تغییر مناسب‌ترین رابطه دی - اصل در ایستگاه هیدرومتری سد تنظیمی‌ای زاینده‌رود

مهدی وفا‌خواه و غلامرضا شجاعی

(تاریخ دریافت: ۸۴/۲/۲۷؛ تاریخ پذیرش: ۸۴/۳/۱۸)

چکیده

از اندازه‌گیری هنگام و در هر شرایط به‌طور دوباره یا به‌طور مداوم رودخانه‌ها، اینکه نگاشت‌های مناسبی در سطح آب قرار دارند، به‌عنوان یکی از شرایط عادی در ایستگاه‌گیری‌های ماهان، چنین مشکلی به‌طور کلی وجود دارد. این مشکل باعث می‌شود که مقدار سطح آب را در یک شرایط مشخص، به‌طور دقیق‌تر تعیین نمود. در پاسخ به این نیاز، این مقاله به‌منظور به‌کارگیری رابطه‌ای مناسب و جدید برای تعیین سطح آب در ایستگاه‌گیری‌های سد تنظیمی‌ای زاینده‌رود، تهیه و پژوهش می‌گردد.

واژه‌های کلیدی: رابطه دی - اصل، ایستگاه هیدرومتری، مدل توان، تجزیه و تحلیل عاملی، حوزه آبخیز زاینده‌رود

مقدمه

نقش داده‌های حاصل از اندازه‌گیری‌های دی-را رودخانه‌ها در برنامه‌ریزی منابع آب، کنترل سیلاب و بهبود سیستم‌های رودخانه برای تأمین کاربراسیونی که به نحوی با علوم آب سرکوب‌دارند مشخص می‌باشد. این‌ها در موجز‌هایی بر نتایج حاصل از مشاهده‌های مستقیم، یا به‌طور غیرمستقیم از اندازه‌گیری‌های صحرایی عمل می‌کنند. سطح آب و سرعت استوار است. لازم به ذکر است که این مدل‌ها به‌طور مشابه با اندازه‌گیری‌های چرخی‌های از میان‌رو از عوامل اصلی که این‌ها را به‌دوره‌های سیلابی منجر می‌نمود، در بیش از یکایی از موارد با میزان خواهد رفت. این موضوع باعث می‌شود که این اثر در ایستگاه‌های ماهان، به‌طور مشابه به‌وجود نماید.

1. به ترتیب مربی و دانشجوی سابق کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور
Vafakhah@modares.ac.ir

* مسئول مبانی‌های کمک‌نیازی: پست الکترونیکی:
صدارت نگرفته به دست آورده (2). با توجه به این وضعیت، وقتی مقدار قابل توجهی از داده‌های مورد نظر در سنسور به دست می‌آید، می‌توان رابطه ساده‌ای بین مقادیر دی‌بی و تراز آب برقرار نمود. از راهحل‌های موجود استفاده از این داده‌های رگرسیون می‌باشد. به هم‌حال با پیشرفت‌های صدای صدارت در زمان‌های اختیار مدل‌های مناسبی از (Artificial Neural Networks) و شبکه‌های عصبی مصنوعی استفاده می‌کنند. همچنین برای افزایش پیشرفته‌برای حل این مشکل بهره‌گیری شده است (3).

رابطه دی‌بی - انشال (Discharge-Stage)

متصل می‌کنیم برای توضیح محاسبات دی‌بی از پارامترها اندازه‌گیری شده جریان به کار رفته می‌شود. رابطه دی‌بی - انشال به تغییر نسبت اندازه‌گیری دی‌بی روی محرور 8 و انشال‌های متصل روند محرور 8a تعیین می‌شود. شکل منحنی دی‌بی - انشال تابعی از هندسه استگن کنترل می‌باشد. از نظر ریاضی اغلب منحنی‌های دی‌بی - انشال شکل کلی سه‌پرسی یا ترمیکی از رودخانه‌های دریاچه‌های دی‌بی - انشال مورد می‌توان از مقطع دی‌بی برای ترسیم رابطه دی- انشال بهره جست. این بهبود چنین به تغییرات روی داده‌ها دارای مقطع

