بررسی اثر حرکت کش خاصی برخی از گیاهان روز سوسک چپ‌چه نطفه‌ای جهان در آزمایشگاه و کرم برگ‌خوار چند‌نفرتند
Callosobruchus maculatus F. در گلخانه Laphigma exigua H.

نیمه‌هی‌م‌ه‌دی‌وی‌ عرب‌ تخیم‌ عبادی‌ یون‌ حامی و خلیف طالب‌ چهره‌

(تاریخ دریافت: ۶/۸۵/۲۲۴ تاریخ پذیرش: ۸/۱۱/۶۲)

چکیده

به‌منظور بررسی اثر حرکت کشی برخی از عصاره‌های گیاهی، آزمایش‌های به‌صورت فاکتوریلی در قالب طرح کامل تصادفی با یک سه‌گروه روز سوسک چپ‌چه نطفه‌ای جهان در آزمایشگاه و کرم برگ‌خوار چند‌نفرتند. سیره‌های بین آزمایش‌ها شامل یک طرح پتری مصرف شده با کاغذ صافی یک بکه عصاره‌ها آمیخته شده بود و در هر یک ۲۵ سوسک چپ‌چه نطفه‌ای جهان شناخته شد. تحقیق شده بعد از ۳۴ ساعت شمارش شدند. در این پژوهش بر اساس فرض طرح عصاره‌های با کمتر از ۵۰ درصد تلفت، از لیست عصاره‌های مورد آزمایش برای مراحل بعدی حذف گردیدند. به‌نوعی تری عصاره‌های علاوه بر گرکلوسپر، (با ۵۰ درصد تلفت)، ثابت شد. چهار صفحه، (با ۵۰ درصد تلفت)، مالاتولی فلزی‌نی، (با ۵۰ درصد تلفت)، آویشن شیرازی (با ۵۰ درصد تلفت) و یکی از دانه‌ها، (با ۵۰ درصد تلفت) و استنی میکرو‌لیتر نسبت شک عصاره‌روی سوسک چپ‌چه نطفه‌ای جهان، سپس در لیست تلفت شده. بنابراین، در آزمایش‌های طرح کامل تصادفی برای تکرار آماده‌شده بود. هر یک از تحقیقات به‌طور جداگانه به‌صورت فاکتوریلی در قالب طرح کامل تصادفی با یک سه‌گروه روز سوسک چپ‌چه نطفه‌ای جهان در آزمایشگاه و کرم برگ‌خوار چند‌نفرتند.

شمارش شدند. در غلظت ۷۰ میکرو‌لیتر عصاره یک بکه عصاره‌های مایع کرم برگ‌خوار چند‌نفرتند. به‌نوعی حساب‌شده با سه‌گروه روز سوسک چپ‌چه نطفه‌ای جهان. به‌منظور بررسی اثر حرکت کشی برخی از عصاره‌های گیاهی، آزمایش‌ها شامل یک طرح پتری مصرف شده با کاغذ صافی یک بکه عصاره‌ها آمیخته شده بود و در هر یک ۲۵ سوسک چپ‌چه نطفه‌ای جهان شناخته شد. تحقیق شده بعد از ۳۴ ساعت شمارش شدند. در این پژوهش بر اساس فرض طرح عصاره‌های با کمتر از ۵۰ درصد تلفت، از لیست عصاره‌های مورد آزمایش برای مراحل بعدی حذف گردیدند. به‌نوعی تری عصاره‌های علاوه بر گرکلوسپر، (با ۵۰ درصد تلفت)، ثابت شد. چهار صفحه، (با ۵۰ درصد تلفت)، مالاتولی فلزی‌نی، (با ۵۰ درصد تلفت)، آویشن شیرازی (با ۵۰ درصد تلفت) و یکی از دانه‌ها، (با ۵۰ درصد تلفت) و استنی میکرو‌لیتر نسبت شک عصاره‌روی سوسک چپ‌چه نطفه‌ای جهان، سپس در لیست تلفت شده. بنابراین، در آزمایش‌های طرح کامل تصادفی برای تکرار آماده‌شده بود. هر یک از تحقیقات به‌طور جداگانه به‌صورت فاکتوریلی در قالب طرح کامل تصادفی با یک سه‌گروه روز سوسک چپ‌چه نطفه‌ای جهان در آزمایشگاه و کرم برگ‌خوار چند‌نفرتند.
مقدمه
برای دست یافتن به یک تیپ منطقه مطالب و کنترل منطقه نیاز نوان
از استفاده سوم شیمیایی صرف نظر کرد. اما می‌توان از
صرف بیش از حد و برویه از آن کنترل کننده و از
کنترل‌های جهانی استفاده کرد که کنترل خطر را برای
محیط زیست و سلامت انسان، دام و گیاه داشته باشند. (19). استفاده از
کنترل‌های گیاهی برای کنترل آفات کشاورزی مхоشاین آفات
تاریکی از زمان‌های قدیم در کشورهای آفریقایی و بعضی
کشورهای آسیایی مثل هندوستان مدل درمان بوده است (19 و 22).
در قدمتر برویه درخت عرق (Ailanthus sp.) و نمایناد اندام
گیاه سریکن (Asphodelus sp.) و گیاه خانواده
Periploca sp.) گیاهتی که کنترل آفات حشره‌ای از
Chenopodiaceae گیاهان را برای کنترل حشره‌ای مورد استفاده
کسانه و گیاهان بسیار دیگر مثل نئونره (Psoralea sp.)
و گنگ لوپیا (Digitalis sp.)
دارند و گیاهان می‌شود که در
Darwin (19) و
Darwin (22) مشخص شده است که چهار بلوک بر میلیون
(Rechardia tintitana) عصاره گیاهان ریزکنرده
(Chlorophora inutus) سمی تمامی بالایی را روی
همان Tribolium castaneum HBST. بالغ و
شعره شیشه آرد (Senecio lopezii) و
عصاره (Asphodelus fistulosus) به وحی
به‌طور جهانی در تاریکی را روی خورشید ظهور گیاهکن
عنصر عصاره T. castaneum از
هگران سریکن (Asphodelus fistulosus) زیادی را روی
(19) بررسی‌های یک انجمن که تاکید
عصاره گیاه عصب
Urginea maritima
عصاره گیاه آرد
T. castaneum
در فاصله طبیعه آرد (21). بررسی‌های این
نئونره (20) گیاهان (2003) نئونره (Datura stramonium) و
Agalina یا
(Agali یا
(Yzygiopihum fabago)
درصد تلفات را روی سوسک چهار نقطه‌ای حیوانات این
222
بررسی اثر حرکت‌کشی عصاره بر غیاب روي سوسک چهارتخته جیوهای...

