اثر ویژگی‌های میزان ارتقاء و جهت شیب بر شدت زنگ بنه در جنگل‌های بنه فیروزآباد

چکیده
در یک بررسی صحرایی در جنگل تحقیقاتی بنه فیروزآباد به وسعت تقریبی 12000 هکتار، و با آزمایش زنگ چهار منابع هوا اساس برداری شیمیاتیک و تصاویر، اثر ارتقاء محل رویشگاه از سطح دریا و جهت شیب گالب آن، جنسیت و سن گیاه میزبان، و سطح تاج پوشش بر شدت وقوع پیمایی زنگ بنه (Pileolatia terebinthi) بررسی گردید.

شدت آلودگی زنگ بنه با افزایش سن گیاه کاهش می‌یابد. درختان ماده به مراتب بیشتر از درختان نر به پیمای زنگ مشاهده شدند. آلودگی در ارتقاءات بیش از 2000 متر سیارک می‌شود. جهت شیب گالب رویشگاه و سطح پوشش تاجی اثری بر شدت آلودگی نداشت. میان سن و ارتقاء رویشگاه از سطح دریا با شدت آلودگی همبستگی منفی داشت. در حالت که میان سطح پوشش تاجی و شدت آلودگی همبستگی منفی داشت، با آنالیز رگرسیون، وجود رگرسیون خلی میان متغیر وابسته و متغیرهای مستقل سن، جنسیت (نر و ماده) و ارتقاء رویشگاه از سطح دریا مشخص گردید.

واژه‌های کلیدی: زنگ بنه، فارس Pileolatia terebinthi، Pistacia mutica

مقدمه
بنه زنگی از گونه‌های وحشی جنس بومی ایران و از Pistacia بومی ایران و از Anacardiaceae خانواده برشی پرورش گونه این P. atlantica درخت را در نواحی میدانی‌های پراکنده است مطالبت دارد و زیرگونه‌ای این تاکSON محسوب می‌شود (۲ و ۱۴).

مساحت تحت پوشش این گیاه در ایران ۲/۵ تا ۳ میلیون

۱. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد گیاهشناسی، دانشکده کشاورزی، دانشگاه شیراز.
کشورهای دیگر روی پسمه وجود دارد. در ایران این قاره بیشتر نمی‌باشد و مطلب این مطلب از دیدگاه (P. mutica) گزارش شده است. (به نقل از: 1) این بیماری در اسکاتلند، فیورمان و ایسلند وجود داشته و اخیراً به این (۱) از ایالات جگرش کره است. پترزک برای اولین بار آن را در سال ۱۹۵۶ را پشتیبانی از گونه جگرش کره است. (به نقل از: ۱)

از میزان این بیماری در جنگل‌های پنه هیچ گزارشی در دست نیست. یکپارچگی دقیق آن در دیدگاه مناطق پشتیبانی و جنگل‌های مربوط به مشخص نشده است. نیز نیز بزرگی بیشتر است.

در جنگل‌های پنه، این بیماری بیشتر بیشتر به صورت آوردنی شدید سرماخوردگی هوای جوان درختان در بیماری، و خشک شدن آن آنها در ادامه فصل رشد می‌باشد. آملیکی الیوا بی‌پا نگرفت و از طریق منطقه، قطبی و بخش‌های بخش سینه‌های و جنگل‌های جنگل‌های و داده‌ها جامع متنوی برای آن گزارش گزارش این جنگل به عنوان الگوی مناسب‌تری برای بیماری است.

روش آماری برای روشن کننده برای صورت آمیخته‌ای زیر روش نمونه‌گیری تصادفی و سیستم‌کیک‌بند (4)، در این روش، خط اصلی روش آماری برای صورت کلی ارائه شد. سیستم از راه تصادفی کردن به طریقه استفاده تصادفی مال آزمون نمونه‌برداری تعیین و نقاط دیگر نسبت به نقطه اول بروز و مطالعه گردید.

در این پژوهش، جاهای ارتباطی شماری و جنبی طرح به عنوان دو خط پایه انتخاب شد و در دو جهت عدم پر آنها (با استفاده از خطی) در هر کیلومتر به فاصله ۲۰۰ متری از خط پایه دو قطعه نمونه به پای درخت مورد بررسی قرار گرفت. قطعات نمونه به میزان گریده شدند که در هر کدام یک پنج درخت به وجد داشته بودند. به همین دلیل، پس از فشرده‌سازی جمعیت درختان، مساحت قطعات نمونه در ارتفاعات مختلف شمار بسیاری شاخص آلوگی که به دلیل کاهش شمار
اترویگی‌های میزانی، ارتقاء و جهت شیب بر شدت زنگ‌های در چنگ‌های پنه فیروزآباد

نخست به روش GLM، درستی روش آماری با آزمون F بررسی شد و در موارد لزوم مقایسه میانگین به روش دانکن انجام گردید. هیپستگی میانگین متغیر وابسته (شدت آلودگی) و متغیرهای مستقل، با محاوای ضرایب هیپستگی پیروئن

بررسی شد. در پایان، متحمله مستقل که با شدت آلودگی (مستقل وابسته) هیپستگی میانگین دارند، برای نمونه رگرسیون به روش استب وایز (15) استفاده شدند و معادله رگرسیون و ضرایب مربوط محاوای کردی.