عرض نامنظم می‌باشد (به ورود در مواضع سیلابی و یا دی‌بی‌های پایین) شکل سه‌پرسی گونه منحنی دی- انشال می‌تواند به اساس دی‌بی تغییر کند. به طور مثال وقتی رودخانه‌ای نامنظم کند است و یا فشرده گرای دی‌بی بر مقطع کنترل مؤثر می‌باشد، منحنی ممکن است در یک بخش از محدوده تغییرات به طرف بالا تبدیل یا کند. شرایط مناسب متغیر در استگن اندیشگاه‌گری گی نمی‌مکنند است که شکل منحنی دی- انشال را تغییر دهد (1)

برهینی معادله ریاضی منحنی دی- انشال به مکانی به قوانین هیدرولیکی پایان داده می‌سازد (International Standard Organization) (11) و (هیمن‌های) سازمان هوایی سازمانی چنین (WMO) به صورت رابطه 1 توصیه شده است (10):

\[
Q = a \cdot (H - Ho)^b
\]

در این فرمول، Q مقدار جریان می‌باشد و H و Ho می‌باشند مقدار به درجه‌ی آب‌پذیری آنها.

\[
\text{هر روز دی‌بی استگن}
\]

با پیشرفت‌های صدای م opciones منحنی‌های دی- انشال افزایش پیشرفته‌برای حل این مشکل بهره‌گیری شده است (3).

Bucket (B) - انشال (Discharge-Stage)

با توجه به این وضعیت، وقتی مقدار قابل توجهی از داده‌های مورد نظر در سنسور به دست می‌آید، می‌توان رابطه ساده‌ای بین مقادیر دی‌بی و تراز آب برقرار نمود. از راهحل‌های موجود استفاده از این داده‌های رگرسیون می‌باشد. به هم‌حال با پیشرفت‌های صدای صدارت در زمان‌های اختیار مدل‌های مناسبی از (Artificial Neural Networks) و شبکه‌های عصبی مصنوعی استفاده می‌کنند. همچنین برای افزایش پیشرفته‌برای حل این مشکل بهره‌گیری شده است (3).

رابطه دی‌بی - انشال (Discharge-Stage)

متصل می‌کنیم برای توضیح محاسبات دی‌بی از پارامترها اندازه‌گیری شده جریان به کار رفته می‌شود. رابطه دی‌بی - انشال به تغییر نسبت اندازه‌گیری دی‌بی روی محرور 8 و انشال‌های متصل روند محرور 8a تعیین می‌شود. شکل منحنی دی‌بی - انشال تابعی از هندسه استگن کنترل می‌باشد. از نظر ریاضی اغلب منحنی‌های دی‌بی - انشال شکل کلی سه‌پرسی یا ترمیکی از رودخانه‌های دریاچه‌های دی‌بی - انشال مورد می‌توان از مقطع دی‌بی برای ترسیم رابطه دی- انشال بهره جست. این بهبود چنین به تغییرات روی داده‌ها دارای مقطع

عرض نامنظم می‌باشد (به ورود در مواضع سیلابی و یا دی‌بی‌های پایین) شکل سه‌پرسی گونه منحنی دی- انشال می‌تواند به اساس دی‌بی تغییر کند. به طور مثال وقتی رودخانه‌ای نامنظم کند است و یا فشرده گرای دی‌بی بر مقطع کنترل مؤثر می‌باشد، منحنی ممکن است در یک بخش از محدوده تغییرات به طرف بالا تبدیل یا کند. شرایط مناسب متغیر در استگن اندیشگاه‌گری گی نمی‌مکنند است که شکل منحنی دی- انشال را تغییر دهد (1)

برهینی معادله ریاضی منحنی دی- انشال به مکانی به قوانین هیدرولیکی پایان داده می‌سازد (International Standard Organization) (11) و (هیمن‌های) سازمان هوایی سازمانی چنین (WMO) به صورت رابطه 1 توصیه شده است (10):

\[
Q = a \cdot (H - Ho)^b
\]