خواص حرکت‌کشی وجود دارد که با بررسی اثرات آنها روی آفات و شناسایی ترکیبات شیمیایی آنها می‌توان از این ترکیبات جهت کنترل آفات استفاده نمود و با استفاده از آنها بررسی و شناسایی گیاهان ویروس‌های آن با استفاده از الگوهای سه‌بعدی ممکن است. به‌طور کلی، این ترکیبات گیاهی حرکت‌کش استفاده کردند. لازم بررسی و شناسایی گیاهان سبیه‌ی آنها، چگونگی استخراج ماده فعال و تهیه فرمول‌سازی از آنها برای مطالعه توجیه بذیر است. هدف از انجام این پژوهش، شناسایی و ارزیابی سرمای گیاهان مواد استفاده و همچنین تعیین مناسب حرکت‌کشی عصاره این گیاهان است.

مواد و روش‌ها

الف) پرورش سوسک چهارتخته جیوهای (Callosobruchus maculatus F.)

سوسک‌های چهارتخته جیوهای که از نویده‌های محلى جیوهای آلوه در اصله‌های جمع آوری شده و به رها و سازی شرایط کامل روی لولا جثی بلبلی و مرغابی درشت در تخته‌های پلاستیکی به قطع 30 و ارتفاع 15 سانتی‌متر پرورش داده شدند. پس از پرورش پستین و اطمینان از یک‌نواختی گیاهی این جمعیت به تخم‌گذاری بررسی گردید. خصوصیات آن با کلیه‌های معتبر بررسی و Callosobruchus maculatus گونه آن پرورش در اتاق حارات نتایب با دمای 2 ± 5 درجه سانتی‌گراد و دوره نوری 16 ساعت تاریکی و 8 ساعت روانی و رطوبت نسبی حدود 70 ± درصد انجام شد.

ج) نهی نمونه گیاهی و عصاره‌گیری

نمونه‌های گیاهی در این پژوهش، بانیه بر اساس منابع مختلف منابع بر داشتن اثر حرکت‌کشی جمع آوری گردیدند (12، 22 و 33). در اساسن درصد 1287 و سفروردين نیز خرد شده (1383) جمع آوری اندازه‌های مختلف 22 نمونه کیاها (جدول 1) از مناطق مختلف کرمان و صبحانه انجام شد. تعادلی از گیاهان موجود از مرکز گیاهان دارای شیوه فرآیند اصله‌های تخم‌گذاری (کیلوپاتر) 17 جامه اصله‌ای (نفی آباد) به صورت شکل به شکل دیده و بقیه از محل روش آنها در طبیعت جمع آوری گردیدند. گیاهان را پس از جمع آوری با آب آفتاب شسته و به اتاق با دما 28 ± درجه سانتی‌گراد که با دمای مستقیم در شرایط کنار غار در امتداد مناطق طراحی شده و سپس در کیسه‌های نیل‌پری کرده و شدند. جهت تسریع در خشک کردن بافت‌های گیاهی از این

(1) پرورش کرم پرگوار جنگلیان (Laphygma exigua H.)

در اولین بهار با پزشکی‌های مختلف برای مراعات گونه و تعدادی دسته‌های تخم و سبل مختلف کرم پرگوار جنگلیان جمع‌آوری گردید و شامل شناخته‌ای از پلاستیکی به ارتفاع 25 سانتی‌متر و درصد شدنی در کف نشته‌ها 7 ± 10 درصد شده در اتاق با دما 28 ± درجه سانتی‌گراد از این گیاهان به طور یک‌نواختی رای و هرز یک گیاه دارودی در این مورد از مسئول فرد جمع آوری گردیدند.
جدول 1: گیاه‌های مورد استفاده در عصاره‌گیری

