تیمین مسئول‌ترین رابطه دوی - اول در ایستگاه هیدرومتری سد تنظیمی زایندرود

مهدی وفاخواه و غلامرضا شجاعی

(تاریخ دریافت: 84/2/3؛ تاریخ پذیرش: 84/2/18)

چکیده

از انجایی که انتقادهای دامئی دومی رودخانه‌ها کاری پرتسیب و مشكل می‌باشد به همین دلیل در ایستگاه‌های هیدرومتری قرانت دامئی اصل انجام شده و با ایجاد رابطه بین دومی و دومی، دومی 위치 می‌کنیم که انتقادهای انجام نمی‌شود را به دست می‌آورند. در این تحقیق، روابط دومی - اول قابل استفاده از آمار سالهای قبل و رابطه دومی - اول دامئی و چگونگی با توجه به آمار طولانی مدت و مناسب‌ترین زمان انتقادهای دومی در ایستگاه‌های هیدرومتری سد تنظیمی زایندرود با استفاده از آمار سالهای 1372 مورد بررسی قرار گرفت. بدن منظور از روش آماری رگرسیون ساده و تجزیه و تحلیل عاملی و همچنین عوامل آماری دوست داشت نشان داد که بهترین شرایط رابطه از نوع توانای است و رابطه به توجه به راه هر سال برای همان سال قابل استفاده است. همچنین مناسب‌ترین زمان برای انتقادهای دومی به منظور بهبود رابطه دوی - اول ماه‌های تیر، آذر و اسفند می‌باشد.

واژه‌های کلیدی: رابطه دومی - اول، ایستگاه هیدرومتری، مدل توانای تجزیه و تحلیل عاملی، حوزه آبخیز زایندرود

مقدمه

نقد داده‌های حاصل از انتقادهای دومی رودخانه‌ها در برنامه‌ریزی منابع آب، کنترل سیلاب و بهبود سیستم رودخانه‌برای تمام کارشناسانی که به نحوی با علم آب سروکار دارند مشخص می‌باشد. ایستگاه‌های هیدرومتری بر تجربه حاصله از مشاهدات مستقیم یا به عبارتی بر انتقادهای سه‌گانه‌های صحرایی بحث، سطح آب و سرعت استوار است. معمولاً با چندین نوت نت‌گیری هم‌زمان دومی - اول در یک ایستگاه هیدرومتری، می‌توان به وک لای رابطه ساده بین آب‌های رودخانه و روت سطح آب دست یافتن. آنگاه یکت مرتب و منظم سطح آب و با نکاتی راتیک رابطه دومی - اول را بیان می‌کند.

1. به ترتیب مربی و دانشجوی سایق کارشناسی ارشد آبخیزداری، دانشکده مهندسی طیبی و علوم دریایی، دانشگاه تربیت مدرس، نور
2. مسئول مکاتبات، پست الکترونیکی: Vafakhah@modares.ac.ir

315
روش ضرایب معادله استخراج گردید و نهایتاً مدل به ضریب هم‌کیفی بالاتر به عنوان نهایی در این مرحله انتخاب شد. به منظوریفای قابلیت استفاده از این سال‌های قبل و تهیه رابطه دی - این داده و تابی به توجه به آمار مطالعات مدت ایستگاه، آمار دی - این هال به آمار سال بعد از آن اضافه شد و مجدداً مانند روش ذکر شده مدل‌سازی صورت گرفته و کارآیی آن با توجه به درصد خطای نسبی تغییر گردید که مقدار آن از رابطه \(RE = \left| \frac{Q_0 - Q_e}{Q_0} \right| \times 100 \) [2] در این رابطه، \(Q_0 \) مقدار دی - این، \(Q_e \) مشاهده و \(Q_0 \) مقدار دی - برآوردی می‌باشد. هنگام استفاده از این رابطه، مدل هنگام پیش‌رفتی است که درصد خطای نسبی آن کمتر از 30 درصد داشته باشد (2). با استفاده از رگرسیون ساده و مقایسه درصد خطای نسبی مجموع سال‌ها و هر سال تجزیه و تحلیل صورت گرفت.

