i + C_i^{j+1} = 1 \]

\[X = \frac{Q}{rK} - \frac{X}{rBeKk} \]

\[K = \frac{\Delta x}{c_k} \]

نتایج و بحث

تاریخ حاصل از بررسی داده‌ها با نرم افزار Hyfa نشان داد که توزیع لگ نرمال سه پارامتری با روش حداکثر درست نمایی (Maximum likelihood) به عنوان بهترین توزیع برای برآورد حداکثر دیلحاظی دیده بود. نتایج مربوط به برآورد حداکثر دیده لحاظی استگاه‌های لیفون و هروی با دوره‌های

مولفه‌های به کار گرفته شده در این معادلات به شرح زیر می‌باشند:

\[B = \text{عرض سطح آب} \]

\[\text{شبیه‌کاتال} = S_0 \]

\[B_0 = \text{سرعت موج هماهنگ با} \ Q \]

\[= \text{ترپین کام مکانی و زمانی روند} \]

\[\text{در روش ماسکینگ - کانترل بعد از تعیین} \ \Delta x \ \text{که گام مکانی} \]

\[\Delta t \ \text{و} \ \Delta x \]

\[\text{با همان طول بازه است، برای تعیین} \ \Delta t \ \text{از نموداری که توسط} \]

\[\text{کانترل ارائه شده استفاده می‌شود (شکل ۲)} \]

\[\text{از رودیکنده بر اساس مقدار} \ \Delta x \ \text{محاسبه می‌شود و با در نظر} \]

\[\text{گرفتن آن که عدد خوانده شده روز محو لایند به دست می‌آید. معادلاتی که در} \]

\[\text{باین روندیابی استفاده شده است} \ (11.15 \ و 16). \]

\[\text{زاویه نگله} \ \Delta x \ \text{مکانی} \]
جدول 1. دبی اوج محاسبه شده به ازای دوره‌های پازگشت مختلف بر حسب متر مکعب در نانه

<table>
<thead>
<tr>
<th>دوره پازگشت (سال)</th>
<th>100</th>
<th>50</th>
<th>10</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/95</td>
<td>12/87</td>
<td>15/84</td>
<td>13/86</td>
<td>16/89</td>
<td>18/87</td>
</tr>
<tr>
<td>8/43</td>
<td>7/42</td>
<td>6/43</td>
<td>5/44</td>
<td>4/45</td>
<td>3/46</td>
</tr>
</tbody>
</table>

جدول 2. هیدروگراف‌های مربوط به دوره‌های پازگشت مختلف برای استگا، لیقون بر حسب متر مکعب در نانه

<table>
<thead>
<tr>
<th>دوره پازگشت (سال)</th>
<th>100</th>
<th>50</th>
<th>10</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/95</td>
<td>12/87</td>
<td>15/84</td>
<td>13/86</td>
<td>16/89</td>
<td>18/87</td>
</tr>
<tr>
<td>8/43</td>
<td>7/42</td>
<td>6/43</td>
<td>5/44</td>
<td>4/45</td>
<td>3/46</td>
</tr>
</tbody>
</table>

جدول 3. نتایج مقایسه رقیم تراز سطح آب روش‌های روندیابی ماسکینگام و ماسکینگام- کازی با آزمون 1-جفت

<table>
<thead>
<tr>
<th>دوره پازگشت (سال)</th>
<th>100</th>
<th>50</th>
<th>10</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/95</td>
<td>12/87</td>
<td>15/84</td>
<td>13/86</td>
<td>16/89</td>
<td>18/87</td>
</tr>
<tr>
<td>8/43</td>
<td>7/42</td>
<td>6/43</td>
<td>5/44</td>
<td>4/45</td>
<td>3/46</td>
</tr>
</tbody>
</table>

نتایج حاصل از هیدروگراف‌های تهیه شده به ازای حداکثر ذیل های لحظه‌ای با دوره‌های پازگشت مختلف در جدول 2 ارائه گردیده است. در این پژوهش به اثربداری دوره پازگشت‌ها به طور متوسط ۷۵/۳۷ متر مکعب در نانه شده است. انتخاب بررسی هیدروگراف‌های مشاهده شده پیوسته است. نتایج مربوط به روندیابی هیدروگراف‌های مربوط به دوره‌های پازگشت مختلف در شکل‌های ۲ تا ۱۸ ارائه شده است. در این شکل‌ها هیدروگراف‌های مربوط به استگا است.
مقایسه روندایی سیال با روش ماسکینگام و ماسکینگام-کانتر در...

شکل ۵
رونداپایی سیال ۱۰ ساله با روش ماسکینگام و ماسکینگام-کانتر

شکل ۶
رونداپایی سیال ۲۰ ساله با روش ماسکینگام و ماسکینگام-کانتر

شکل ۷
رونداپایی سیال ۵۰ ساله با روش ماسکینگام و ماسکینگام-کانتر

شکل ۸
رونداپایی سیال ۱۰۰ ساله با روش ماسکینگام و ماسکینگام-کانتر
نتایج دیهای روندهایی شده در مقایسه با مقایسه دیه

 pb مربوط به آن دوره ی زمانی که در ایستگاه پایین دست (هرمی) حاکی از احتمال زیاد این مقایسه است. در حالی که وجود آوردهای

 این اختلاف می‌تواند باشد که از آن جمله می‌توان به وضعیت کوهستانی بودن منطقه و وجود شاخه فرعی در بین دو

 ایستگاه اشاره نمود.

 تمامی این روش‌ها در محاسبه پارامتر X بورد برای محاسبه پارامتر K به هدف هدف‌ریزی سرعت 3 دی اج ارتفاع استفاده شده است. برای ایجاد مقادیر مطالعه، رنگ سطح آب حاصل از روش‌های روندهایی (با دقت 1/1 متری) به کمک آزمون T جفتی

 با هم مقایسه شدند نتیجه این آزمون نشان داد که بین رنگ

 سطح آب حاصل از این دو روش برای دوروهای پایه کمک

 مختلف در سطح معنی‌داری 5% اختلاف وجود ندارد.

 منابع مورد استفاده

 1. ایفته‌نامه 1360، هیدرولوژی مهندسی، مرکز نشر دانشگاهی، تهران.
 2. دهقانی، م. 1383. ارزیابی روش‌های روندهایی سیلاب در رودخانه جوزر و مدل زمره. پایان‌نامه کارشناسی ارشد

 ایستگاه‌های دانشگاه مهندسی، دانشگاه تربیت مدرس، تهران.
 3. عبدالرضا نژاد، ع. 1375. مقایسه روش‌های مختلف هیدرولوژیک و هیدرولوژیک روندهایی در یکی از رودخانه‌های کارون. پایان‌نامه

 کارشناسی ارشد ایستگاه‌های دانشگاه مهندسی، دانشگاه تهران.
 4. صفا، غ. 1385. تعیین کوچک‌ترین بهره در دشت‌های سیلابی پایان نامه کارشناسی ارشد ایستگاهی، دانشگاه مهندسی، دانشگاه تهران.

 5. مهدوی، غ. 1378. هیدرولوژی کاربنرود، جلد دوم، انتشارات دانشگاه تهران.

 6. میرافرین، ا. 1377. هیدرولوژی مهندسی، انتشارات دانشگاه شیراز.

 Channels and Flood Plains. United States Geological Survey Water-supply, Paper 2339, 67P.