<table>
<thead>
<tr>
<th>تاریخ جمع‌آوری</th>
<th>مرحله روشی</th>
<th>مرحله علمی</th>
<th>نام علمی</th>
<th>نام فارسی گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>83/1/5</td>
<td>گل و برگ</td>
<td>گل دهنده</td>
<td>Calotropis procera</td>
<td>استقرق</td>
</tr>
<tr>
<td>83/2/17</td>
<td>گل و برگ</td>
<td>رنگری</td>
<td>Anemone graveolens</td>
<td>نیمه‌بند</td>
</tr>
<tr>
<td>83/2/8</td>
<td>قسمت‌های هویبی</td>
<td>گل دهنده</td>
<td>Rosmarinus officinalis</td>
<td>رزماری</td>
</tr>
<tr>
<td>83/2/15</td>
<td>برگ</td>
<td>رنگری</td>
<td>Laurus loliis</td>
<td>برگ بو</td>
</tr>
<tr>
<td>83/2/19</td>
<td>گل و برگ</td>
<td>مالوا</td>
<td>Malva sylvestris</td>
<td>پنیبرک</td>
</tr>
<tr>
<td>83/2/31</td>
<td>برگ</td>
<td>رنگری</td>
<td>Hyoscyamus niger</td>
<td>بذر زبان</td>
</tr>
<tr>
<td>83/2/11</td>
<td>گل دهنده</td>
<td>گل دهنده</td>
<td>Achillea millefolium</td>
<td>بومادان</td>
</tr>
<tr>
<td>83/2/11</td>
<td>قسمت‌های هویبی</td>
<td>گل دهنده</td>
<td>Origanum vulgare</td>
<td>مرزنجوش</td>
</tr>
<tr>
<td>83/3/11</td>
<td>برگ</td>
<td>گل دهنده</td>
<td>Eucalyptus globulus</td>
<td>اکایپوس</td>
</tr>
<tr>
<td>83/3/19</td>
<td>برگ</td>
<td>رنگری</td>
<td>Teucrium polium</td>
<td>کلیپوره</td>
</tr>
<tr>
<td>83/3/19</td>
<td>برگ</td>
<td>رنگری</td>
<td>Fumaria parviflora</td>
<td>شانه</td>
</tr>
<tr>
<td>83/3/11</td>
<td>برگ</td>
<td>رنگری</td>
<td>Foeniculum vulgare</td>
<td>رازیانه</td>
</tr>
<tr>
<td>83/2/11</td>
<td>قسمت‌های هویبی</td>
<td>گل دهنده</td>
<td>Salvia officinalis</td>
<td>مریم گلی</td>
</tr>
<tr>
<td>83/2/11</td>
<td>برگ</td>
<td>رنگری</td>
<td>Capsicum annuum</td>
<td>قفل‌ناره</td>
</tr>
<tr>
<td>83/2/17</td>
<td>گل دهنده</td>
<td>Dianthus sp.</td>
<td>میخک</td>
<td></td>
</tr>
<tr>
<td>83/2/7</td>
<td>گل دهنده</td>
<td>Althaea officinalis</td>
<td>ختمی</td>
<td></td>
</tr>
<tr>
<td>83/2/17</td>
<td>برگ</td>
<td>Thymus vulgaris</td>
<td>آویشن</td>
<td></td>
</tr>
<tr>
<td>83/2/19</td>
<td>برگ</td>
<td>Mentha piperata</td>
<td>نعناع</td>
<td></td>
</tr>
<tr>
<td>83/2/11</td>
<td>رنگری</td>
<td>گل دهنده</td>
<td>Sonchus oleraceus</td>
<td>شیر تیغال</td>
</tr>
<tr>
<td>83/2/11</td>
<td>گل دهنده</td>
<td>Matricaria chamomile</td>
<td>بابونه</td>
<td></td>
</tr>
<tr>
<td>83/2/11</td>
<td>رنگری</td>
<td>گل دهنده</td>
<td>Satureia hortensis</td>
<td>مرزه</td>
</tr>
<tr>
<td>83/2/17</td>
<td>برگ</td>
<td>رنگری</td>
<td>Euphorbia helioscopia</td>
<td>فربین</td>
</tr>
</tbody>
</table>

پنگه در دو طرف نمونه‌ها استفاده شد. عصاره‌گیری گیاه‌ها بعد از به سه تا بین روز و برگ‌ها بعد از دو تا چهار روز و سالنگه‌ها بعد از چهار تا بین روز خشک شده، که این بسیاری به میزان آب‌های گیاه مورد نظر داشت.

چهار عصاره‌گیری‌ای از گیاهان مورد نظر ایجاد 20 گرم از همر نمونه گیاه خشک شده، با انسداد بر قیچی بودر و در بخش‌های در دمای 4 درجه سانتی‌گراد نگهداری و بعد از خارج کردن از بیشمال، 10 میلی لیتری قرار داده و عصاره‌های و 60 گرم گیاه شاهد از 15 میلی لیتری قرار داده و عصاره‌های را داخل چسبید. تا عصاره‌های با انتگرال نمونه گیاه از خشک شده و 2 میلی لیتر طبیعت 20 گرم در هر و با استفاده از روش‌های مقادیر مربی خشک کننده که این بسیاری به میزان آب‌های گیاه مورد نظر داشت.

برای عصاره‌گیری 20 گرم از گیاه پودر شده در طرف شاهد 22 و 30.

در 40 دقیقه بالاتر نگهداری شد، در مدت 40 دقیقه بر قیچی بودر و در بخش‌های در دمای 4 درجه سانتی‌گراد نگهداری و بعد از خارج کردن از بیشمال، 10 میلی لیتری قرار داده و عصاره‌های و 60 گرم گیاه شاهد از 15 میلی لیتری قرار داده و عصاره‌های را داخل چسبید. تا عصاره‌های با انتگرال نمونه گیاه از خشک شده و 2 میلی لیتر طبیعت 20 گرم در هر و با استفاده از روش‌های مقادیر مربی خشک کننده که این بسیاری به میزان آب‌های گیاه مورد نظر داشت.
آزمایش‌های زیست‌سنجی روی سوسک چهار نطفه‌ای حیوانات در آزمایشگاه