برای به دست آوردن مناسب‌ترین زمان برای اندام‌گیری دری، از آمار تجربه و تحلیل عاملی استفاده گردید. تجزیه و تحلیل عاملی از جمله روش‌های آماری چند متغیره است که به وسیله آن می‌توان تعداد زیادی از متغیرها را به چند عامل کاهش داد و به این ترتیب خلاصه‌ای از داده‌های اصلی را به‌طور بهتر و به‌طور دقیق در محدوده و به‌طور صحیح استفاده می‌کند. خلاصه این موضوع را در این بخش بیان می‌کنیم.

\[Z_{it} = \frac{X_{it} - M_f}{S_f} \] [3]

برای انجام این تحقیق با مراجعه به سازمان آب منطقه‌ای استان اصفهان، آمار و اطلاعات دی - این ایستگاه‌های هیدرومتری سنگین، با استفاده از نرم‌افزار Excel و SPSS آماری مورد نظر در این رابطه \(Z_{it} \) میزان داده مورد نظر است. برای برآورد میانرچم‌نهایی میزان داده مورد نظر از روش حداقل درست نسبی (Maximum likelihood method) و (Logarithmic) به دست آورده و با داده‌های واریانس الگوریتمی درجه دو (Logistic) مورد بررسی قرار گرفت و جداول تجزیه واریانس برای معنی‌دار بودن مدل‌ها تشکیل و در هر
مدت استفاده در شکل‌های ۱ و ۲ آمده است. رابطه رگرسیوی شکل ۱ به صورت $y = 3x + 5$ بای ضریب تعیین r^2 بوذه که در مطرح اعتماد یک و پنج درصد معمای دار نمی‌باشد. این موضوع نشان‌دهنده آن است که رابطه‌ای بین خطای نسبی هر سال و مجموع سال‌ها وجود ندارد. با توجه به شکل ۲ تغییرات درصد خاطه نسبی مدل هر سال و مدل مجموع سال‌ها از روند خاصی پروری نمی‌آید و استفاده از الگوریتم خیل تأثیری در کاهش خطای نسبی ندارد. این با توجه به نتایج به دست آمده از شکل‌های ۱ و ۲ تمایلی از الگوریتم خیل استفاده نمود.

نتایج تجزیه و تحلیل عاملی نشان داد که روش حداکثر درست‌نمایی بدون دوران و با دوران با روش‌های مختلف تابیت کاس داشته‌اند. نتایج استفاده از این روش در جداول ۲ و ۳ اثرات شده است.

با توجه جداول ۲ و ۳ می‌توان ترکیب که داده‌ها اندادگیری شده بیش از این ممکن است را می‌توان در مسیر محور خاصه تأمین به طوری که مجموع این محورها متواند از درصد واریانس به توصیف دهد. در انیجا محور ۱ محوری است که به همه ماه‌ها تابید. رابطه مستقیمی دارد و از انجایی که ماه تیر بیشترین وزن را دارا می‌باشد. انتخاب مقدار. این محور از میانه ۷۲ درصد از تغییرات (واریانس) را توضیح دهد. محور ۲ محوری است که به ماه‌های مهر، ایان و آذر رابطه معکوس و با بقیه ماه‌ها رابطه مستقیم دارد. در انجایی نیز همان طور که در مورد محور ۱ توضیح داده شد آذر ماه نسبت به ماه‌های دیگر بیشترین وزن را دارا می‌باشد و به همین علت انتخاب می‌شود. این محور ۲۰ درصد از تغییرات را توضیح می‌دهد که در مجموع به محور ۱ توانسته‌اند ۷۷ درصد از تغییرات را توضیح دهند. محور ۳ محوری است که به ماه‌های مهر، ایان، خرداد، تیر و مهر رابطه معکوس و با بقیه ماه‌های رابطه مستقیم دارد. در این محور ماه‌های دیگر رابطه بیشتری وزن نسبت به بقیه ماه‌ها دارد و ۱۸/۷۴ درصد از تغییرات را توضیح می‌دهد و به همین علت انتخاب می‌گردد. بر این اساس ماه‌های

نتایج مربوط به تبعیض قابلیت استفاده از الگوریتم خیل و به رابطه دیگر- اشکال دانی و ثابت با توجه به آمار طولانی