نتایج

اثر جنسیت بر شدت آلودگی تجزیه واریانس نشان داد که اختلافات شدت آلودگی اولیه به بیماری، میانجین‌های نر و ماده درختان بینه معنا دار است (جدول 1).

با مقایسه میانگین‌های شدت آلودگی جنس‌های نر و ماده مشخص گردید که درختان ماده (49/67 بیسیار بیشتر از درختان نر (14/67) به بیماری زنگ آلودگه می‌گردد.

بررسی ارتباط سن گیاه و ارتقاء از سطح دریا با شدت آلودگی هیپستگی میانگین سن گیاه و ارتقا محل رویشگاه از سطح دریا با شدت آلودگی در سطح بک درصد معنی‌دار است. این ارتباط در دره دو مورد یک ارتباط منفی است. بهینه با نتیجه سن گیاه و نیز با کاهش ارتقاء محل رویشگاه شدت آلودگی کاهش می‌یابد (جدول 2).

هیپستگی میانگین شدت آلودگی و ارتقاء سطح دریا (33/57 درصد) بود. ضرایب تبیین (Cd) سن و ارتقا مونوگرام در سطح دریا نشان داد که به ترتیب 3/30 و 11 درصد از سطح دریا تابعه است، که کاهش آلودگی شدت آلودگی کاهش می‌یابد.

روش‌های آماری

برای بررسی ارتباط میانگین شدت آلودگی با قطع (سن)، جنسیت گیاه، ارتقا از سطح دریا سطح پوشش و جهت شیب غالب رویشگاه تخمین آماری SAS (15) به کار رفت.

1. سطح پوشش درصدی از مساحت فضع نمونه است که به بیشتر تغییر درختان درون آن پوشیده شده و نسبت به آن نتایج درختان (شمار درخت

2. Generalized Linear Models

3. Pearson Correlation Coefficient

4. Stepwise

5. Coefficient of determination

از رابطه Cd=۱۰۰×۱−r² به تبیین می‌شود.
اثر ویژگی‌های مصرف و ارتباط و جهت شیب بر شدید زندگی بینه در جنگل‌های بیه فیروز آباد

نگاره ۱ آلودگی سرشاخه‌های بینه مرحله اوردیوم

Pileolaria terebinthi

نگاره ۲ سر خشکی سرشاخه‌های بینه آلوده مرحله اوردیوم

در آغاز بهار Pileolaria terebinthi
جدول 1. تجزیه و تحلیل اثرات بارش برف شدت آلودگی

<table>
<thead>
<tr>
<th>شدت آلودگی</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>جمع مربعات</th>
<th>مانع تقیف</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>حاد</td>
<td>1</td>
<td>7741/16</td>
<td>7741/16</td>
<td>7741/16</td>
<td>0/1673</td>
</tr>
<tr>
<td>متوسط</td>
<td>2</td>
<td>2952/30</td>
<td>2952/30</td>
<td>2952/30</td>
<td>0/1673</td>
</tr>
<tr>
<td>کم</td>
<td>3</td>
<td>1344/60</td>
<td>1344/60</td>
<td>1344/60</td>
<td>0/1673</td>
</tr>
<tr>
<td>کل</td>
<td>4</td>
<td>30000/19</td>
<td>30000/19</td>
<td>30000/19</td>
<td>0/1673</td>
</tr>
</tbody>
</table>