۱-۱۰. غربالگری عصاره‌ها

آزمایش‌های پتانسیل حقیکتی عصاره‌های گیاهی به‌منظور بزرگسال حشره‌کشی در این مرحله از هر عصاره گیاهی انتحاب شده از حشره‌کشی، ۵ غلفت (۱۵، ۳۰، ۶۰، ۱۲۰، ۲۴۰ و ۲۸۰ میکرویلتر بی‌میلی‌لیتر) مورد بررسی قرار گرفت. این غلفت‌ها پس از انجماد یک سری آزمایش‌های اولیه و اساس درصد تلفات آنها انتحاب شدند، به این صورت که در آزمایش‌های مقادیری دزهای مختلفی از یک عصاره انتخاب و روی سوسک چهار نطفه‌ای حیوانات در یک تکرار آزمایش شد. از آنجایی که در این آزمون‌ها دری که شکر و صد درصد تلفات را ایجاد کرد برای زیست‌سنجی مناسب نیست، دزه که بیشتر از ۲۰ درصد تلفات ایجاد کرد بر یک منبع بالینی ترین و دزه که حدود ۷۵ درصد تلفات ایجاد کردن به عنوان بالاترین در مؤثر برای انتحاب آزمایش‌های انتحاب شدند. دزه‌ای بین آنها نیز از طریق قرار دادن در فرمول زیر به دست آمدها و ۱۹ و ۲۴:

\[a = \frac{\log A - \log E}{n - 1} \]

\[B = \text{Anti log} (\log A-a) \]

\[C = \text{Anti log} (\log A-2a) \]

\[D = \text{Anti log} (\log A-3a) \]

\[E \text{ به ترتیب بالاترین و پایین‌ترین غلفت‌ها و } D \text{ و } C, B \text{ به ترتیب بالاترین و پایین‌ترین غلفت‌ها و } A \text{ غلفت‌های بین آنها هستند. همچنین } a \text{ مقدار ثابت برای تمام غلفت‌های } A \text{ و } n \text{ برآور با تعداد غلفت‌های است. آزمایش مانند مرحله

قبلی گذاشته شد و مانند مرحله قبل عصاره‌ان گرشه شد. عصاره استخراج شده توسط دستگاه تغییر در سطح ۱۰۰ درجه سانتی‌گراد و سرعت ۸۰ دور در دقیقه تغییر گشت، به طوری که در پایان استخراج حجم عصاره به‌طور تغییر غله شده به ۵ میلی‌لیتر رسید. عصاره‌های ممایان در شیشه‌های در انتهای تیره دار تیره نگهداری و روز آنها چسب زده و تام گردید و تبلور نهایی نتیجه گشت. بودند برای انجام آزمایش اصلی برگزیده شدند.

۱-۱۰. آزمایش‌های زیست‌سنجی روی سوسک چهار نطفه‌ای حیوانات در آزمایشگاه

۱-۱۰. غربال‌گری عصاره‌ها
نوعیت آزمایش‌های زیست‌سنجی در گل‌خانه روی کرم برگ‌خوار چندن فرد

ابنده در 50 گل‌خانه یک چندن قند کاشت شده. بعد از انکوه که بروکسی بی‌رو در مورد استفاده قرار گرفتند. برای آزمایش مورد استفاده قرار گرفتند. در این آزمایش با توجه به بیش از 36 ساعت شمارش ‌شد. چون در تمام عصاره‌ها حلال استوک، منالونی و هگران) به کار بردند. شاهد نیز از همین حلال‌ها استفاده شد که ثابت شد. اثبات‌های قبلی قرار داده شد و روى آنها توزی کننده‌شده که از پایین با کش بسته شد تا لازم از روى گل‌خانه خارج شوند. بعد از گذشت 36 ساعت استفاده لازمان‌های تلف شده شمارش. لازمان‌های مرده یا بی‌رو در کنونه پر نکنند. توانایی تنظیم می‌شود. همگونی عکس عملی نمایندگی داده‌ها و به عنوان افراد تلف شده در نظر گرفته می‌شوند.

\[\text{LC}_{50} \quad \text{درصد} \]

\[\text{به معنی تنظیم غلطی از حشره‌کش‌که موجب مرگ و میر} \]

\[\text{درصد از افراد مورد آزمایش‌شده} \]

\[\text{محاسبه شد.} \]

تجزیه و تحلیل داده‌ها

مورد تجزیه آماری واقع شدند مورد تجزیه آماری واقع شدند در سطح 5 درصد استفاده شد و قبل از تجزیه آماری، برای تئیپ و ریاضی، داده‌های مورد تجزیه و تحلیل زایشی 100 Y/1000 گرمی و با تبدیل زایشی به

\[\text{ارسین} \]

\[\text{Excel} \]

\[\text{برای ترمیم خط‌ریز با پاسخ و پویاییت از نرم افزارهای SAS و POLO-PC استفاده شد.} \]

\[\text{در تعداد آزمایش‌ها در صورت مشاهده، تلفات در تیمار شاهد، تلفات به وسیله فرمول قبل انجام شد و در هر تیمار از 20 حشره‌هم سن و تعداد و ماده‌هایی تربیت برای استفاده شد. تفاوت حشرات نر و ماده این بود که حشرات ماده دارای پی‌پدی‌بوم کشی‌دهنده‌های هستند که این حشرات ماده دیگر می‌شود و روی آن دو لکه سیاه وجود دارد اما پی‌پدی‌بوم حشرات نر کشی‌دهنده کوتاه و از بالا به سختی دیده می‌شود. پری‌ها در انکوگربند و در شرایط حرارتی و رطوبتی مثل آزمایش قبل قرار داده شدند. این آزمایش با یک تیمار شاهد از هر حلال، هر 5 تیمار در غلظت‌های فوق به صورت تکراری (فطوری اول گونه‌های گیاهی و فناکر دوم غلظتها) در قالب طرح کامل تصادفی با نرخ تکرار اجرا شد و تعادل حلال‌های طبقه بندی شده بانه از 34 ساعت شمارش شدند. این آزمایش از آن می‌باشد از مهندسی حلال‌ها استفاده شد که نارنجی و بندی‌ها به مردگی و میر حشرات مشخص شود و به همین دلیل از آب استفاده نشد.