۳۱۸
جدول 1. مناسب‌ترین مدل انتخاب شده در هر سال آماری

<table>
<thead>
<tr>
<th>سطح</th>
<th>مدل انتخاب شده</th>
<th>ضریب تعيین (R²)</th>
<th>ضریب همبستگی (R)</th>
<th>خطای استاندارد (SE)</th>
<th>F</th>
<th>میزان معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>1369</td>
<td>373/1/9</td>
<td>0/998</td>
<td>0/999</td>
<td>0/477</td>
<td>0/045</td>
<td>0/038</td>
</tr>
<tr>
<td>1370</td>
<td>177/1/8</td>
<td>0/995</td>
<td>0/991</td>
<td>0/078</td>
<td>0/025</td>
<td>0/020</td>
</tr>
<tr>
<td>1371</td>
<td>177/7/8</td>
<td>0/995</td>
<td>0/991</td>
<td>0/078</td>
<td>0/025</td>
<td>0/020</td>
</tr>
<tr>
<td>1372</td>
<td>271/1/9</td>
<td>0/998</td>
<td>0/995</td>
<td>0/277</td>
<td>0/063</td>
<td>0/052</td>
</tr>
<tr>
<td>1373</td>
<td>507/2/7</td>
<td>0/984</td>
<td>0/998</td>
<td>0/524</td>
<td>0/120</td>
<td>0/090</td>
</tr>
<tr>
<td>1374</td>
<td>381/1/12</td>
<td>0/995</td>
<td>0/994</td>
<td>0/442</td>
<td>0/076</td>
<td>0/065</td>
</tr>
<tr>
<td>1375</td>
<td>271/1/2</td>
<td>0/995</td>
<td>0/999</td>
<td>0/107</td>
<td>0/030</td>
<td>0/025</td>
</tr>
<tr>
<td>1376</td>
<td>121/2/8</td>
<td>0/999</td>
<td>0/999</td>
<td>0/244</td>
<td>0/051</td>
<td>0/041</td>
</tr>
<tr>
<td>1377</td>
<td>64/3/14</td>
<td>0/999</td>
<td>0/999</td>
<td>0/442</td>
<td>0/076</td>
<td>0/065</td>
</tr>
<tr>
<td>1378</td>
<td>250/5/15</td>
<td>0/995</td>
<td>0/995</td>
<td>0/574</td>
<td>0/120</td>
<td>0/090</td>
</tr>
<tr>
<td>1379</td>
<td>22/1/11</td>
<td>0/997</td>
<td>0/997</td>
<td>0/124</td>
<td>0/030</td>
<td>0/025</td>
</tr>
<tr>
<td>1380</td>
<td>23/1/22</td>
<td>0/998</td>
<td>0/998</td>
<td>0/404</td>
<td>0/076</td>
<td>0/065</td>
</tr>
<tr>
<td>1381</td>
<td>138/0/15</td>
<td>0/991</td>
<td>0/991</td>
<td>0/124</td>
<td>0/030</td>
<td>0/025</td>
</tr>
<tr>
<td>1382</td>
<td>50/0/18</td>
<td>0/992</td>
<td>0/992</td>
<td>0/442</td>
<td>0/076</td>
<td>0/065</td>
</tr>
</tbody>
</table>

شکل 1. رابطه همبستگی بین خطای نسبی هر سال و مجموع سال‌ها
شکل 2. روند تغییرات درصد خطای نسبی مدل هر سال و مجموع سال‌ها (سال‌های سال 1369-1400)
جدول 2. ریش پنهان ماتریس همبستگی با دوران

<table>
<thead>
<tr>
<th>محرور</th>
<th>ریشه پنهان ماتریس همبستگی درصد واریانس تجمعی</th>
<th>ریشه پنهان ماتریس همبستگی درصد واریانس تجمعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57/84</td>
<td>57/84</td>
</tr>
<tr>
<td>2</td>
<td>77/21</td>
<td>77/21</td>
</tr>
<tr>
<td>3</td>
<td>90/17</td>
<td>90/17</td>
</tr>
<tr>
<td>4</td>
<td>93/94</td>
<td>93/94</td>
</tr>
<tr>
<td>5</td>
<td>96/96</td>
<td>96/96</td>
</tr>
<tr>
<td>6</td>
<td>98/98</td>
<td>98/98</td>
</tr>
<tr>
<td>7</td>
<td>99/99</td>
<td>99/99</td>
</tr>
<tr>
<td>8</td>
<td>99/95</td>
<td>99/95</td>
</tr>
<tr>
<td>9</td>
<td>99/94</td>
<td>99/94</td>
</tr>
<tr>
<td>10</td>
<td>99/92</td>
<td>99/92</td>
</tr>
<tr>
<td>11</td>
<td>99/91</td>
<td>99/91</td>
</tr>
<tr>
<td>12</td>
<td>99/88</td>
<td>99/88</td>
</tr>
</tbody>
</table>