در این فرمول، Q مقدار جریان می‌باشد و H و Ho می‌باشند مقدار به درجه‌ی آب‌پذیری آنها.
届毕业生 ایستگاه هیدرومتری سد تظیمی رودخانه زایندرود

مشخصات ایستگاه هیدرومتری سد تظیمی رودخانه زایندرود

یکی از نکات اصلی در این تحقیق به دست آمده استفاده از نیاز اندام‌گیری مستقیم دریا سیستم رودخانه‌ای در ایستگاه هیدرومتری می‌باشد. این سیستم با استفاده از روابط دیگر و نماینده شده است و مشخص کرده که بهترین رابطه در این موارد از نوع معمولی می‌باشد.

مواد و روش‌ها

روش ضرباب معاوده استفاده گردید و نهایتاً مدلی به ضرباب

همگنی باثر به عنوان نهایی در این مرحله انتخاب شد. به منظور توزیع‌گرایی استفاده از فرمولی که به این ترتیب، رابطه دیگر دانی و تابی به نظر به جمله طولانی مدت ایستگاه، آمار دیگر. آن به مرحله سال بعد از آن اضافه شده و مجددی مانند روش دوک شده مدل‌‌سازی صورت گرفته و

کارای آن با توجه به درصد خطای نسبی تعبیر گردید که

مقدار آن از رابطه ۲ به دست می‌آید.

\[
RE = \left| \frac{Q_0 - Q_e}{Q_0} \right|
\]

در این رابطه، \(Q_0 \) مقدار ذیل درصد خطای نسبی. \(Q_e \) مقدار ذیل درصد خطای نسبی مدل شده و \(Q_a \) مقدار ذیل درصد خطای نسبی مدل با مایع.

در اینجا، بهبود درصد تغییرات در تحلیل‌ها در نظر گرفته شود. سد تظیمی دارای ظرفیت ۱۴۵۰ هزار مکعب، ارتفاع ۱۲ متر و یک درجه قطاعی به ابعاد ۷/۸۲/۷۲/۵۰/۲۸/۵۰۰ متر است.

روش کار

برای انجام این تحقیق با مراجعه به سازمان آب منطقه‌ای استان اصفهان، آمار و اطلاعات دیگر ایستگاه هیدرومتری سد تظیمی زایندرود دریافت گردید. سپس از داده‌های مورد بررسی گرفته و به منظور انتخاب مناسب‌ترین رابطه دیگر، انتخاب یکی از رگرسیون ساده، ارتباط بین متغیر مستقل (ترزا آب) و متغیر وابسته (دبی) تعبیر شد. روابط بین این دو متغیر، (Logarithmic (Linear),) نمونه‌گیری (Invers (Power) معکوس (روش رجکس درست نسبی) ایستگاه هیدرومتری مستندگی دریا (Logistic) مورد بررسی گرفته و جداول Excel و SPSS کامپیوتری تجزیه واریانس برای معیار به‌مدت مدل‌ها تکشیل، و در هرم
تقدیم

با بررسی آمار دی- اشک ایستگاه هیدرومتری سد تظیمی زاینده‌رود مشخص گردید که این ایستگاه در سال‌های ۱۳۹۱ تا ۱۳۸۲ دارای آمار بوده و باید تجزیه و تحلیل مورد استفاده قرار گیرد. گرفت جدول ۱ مدل نهایی انتخاب شده از مدل‌های مورد استفاده را نشان می‌دهد. با توجه به یک جدول به جز سال‌های ۱۳۸۳ و ۱۳۸۰ که مدل نهایی انتخاب شده خیلی است در بقیه سال‌های مدل‌های نهایی پذیرفته شده به صورت توانی‌های پیش‌بینی جدول ۱ نیز نمی‌باشد. لازم به توضیح است که در سال‌های ۱۳۷۳ و ۱۳۸۰ نیز نمی‌باشد. توانی معنی‌دار بوده و دارای ضریب تبعیض نهایی می‌باشد ولی از انتخاب آن‌ها مدل خنثی دارای ضریب همبستگی بالاتری بود انتخاب گردیده است.