5-2 آزمایش‌های زیست‌سنجی در گل‌خانه روی کرم برگ‌خوار چندن فرد

برگ‌خوار چندن فرد

این نقش‌گیری‌ها از آزمایش‌های زیست‌سنجی در این محیط‌ها و استوکی‌ها، مانند نیازمندی فلفل دل‌های و استوکی‌های غیر از آزمایش‌های فوق روی پونه‌های چندن قند از دیدگاه ما به استفاده از یک محلول پاش دستی با آب فاشان که کالیبره‌شده بود پاسیفت‌کننده برای کالیبره‌کردن آب فاشان. 100 میلی لیتر آب داخل آب فاشان در فاصله 10 ساعت می‌روی برگ‌خوار یک پونه چندن قند بود که می‌توانست در این‌جا که کدامیک‌ها کمک‌کنند آب کاملاً روز سطح برگ را پوشاند و سطح برگ کاملاً
پرسی از جنس شکوفکی عصاره برعی از گیاهان روی سوکس چهارنقطه‌ای حیوانات...

همین دلیل یک گیاه در حاله‌های مختلف اثر سمیت متفاوتی را از خود نشان می‌دهد. به این ترتیب و با توجه به جدول ۲ در غلات ۳۰۰ میکرولین بر میلی لیتر عصاره‌های منالوی بر گیاه کلوپی (با ۴۵ درصد لغات) هکاریان شیری‌پور (با ۵۸ درصد لغات)، استونی برگ استرق (با ۴۲ درصد لغات)، منالوی شاهین (با ۵۸ درصد لغات) و استونی آمن شیری‌پور (با ۵۹ درصد لغات) دارای بالاترین درصد لغات روی سوکس چهار نقطه‌ای حیوانات بودند. جهت آزمایش اصلی برای کشیدن شامکری و همکاران (۱۳۸۲) اظهار می‌دارند احتیاط بروز از این گیاهان حاوی متابولیت‌های ثانویه آلکولوئیدی، ترپینوئیدی، لیموئیدی و ترکیبات فلزی آتی و غیره هستند (۸) که در شرایط با کار برده شده روی سوکس چهار نقطه‌ای حیوانات، تغییرات ایجاد شده و باعث لغات روی آنها شده‌اند و شناسایی ترکیبات موثر در آزمایشات بعید ضروری به نظر می‌رسد. جدول مقایسه میانگین حلالها (جدول ۲) نشان می‌دهد که عصاره‌های منالوی در مجموعه‌های محلی بهتر از درصد لغات را (با ۳۳ درصد) دارا بودند. اختلاف بین در حالی هگرانی و استونی در سطح اختلال اخimal ۵ درصد معنی‌دار بود. در حوزه‌های مختلف همکاران (۲۲ و ۲۳) با استفاده از ۵۰ گونه گیاهی روی یگانه درد ارزیابی توسط حلالها با حالت فوق، نشان داده شد که عصاره‌های T. castaneum تهیه شده با حلال منالوی سمیت بالاتری را به صورت تأثیر مستحکم ایجاد می‌کنند. آنها اظهار کردند که حلال منالوی بهتر از بالاترین میزان متابولیت‌های ثانویه گیاهی را حالت کند. نتایج پرورش حاضر نشان می‌دهد بهتر حلال منالوی برای استخراج مواد حشره‌کش گیاهی است.

به این دلیل پرورش حاضر نشان داده که این عصاره‌ها در جدول ۲۱ درصد مرگ و میر شده‌اند. Abbot formula: \[
\frac{T - C}{C}
\] ۱۰۰ درصد مرگ و میر شده (C) اصلاح می‌شود. لذا از آن‌ها استفاده در نتایج خودداری شده (۱۲).

نتایج و بحث

نتایج تأثیر حشرکش ۶۹ عصاره گیاهی استخراج شده توسط حاله‌های مختلف از قسمت‌های مختلف ۲۲ گونه گیاه مورد آزمایش روی سوکس چهار نقطه‌ای حیوانات در جدول ۲ ارائه شده است. از بین عصاره‌ها، عصاره‌های که بیش از ۵۰ درصد لغات روی سوکس چهار نقطه‌ای حیوانات ایجاد کرده و در جدول فوق ذکر شده‌اند، برای مصرف دوم آزمایشات اخبار شده‌اند.

نتایج تجربی و ارتباط آزمایش گیاهان مختلف غلظت‌های ۳۰۰ میکرولین بر میلی لیتر روی سوکس چهار نقطه‌ای حیوانات در جدول ۲ نشان داده شده است.

همانطور که در جدول ۲ مشخص است درصد مرگ و میر سوکس چهار نقطه‌ای حیوانات برای گونه‌های مختلف در حاله‌های مختلف هگرانی، استونی و منالوی و اثر متفاوت بین حاله‌های مورد آزمایش در سطح اختلال ۵ درصد معنی‌دار است. به عبارت دیگر عکس عمل حشره در برآیند عصاره گیاهان مختلف که با حلالی متفاوت استخراج شدند کسی نیز نبوده است. به این معنی که میزان سمیت عصاره یا گیاههای که توسط حاله‌های مختلف استخراج شده‌اند متفاوت بود و عصاره‌ای یک گیاه در یک حال، متفاوت از سمیت عصاره همان گیاه در حاله‌ای مختلف استخراج می‌شود. علت اختلاف معنی‌دار بین عصاره‌های مختلف این است که ممکن است متابولیت‌های ثانویه گیاهی که در سیستم را روی حشرات دارا هستند قطعی، غیر قطعی با حد واسط باشند و حاله‌های مختلف متابولیت‌های ثانویه متفاوتی را در خود حلال می‌کنند (۱۱ و ۱۲). حاله‌های مختلف متابولیت‌های ثانویه غیر قطعی، حاله‌های متفاوت متابولیت‌های ثانویه قطعی و حاله‌های استون متابولیت‌های ثانویه حد واسط را در حمل می‌کنند. به ۲۲۷
جدول 2. میانگین دصرتی در سطح نشان آماره عصرهای گیاهی بر