جدول 3. ماتریس وزنی عاملی بدون دوران

<table>
<thead>
<tr>
<th>محرور 1</th>
<th>محرور 2</th>
<th>محرور 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهر</td>
<td>0/811</td>
<td>0/876</td>
</tr>
<tr>
<td>آبان</td>
<td>0/812</td>
<td>0/877</td>
</tr>
<tr>
<td>آذر</td>
<td>0/849</td>
<td>0/878</td>
</tr>
<tr>
<td>دی</td>
<td>0/865</td>
<td>0/879</td>
</tr>
<tr>
<td>بهمن</td>
<td>0/866</td>
<td>0/882</td>
</tr>
<tr>
<td>آذری</td>
<td>0/867</td>
<td>0/883</td>
</tr>
<tr>
<td>فروردین</td>
<td>0/868</td>
<td>0/884</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>0/870</td>
<td>0/885</td>
</tr>
<tr>
<td>خرداد</td>
<td>0/871</td>
<td>0/886</td>
</tr>
<tr>
<td>تیر</td>
<td>0/872</td>
<td>0/887</td>
</tr>
<tr>
<td>مرداد</td>
<td>0/887</td>
<td>0/893</td>
</tr>
<tr>
<td>شهریور</td>
<td>0/888</td>
<td>0/894</td>
</tr>
</tbody>
</table>

برای آمار دیب - اشک هر سال در ایستگاه سه ترتیبی زایده ودلیل دارا بودن وزن بیشتر نسبت به بقیه ماها و یا توضیح دادن 90/17 درصد واریانس از 100 درصد، بهترین ماه‌های انتخابی دیب در ایستگاه مورد مطالعه وپوشش هستند. همچنین 3/92 درصد بقای ماده واریانس مربوط به بقیه ماها می‌باشد.

بحث و نتایج گیری

در بخش مدل‌سازی بین دیب و تراز آب، بهترین مدل انتخابی تیتر، آذر و اسفند به دلیل دارا بودن وزن بیشتر نسبت به بقیه ماها و یا توضیح دادن 90/17 درصد واریانس از 100 درصد، بهترین ماه‌های انتخابی دیب در ایستگاه مورد مطالعه وپوشش هستند. همچنین 3/92 درصد بقای ماده واریانس مربوط به بقیه ماها می‌باشد.
تعین مناسب‌ترین رابطه دی- اشل در استگاه‌های هیدروپری سانترالیستی زایندرود

در میران‌های مختلف دبی به خصوص در دبی‌های بالا و سیلابی و به میزان کمتری به کمپون‌ها افزوده می‌گردد. پایین مربوطه دانسته‌است. همچنین پراکنش روزهای مورد نظر برای اندازه‌گیری دبی آب باید به گونه‌ای باشد که دبی‌های مختلفه این

بین حداقل و حداکثر شالیری به همین روش تا پایان ماه افزایش می‌یابد و در ماه‌های پایان‌ הבیان این نتیجه نیز به توجه داشته که در سال‌های

نخست تأسیس یک استگاه دی یکی از مهم‌ترین روش‌هایی برای تعریف باد در سال‌های و

عبارت آن تعداد نمونه‌گیری تراز آب در هر سال نسبتاً به این‌طور که نرخ‌های تراز آب به مرور زمان افزایش می‌یابد (۱۱۰ همچنین، وجود این گونه روش‌های مطلوبی یا دیگر

عرضب یا سیلابی و دبی‌های پایین) ممکن است شکل منحنی دبی- اشل

و رابطه سهمی تغییراتی داشته باشد.

به منظور مشخص نمودن این که چند سال آمار برداری تراز

آب صورت گرفته تا بتوان بهترین منحنی سنجه آب را انتخاب

نمود، نتایج نشان داد که استفاده سال‌های آماری تأثیری

در کاهش دصدعی را بیشتر و تحمیل برای ترسیم

منحنی سنجه آب از آمارهای قابل استفاده مورد

می‌باشد منحنی سنجه آب رای خورده سال به صورت جدیانه

تهاب و درد دلیل این امر نیز ممکن است در روش‌های مثبت

زمان را برای گذاری بستر، نحوه کنترل و میزان بارندگی سال‌های

متناب مورد استفاده

۱- بی. نام. ۱۳۶۹. اطلاعات منابع آب ایران. تفکیک مطالعات. دفتر برنامه ریزی و مطالعات منابع آب، معاونت پهره برداردی و مدیریت

متناب آب، وزارت نیرو، تهران.

۲- حمایی ک. ۱۳۸۱. ارزیابی روابط دی- اشل و بررسی تداوم آنها از متناب آبی در سپر توپ رودخانه‌ی کارون- بزگ. ششمین سمینار بین‌المللی

مهندسی رودخانه، بهمن ماه. ۱۳۸۱. دانشگاه شهید چمران اهواز.

۳- ارقامی ق. و پ. برگر. نیاز۱۳۷۸. آمار، چند منحنی کاربردی تأثیر سیسمیت و کاربردی چهار اصل، انتشارات آستان قدس رضوی،

می‌شما.