نتایج مربوط به تبعیض فاصله‌ای استفاده از آمار سال‌های قبل و تهیه رابطه دی- اشک دانی و ثابت با توجه به آمار طولانی

۳۱۸
جدول 1. مناسب‌ترین مدل انتخاب شده در هر سال آماری

<table>
<thead>
<tr>
<th>سطح</th>
<th>معنی داری</th>
<th>SE</th>
<th>R</th>
<th>R²</th>
<th>مدل انتخاب شده</th>
<th>سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>3731/9</td>
<td>0.0747</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>0.3248VH⁻¹/4</td>
<td>1379</td>
</tr>
<tr>
<td>1771/25</td>
<td>0.058</td>
<td>0.995</td>
<td>0.991</td>
<td>0.991</td>
<td>0.995H⁻¹/3</td>
<td>1376</td>
</tr>
<tr>
<td>1771/25</td>
<td>0.058</td>
<td>0.995</td>
<td>0.991</td>
<td>0.991</td>
<td>0.995H⁻¹/3</td>
<td>1376</td>
</tr>
<tr>
<td>2211/99</td>
<td>0.027</td>
<td>0.998</td>
<td>0.996</td>
<td>0.996</td>
<td>0.3233H⁻¹/7</td>
<td>1372</td>
</tr>
<tr>
<td>20037</td>
<td>0.104</td>
<td>0.984</td>
<td>0.984</td>
<td>0.984</td>
<td>0.20295H⁻⁰/3</td>
<td>1373</td>
</tr>
<tr>
<td>2813/12</td>
<td>0.104</td>
<td>0.998</td>
<td>0.998</td>
<td>0.998</td>
<td>0.4496H⁻¹/0/7</td>
<td>1374</td>
</tr>
<tr>
<td>3552</td>
<td>0.001</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.7496H⁻¹/0/7</td>
<td>1375</td>
</tr>
<tr>
<td>1215/8</td>
<td>0.104</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.7496H⁻¹/0/7</td>
<td>1375</td>
</tr>
<tr>
<td>5043/9</td>
<td>0.012</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>0.7496H⁻¹/0/7</td>
<td>1377</td>
</tr>
<tr>
<td>2508/5</td>
<td>0.054</td>
<td>0.997</td>
<td>0.995</td>
<td>0.995</td>
<td>0.2276H⁻¹/0/7</td>
<td>1378</td>
</tr>
<tr>
<td>4240/11</td>
<td>0.124</td>
<td>0.987</td>
<td>0.988</td>
<td>0.988</td>
<td>0.2276H⁻¹/0/7</td>
<td>1379</td>
</tr>
<tr>
<td>230/20</td>
<td>0.089</td>
<td>0.704</td>
<td>0.704</td>
<td>0.704</td>
<td>0.7196H⁻¹/1</td>
<td>1380</td>
</tr>
<tr>
<td>1368/25</td>
<td>0.06</td>
<td>0.871</td>
<td>0.922</td>
<td>0.922</td>
<td>0.7196H⁻¹/1</td>
<td>1381</td>
</tr>
<tr>
<td>2051/5</td>
<td>0.081</td>
<td>0.944</td>
<td>0.944</td>
<td>0.944</td>
<td>0.3232H⁻¹/0/7</td>
<td>1382</td>
</tr>
</tbody>
</table>

شکل 1. رابطه همبستگی بین خطای نسبی هر سال و مجموع سال‌ها (سال 1 همان سال 1369 است).