سوسک چهارنفره‌ای گیاه‌های درآزمایشگاه

<table>
<thead>
<tr>
<th>رقم عصره عصاره گیاهی</th>
<th>نوع عصره عصاره گیاهی</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>هگزانی - اکالیپتوس</td>
<td>35/33</td>
<td>37/5</td>
<td>37/7</td>
<td>31/44</td>
</tr>
<tr>
<td>2</td>
<td>استویی - اکالیپتوس</td>
<td>35/33</td>
<td>37/5</td>
<td>37/7</td>
<td>31/44</td>
</tr>
<tr>
<td>3</td>
<td>متانولی - اکالیپتوس</td>
<td>35/33</td>
<td>37/5</td>
<td>37/7</td>
<td>31/44</td>
</tr>
<tr>
<td>4</td>
<td>هگزانی - میخک</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>5</td>
<td>استویی - کلپوره</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>6</td>
<td>متانولی - کلپوره</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>7</td>
<td>هگزانی - برگ - استنریق</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>8</td>
<td>استویی - برگ - استنریق</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>9</td>
<td>متانولی - برگ - استنریق</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>10</td>
<td>هگزانی - شاهری</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>11</td>
<td>استویی - شاهری</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>12</td>
<td>متانولی - شاهری</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>13</td>
<td>هگزانی - مریم گلن</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>14</td>
<td>استویی - مریم گلن</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>15</td>
<td>متانولی - مریم گلن</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>16</td>
<td>هگزانی - یودن</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>17</td>
<td>استویی - یودن</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>18</td>
<td>متانولی - یودن</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>19</td>
<td>هگزانی - پنیرک</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>20</td>
<td>استویی - پنیرک</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>21</td>
<td>متانولی - پنیرک</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>22</td>
<td>هگزانی - بذرانیج</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>23</td>
<td>استویی - بذرانیج</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
<tr>
<td>24</td>
<td>متانولی - بذرانیج</td>
<td>57/7</td>
<td>41/4</td>
<td>41/4</td>
<td>41/4</td>
</tr>
</tbody>
</table>

228
جدول ۳. تجزیه واریانس میانگین تلفات سوسک چهار نطفه حیوانات پس از ۳۶ ساعت در پرای

F	میانگین مربعات	مجموع مربعات	درجه آزادی	منبع غیربرابر
	MS	SS	df	
۲	۱۴/۲	۸/۶۸	۲۲	نوع عصاره (S)
۷/۵۷	۳۷/۵۰	۲	حلال (C)	
۲۲/۳	۴/۸۱	۴۴	حلال × نوع عصاره (C × S)	
۰/۵۴	۳۶/۴۲	۱۳۸	خطأ (E)	
۵/۸۹	۶۴/۶	۵۰۶	کل (G)	

C.V. = ۹/۲۱

* در سطح آماری ۵ درصد بین تیمارها اختلاف معنی‌داری وجود دارد.

جدول ۴. تجزیه واریانس میانگین حلال‌های مختلف

<table>
<thead>
<tr>
<th>هکران</th>
<th>استان</th>
<th>همگان</th>
<th>متوسط</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>۲۳/۳</td>
<td>۲۳/۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>۲۶/۹</td>
<td>۲۸/۵</td>
</tr>
</tbody>
</table>

نتایج آزمایش اصلی

با استفاده از عصاره‌های متوالی بکر کلبره، هگرانی شیرین‌یال، استونی بکر استرق، هگرانی ماتنالی شیلر، هگرانی فلکلی‌دهم و استونی آویش شیرازی که در محلول دیگر تلفات بیش از ۵ درصد ایجاد کرده، غلتی ممکن آنها و تیمار استفاده شد. تیمار تجزیه واریانس داده‌ها اثر سببی ۵ غلتی مختلف از عصاره‌های اولیه با فاصله اکاریتیمی به دست آمده‌اند. (Aglaia iva) کاملاً کاهش نهایی تلفات (Datura stramonium) و ناتوره (Cichorium intybus) بالایی را در روی شب و آب ایجاد می‌کند. هم‌چنین بر اساس بررسی آنها عصاره استونی گیاهان آگلایا (Aglaia iva) و ناتوره (Cichorium intybus) بالایی را در روی شب و آب ایجاد کردن. عصاره استونی نهایی شده از الحاق ایجاد تلفات روي سوسک چهار نطفه Bollota hirsute حیوانات شد. در مолос اثر عصاره گیاه مزرعه و آویش به مقدار آبی می‌رسد و در این حالت شده این است که عصاره این گیاهان نه‌ی مورد حساب در این آزمایشات به کار گرفته شده‌اند. بنابراین این می‌تواند به عنوان یک نظریه برای تحقیق در این حوزه به کار گرفته شود. Bollota hirsute (۲۳ و ۲۲) روی عصاره‌هایی که با استفاده از این حلال تهیه می‌شود تا در موسک چهارتلفات حیوانات در سطح احتمال ۵ درصد معنی‌دار بود و درصد میزان حیرت برای غلظت‌های مختلف و آتار معادل بین غلظت‌های مختلف Loggerhead گیاهان و کوتاه‌پای گیاهان دارای میزان معنی‌دار بود (جدول ۶ و ۷).