شکل 2. روند تغییرات درصد خطای نسبی مدل هر سال و مجموع سال‌ها.
جدول ۲. ریشه پهنی ماتریس همبستگی با دوران

<table>
<thead>
<tr>
<th>ریشه پهنی ماتریس همبستگی درصد واریانس تجمعی</th>
<th>موارح</th>
<th>ریشه پهنی ماتریس همبستگی درصد واریانس تجمعی</th>
<th>موارح</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۹/۱۷</td>
<td>۳</td>
<td>۹۹/۱۷</td>
<td>۳</td>
</tr>
<tr>
<td>۷۸۸</td>
<td>۴</td>
<td>۷۸۸</td>
<td>۴</td>
</tr>
<tr>
<td>۶۳۶</td>
<td>۵</td>
<td>۶۳۶</td>
<td>۵</td>
</tr>
<tr>
<td>۵۸۸</td>
<td>۶</td>
<td>۵۸۸</td>
<td>۶</td>
</tr>
<tr>
<td>۵۰۹</td>
<td>۷</td>
<td>۵۰۹</td>
<td>۷</td>
</tr>
<tr>
<td>۴۸۸</td>
<td>۸</td>
<td>۴۸۸</td>
<td>۸</td>
</tr>
<tr>
<td>۴۰۹</td>
<td>۹</td>
<td>۴۰۹</td>
<td>۹</td>
</tr>
<tr>
<td>۴۰۹</td>
<td>۱۰</td>
<td>۴۰۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>۴۰۹</td>
<td>۱۱</td>
<td>۴۰۹</td>
<td>۱۱</td>
</tr>
<tr>
<td>۴۰۹</td>
<td>۱۲</td>
<td>۴۰۹</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

جدول ۳. ماتریس وزنی عاملی بدون دوران

<table>
<thead>
<tr>
<th>ماه</th>
<th>موارح ۱</th>
<th>موارح ۲</th>
<th>موارح ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهر</td>
<td>۰/۹۱۱</td>
<td>۰/۹۴۱</td>
<td>۰/۸۶۳</td>
</tr>
<tr>
<td>آبان</td>
<td>۰/۹۱۴</td>
<td>۰/۹۴۴</td>
<td>۰/۹۱۷</td>
</tr>
<tr>
<td>آذر</td>
<td>۰/۹۳۳</td>
<td>۰/۹۶۶</td>
<td>۰/۹۲۲</td>
</tr>
<tr>
<td>دی</td>
<td>۰/۹۳۳</td>
<td>۰/۹۶۶</td>
<td>۰/۹۲۲</td>
</tr>
<tr>
<td>بهمن</td>
<td>۰/۹۵۰</td>
<td>۰/۹۸۵</td>
<td>۰/۹۴۰</td>
</tr>
<tr>
<td>اسفند</td>
<td>۰/۹۵۰</td>
<td>۰/۹۸۵</td>
<td>۰/۹۴۰</td>
</tr>
<tr>
<td>فروردین</td>
<td>۰/۹۳۳</td>
<td>۰/۹۶۶</td>
<td>۰/۹۲۲</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>۰/۹۳۳</td>
<td>۰/۹۶۶</td>
<td>۰/۹۲۲</td>
</tr>
<tr>
<td>خرداد</td>
<td>۰/۹۳۳</td>
<td>۰/۹۶۶</td>
<td>۰/۹۲۲</td>
</tr>
<tr>
<td>تیر</td>
<td>۰/۹۱۵</td>
<td>۰/۹۴۴</td>
<td>۰/۹۱۷</td>
</tr>
<tr>
<td>مرداد</td>
<td>۰/۹۳۳</td>
<td>۰/۹۶۶</td>
<td>۰/۹۲۲</td>
</tr>
<tr>
<td>شهریور</td>
<td>۰/۹۱۵</td>
<td>۰/۹۴۴</td>
<td>۰/۹۱۷</td>
</tr>
</tbody>
</table>