داهنده جدول ۶ نشان می‌دهد در همه آزمایش‌ها با افزایش غلظت درصد تلفات افزایش یافت و درصد تلفات در
جدول 5. تجزیه و اریان میانگین نتایج سورس کهار نقطه‌ای جویانه در پرابر اثر
نمایش غلظت‌های مختلف عصاره‌های گیاهی انتخاب شده پس از 36 ساعت

<table>
<thead>
<tr>
<th>F</th>
<th>نام عصاره</th>
<th>نوع عصاره</th>
<th>df</th>
<th>مجموع مربعات</th>
<th>SS</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.45</td>
<td>(S)</td>
<td>عصاره</td>
<td>5</td>
<td>0/74</td>
<td>5/86</td>
<td>1/7</td>
</tr>
<tr>
<td>0/87</td>
<td>غلظت</td>
<td>5</td>
<td>0/62</td>
<td>0/54</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>0/87</td>
<td>غلظت X نوع عصاره</td>
<td>25</td>
<td>0/54</td>
<td>0/45</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>C.V. = 8/45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 6. میانگین درصد تلفات اصلاح شده ناشی از پنج غلظت مختلف از عصاره‌های گیاهی انتخاب شده بر سوکس کهار نقطه‌ای حیوانات پس از 36 ساعت

<table>
<thead>
<tr>
<th>میکرولیتر بر میلیلتر</th>
<th>نام عصاره</th>
<th>درصد تلفات</th>
<th>درصد تلفات</th>
<th>درصد تلفات</th>
<th>درصد تلفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>550</td>
<td>225</td>
<td>274</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

: در سطح آماری 5 درصد بین تیمارها اختلاف معنی‌داری وجود دارد. *

خلو خصوص تأثیر عصاره کلیویر بر ترس توماس (نقطه از میکرولیتر بر میلیلتر) به ترتیب برای عصاره‌های استوک آبی تری و مانتولی شانتهایر (87 درصد تلفات). استوک آبی تری (83 درصد تلفات)، مانتولی فلول دله و مانتولی کلیویر (81 درصد تلفات) و هکرانی شیر تیغال (83 درصد تلفات) مشاهده شد. در خصوص تأثیر عصاره گیاه آریوان در مطرح تقابل‌های بیاب آمد (13 و 14) میکرولیتر بر میلیلتر. در نهایت داد که عصاره فلول دلهم در نقطه 25 میکرولیتر بر میلیلتر موجب می‌گردد عصاره‌های حیوانات بالغ (حدود 60 درصد تلفات) می‌شود. پژوهشگران از این نتیجه خورده‌اند و درصد تلفات عصاره گیاهان مختلف آزمایش‌های را انجام دادند. در مورد این تایید به استاد دانشگاهی این اثبات مشاهده کردند. در این مطالعه در 100 درصد از جمله دانشگاهی است که عصاره‌های آزمایشگاهی با درصد تلفات کم و روند انجام داد. در مورد این تایید به استاد دانشگاهی این اثبات مشاهده کردند. در این مطالعه در 100 درصد
جدول ۷ مقداری LC50 محاسبه شده توسط عصاره‌های مختلف گیاهی روی حشرات کامل

<table>
<thead>
<tr>
<th>نوع عصاره</th>
<th>حذف ۹۵ درصد حشره‌ها (μl/ml)</th>
<th>X² (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>استوتی - آویشن شیرازی</td>
<td>٥/٧٣ ± ٤/١٢</td>
<td>٣/٧٨</td>
</tr>
<tr>
<td>مناتولی - فلز دلمه</td>
<td>٣/٥٢ ± ٣/١٠</td>
<td>٣/٢٧</td>
</tr>
<tr>
<td>مناتولی - برق شتری</td>
<td>٥/٤٠</td>
<td>٥/٠٣</td>
</tr>
<tr>
<td>استوتی - برق سری‌ق</td>
<td>٣/٧٣</td>
<td>٥/٠٣</td>
</tr>
<tr>
<td>مناتولی - برق کلیبر</td>
<td>٣/٧٣</td>
<td>٥/٠٣</td>
</tr>
</tbody>
</table>

متغیرهای به مقداری LC50 محاسبه شده برای ۴۰ ساعت از نظر این آزمایش برای LC50 مقداری تیمار کردن با عصاره‌های گیاهی در جدول ۷ اثرات شده است. این نتایج نشان می‌دهد که سوسک‌های قهرمان نهایی حیوانات در برابر عصاره استوتی آویشن شیرازی بالاترین حساسیت دارند و در مقایسه به عصاره‌های دیگر کلیبر نمایندگر می‌باشد.

متغیرهای به مقداری LC50 محاسبه شده برای ۴۰ ساعت از نظر این آزمایش برای LC50 مقداری تیمار کردن با عصاره‌های گیاهی در جدول ۷ اثرات شده است. این نتایج نشان می‌دهد که سوسک‌های قهرمان نهایی حیوانات در برابر عصاره استوتی آویشن شیرازی بالاترین حساسیت دارند و در مقایسه به عصاره‌های دیگر کلیبر نمایندگر می‌باشد.

ماکب‌های منفی است. ۵۰ درصد (LC50) شش عصاره مؤثر روی سوسک‌چهار نفاطه‌ای حیوانات مقایسه نشان می‌دهد که در این آزمایش عصاره گیاهی استوتی به‌طور کلی بهتر عمل می‌کند. در نتیجه، LC50 حساسیت به‌طور کلی بهتر عمل می‌کرد.
جدول 8. تجزیه واریانس تقلات لارو برگ‌خوار چندرقند در برای اثر تیمار-گارشی عصاره‌های گیاهی

<table>
<thead>
<tr>
<th>فاصله</th>
<th>میانگین مربعات</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>24/5</td>
<td>0/17</td>
<td>6</td>
<td>تیمار (T)</td>
</tr>
<tr>
<td>1/85</td>
<td>0/1</td>
<td>0/32</td>
<td>3</td>
<td>بلک (B)</td>
</tr>
<tr>
<td>0/01</td>
<td>0/18/1</td>
<td>0/21</td>
<td>2/1</td>
<td>اطلاع (E)</td>
</tr>
</tbody>
</table>

C.V. = غیر معنی دار

* در سطح آماری ۰/۰۵ تفاوت معنی‌داری وجود دارد.