برای آمار دیپ - اشل هر سال در ایستگاه سد نظیمی وایدرود، مدل توانای تحقیقی داده شد. این امر با نتایج تحقیقات بازتابی و سومولاتیون (۶) و رابطه توصیه شده به وسیله سازمان استاندارد جهانی و سازمان هواشناسی جهانی (۷) و (۸) هم‌نونی را دارد. البته باید توجه داشت که مدل در دارای ضریب تعیین پایین است و با منحنی دیپ-اشل از همبستگی کمی برخورد داشت. علت آن را کم‌موداده‌گیری تیر، آذر و اسفند به دلیل دارا بودن وزن پیشتر نسبت به بقیه ماه‌ها و بای توضیح دادن ۹۰/۹۰ درصد واریانس از ۱۰۰ درصد بهترین ماه‌های اضافه‌گیری در ایستگاه مورد مطالعه می‌باشد. ضمناً ۹۸/۳۳ درصد باقی مانده واریانس مربوط به بقیه ماه‌ها می‌باشد.

بحث و نتیجه‌گیری

در بخش مدل سازی بین دیپ و ترار آب بهترین مدل انتخابی ۳۲۰
تعیین منابع آب‌برداری

در میزان‌های مختلف دبی به خصوص در دی‌به‌میان و سباهی و به میزان کمتری به کمک اندازه‌گیری در دی‌به‌میان
پايين مربوط داشته. همچنین برآشک روزه‌های مورد نظر برای
اندازه‌گیری دبی یک باید به گونه‌ای باشد که دبی‌های مختلف را
بین حداکثر و حداقل شامل شود.

به‌طور کلی نتیجه‌پذیری از دیدگاه سیل‌پیش‌بینی می‌باشد که سال‌های
تمامی این دفترچه‌ها در آن‌ها اما می‌تواند به عنوان مثال استفاده
گردد. به‌طور کلی دبی‌های در دی‌به‌میان به طور
یکسان توزیع شود.

مطالعات سال‌های استاندارد جهانی برای نهایی منحنی دبی-
ابلکت تعداد اندازه‌گیری‌ها کمتر از 20 مورد نباید. در مواردی
که یک تا 20 مورد می‌باشد، پیشنهاد می‌شود که متوسط
مسؤلین این معرفی‌ها و انتخاب رسم رودخانه‌های تنظیم
گردد. به‌طور کلی دبی‌های در دی‌به‌میان به طور
یکسان توزیع شود.

مطالعه خاصی با استفاده از شیپ و مستندات این تحقیق
به استخراج معادله‌ای معادلات حاکم بر دبی-اسکب با تفسیر
فیزیکی پرداخته شود.

برای تهیه منحنی دبی-ابلکت از شیپ عصبی مصنوعی و مدل
درختی استفاده شود و نتایج آن تابیتین این تحقیق مقبلاً شود.

این گونه تحقیقات در استیگارهای هیدرودیواری دیگر کشور
صورت پذیرد.

منابع مورد استفاده

1. بی‌نام. 1369. اطلس منابع آب ایران. تبلیغ مطالعات، دفتر برنامه‌ریزی و مطالعات منابع آب، معاونت بهره‌برداری و مدیریت
منابع آب، وزارت نیرو، تهران.

2. حمادی، ک. 1381. ارزیابی روابط دبی-ابلکت و بررسی تداوم آنها در سیستمین رودخانه‌ای کارون بزرگ. ششمین سمینار بین‌المللی
مهندسی رودخانه، بهمن ماه 1381. دانشگاه شهید جهان ایران.

3. ارچامی، ق. و. ی. بزرگ. نیا. 1376. آمار آب‌برداری. همپردی کاربردی، تالیف سروستان و کارلر. چاپ اول، انتشارات آستان قدس رضوی،
مشهد.
2. موحدانش، ع. 1366. مقدماتی بر هیدرولوژی و هیدرولوژی آماری. جلد اول، انتشارات عمیدی، تبریز.
5. وافخوا، م. 1378. شناخت عوامل مؤثر در سیلاب به منظور مهار آنها با استفاده از تجزیه و تحلیل عاملی در حوزه آبخیز فرهجای
پژوهش و سازندگی (۱۴۷۳): ۷۴-۶۷.