جدول 9. میزان تغییرات اصلاح شده کرم برگ‌خوار چندرقند برحسب تیمارهای مختلف

<table>
<thead>
<tr>
<th>تکرار</th>
<th>SE</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>استونی برگ استیرق</td>
<td>0/5/5 ± 0/01</td>
<td>50</td>
</tr>
<tr>
<td>استونی شاتره</td>
<td>0/5 ± 0/01</td>
<td>50</td>
</tr>
<tr>
<td>مانولی فلک دلهم</td>
<td>30 ± 0/01</td>
<td>30</td>
</tr>
<tr>
<td>مانولی شاتره</td>
<td>30 ± 0/01</td>
<td>30</td>
</tr>
<tr>
<td>استونی اویشن</td>
<td>30/2 ± 0/02</td>
<td>40</td>
</tr>
</tbody>
</table>

میانگین های که حداکثر دارای یک حرف مشابه هستند در سطح احتمال ۰/۰۵ دارد.

نوتاژ آزمایش گلخانه‌ای روی کرم برگ‌خوار چندرقند

Laphigma exigua

نتایج تجزیه واریانس آزمایش روی کرم برگ‌خوار چندرقند و میانگین درصد لگفات این حشره در برای تیمارها exigua L. در جدول ۸ و ۹ نشان داده می‌شود.

نتایج تجزیه واریانس نشان داد که اثر سیستم تیمارهای مختلف در غلظت ۱۸۵ میکرولیتر روی لارو برگ‌خوار چندرقند فقد در سطح احتمال ۰/۰۵ معنی‌دار است (جدول ۸). در این آزمایش اثر بلک معنی‌دار نشد و این نشان داد که اثر حاکم و شرایط گلخانه باید تمام تیماره‌ها را معنی‌دار داشته باشد.

میانگین های که حداکثر دارای یک حرف مشابه هستند در سطح احتمال ۰/۰۵ دارد.

ام‌مکن است به علت احتمال وجود متابولیست‌های ثانویه در عصاره استونی برگ استیرق با خاصیت دور کننده و ضد تغییرات روی لارو کرم برگ‌خوار چندرقند باشد.

در رابطه با کرم برگ‌خوار چندرقند با توجه به بررسی مانا، این اولین گزارش از تأثیر عصاره‌های گیاهی روی این حشره می‌باشد. این گزارش از برخی از پژوهشگران وجود دارد که حاکی از تأثیر به عنوان عصاره‌ای روی حشرات آفتابگیر است که در رشد و نمو و راه‌حل زیستی نهایا ایجاد می‌نماید و بر تغییرات جنسیتی مثل در آزمایش‌های که توسط فزاریز-ریور و همکاران روی Laro Schizophyllum Spodoptera frugiperda انجام شد، عصاره Zea diploperennis هرگونه گیاه هرگونه گیاه و موجب بروز درد لارو Zea diploperennis همچنین عصاره مانند آن موجب کوچک شدن اندازه شفربه و عدم خروج حشره کامل شد ولی
مباحث مورد استفاده

1. آریانی. ل. ۱۳۷۶، کنترل کننده پژوهشی، سفید، کتاب‌نگار انگلیسی. انتشار شرکت نساجی، دانشگاه صنعتی اصفهان.

2. بارنی زینوز. م. ۱۳۷۵، محقق‌های پژوهش برخی انواع موجودات بیولوژیکی و صنعتی، انتشارات سیمپی، تهران.

3. جلالی سندر، م. و ک. ابتکاری. ۱۳۷۶، اثر حشره کننده حشره‌ها آب‌پرگردهای آفتابی، مجموعه خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران. آموزش‌کننده کشاورزی، کرج، شهریور سال ۱۳۷۷.

4. جلالی سندر، م. و ک. ابتکاری. ۱۳۷۶، بررسی اثر حشره کننده حشره‌ها آب‌پرگردهای آفتابی، مجموعه خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران. آموزش‌کننده کشاورزی، کرج، شهریور سال ۱۳۷۷.

5. حسینی ناهید و. و. و. د. ۱۳۸۲، بررسی اثر میوه بر روی لی‌پای نامه گروه کیوبی‌پزشکی دانشگاه کشاورزی دانشگاه شیراز. دانشگاه تهران.

6. حسینی ناهید و. و. و. د. ۱۳۸۲، بررسی اثر میوه بر روی لی‌پای نامه گروه کیوبی‌پزشکی دانشگاه کشاورزی دانشگاه تهران.

7. شاکری، م. و. م. م. ۱۳۸۲، بررسی اثر میوه بر روی لی‌پای نامه گروه کیوبی‌پزشکی دانشگاه کشاورزی دانشگاه تهران.

8. شاکری، م. و. م. م. م. ۱۳۸۲، بررسی اثر میوه بر روی لی‌پای نامه گروه کیوبی‌پزشکی دانشگاه کشاورزی دانشگاه تهران.

9. عباسی، م. م. و. و. م. ۱۳۷۵، بررسی اثر میوه بر روی لی‌پای نامه گروه کیوبی‌پزشکی دانشگاه کشاورزی دانشگاه تهران.