جدول 2. همبستگی شدت آلودگی با سن، ارتفاع محل رویشگاه، از سطح دریا و تاج پوشش

<table>
<thead>
<tr>
<th>تاج پوشش</th>
<th>ارتفاع محل رویشگاه</th>
<th>قطر (سن)</th>
<th>شدت آلودگی</th>
<th>متوسط (سن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نامشخص</td>
<td>نامشخص</td>
<td>نامشخص</td>
<td>شدت آلودگی</td>
<td>متوسط (سن)</td>
</tr>
<tr>
<td>10000</td>
<td>32/56</td>
<td>10000</td>
<td>شدت آلودگی</td>
<td>متوسط (سن)</td>
</tr>
<tr>
<td>9000</td>
<td>32/6</td>
<td>9000</td>
<td>شدت آلودگی</td>
<td>متوسط (سن)</td>
</tr>
<tr>
<td>8000</td>
<td>32/66</td>
<td>8000</td>
<td>شدت آلودگی</td>
<td>متوسط (سن)</td>
</tr>
<tr>
<td>7000</td>
<td>32/76</td>
<td>7000</td>
<td>شدت آلودگی</td>
<td>متوسط (سن)</td>
</tr>
<tr>
<td>6000</td>
<td>32/86</td>
<td>6000</td>
<td>شدت آلودگی</td>
<td>متوسط (سن)</td>
</tr>
</tbody>
</table>
جدول ۳: تجزیه واریانس اثر ارتفاع محل روشگاه، بر میزان شدت آلودگی

<table>
<thead>
<tr>
<th>احتمال</th>
<th>F</th>
<th>میانگین سرمایه</th>
<th>جمع مربعات</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/001</td>
<td>19/29</td>
<td>۲۴۷/۱۴/۴۲</td>
<td>۲۷۷/۱۴/۴۲</td>
<td>۲۴۷/۱۴/۴۲</td>
<td>۲۷۷/۱۴/۴۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
<td>۲۳۸/۱۷/۳۷</td>
</tr>
</tbody>
</table>

به روش دانل افزا و چپ گروه آلودگی در شیب‌های نیشی را نسبت به چهار دیگر نشان می‌دهد.

آنالیز گرگسون

به متروک نت‌های گرگسون مربوطه است. می‌تواند در بررسی درصد، یا درصد، تعداد گروه و همان‌گونه محاسبه گردد.

д-سال-۱۸۸۰

ضرایب همبستگی و تبیینه سه متغیر مستقل X1، X2 و X3 با Y به شرح زیر است:

| ضرایب تبیین (X1) | X2 و X3 | با Y | نشان می‌دهد که این سه متغیر مستقل در مجموع می‌توانند ۱۷/۶۹ درصد از تغییرات (واریانس) در شدت آلودگی به پیماری را تبیین کنند.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۲۲/۶۷/۱۴/۴</td>
<td>۲۲/۶۷/۱۴/۴</td>
<td>۲۲/۶۷/۱۴/۴</td>
</tr>
</tbody>
</table>
| بر پایه جدول ۵، مشخص می‌گردد که ۱۰ درصد از واریانس در شدت آلودگی در اثر ارتفاع محل روشگاه به ۱۱/۸ درصد به علت تغییر سر (فقط) گیاه و ۱/۲ درصد به سبب تغییر جنسیت گیاه است.

بحث

ضرایب بیشتر تبیینه و تبیینه در ارتفاع محل روشگاه از سطح دریا (X1) و متغیر وابسته (شدت آلودگی) از رابطه زیر محاسبه گردید.

\[ R = \sqrt{\frac{SS_{Reg}}{SS_{T}}} \]

\[ Y = \frac{1}{12} + 0.019X_1 + 0.02X_2 + 0.03X_3 \]

بنابراین نت‌های گرگسون درصد از واریانس موجود در شدت آلودگی را تبیین می‌کند. به همین ترتیب با محاسبه ضرایب همبستگی و تبیینه در ارتفاع مستقل X1 و X2 به ترتیب ارتفاع از سطح دریا و سن، مشخص می‌گردد که این دو
جدول 4. آتالیز واریانس رگرسیون موجود میان متغیرهای مستقل و شدت آلودگی

<table>
<thead>
<tr>
<th>احتمال</th>
<th>F</th>
<th>میانگین متغیرهای مستقل</th>
<th>شدت آزمایش</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/001</td>
<td>3</td>
<td>5448/60</td>
<td>1815/03</td>
<td>رگرسیون</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>156/13</td>
<td>شدت آزمایش</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>219</td>
<td>شدت آزمایش</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>222</td>
<td>شدت آزمایش</td>
</tr>
</tbody>
</table>

جدول 5. خلاصه نتایج آتالیز رگرسیون به روش است. واژه برای متغیر وابسته (شدت آلودگی)

<table>
<thead>
<tr>
<th>متغیر وارد شده</th>
<th>متعلق</th>
<th>R²</th>
<th>R²</th>
<th>مرحله</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁ = (H)</td>
<td>0/127</td>
<td>0/127</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X₂ = (D)</td>
<td>0/331</td>
<td>0/331</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>X₃ = (S)</td>
<td>0/211</td>
<td>0/211</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

برگهایی درختان نر تیز از نظر فنولوژی دریبر از برگهای درختان ماده پیداده می‌شوند (5). بنابراین، به نظر می‌رسد که شدت آلودگی درختان نر نزدیک، مسئله‌ای هم‌خوردگی هم‌زمانی فنولزیک قارچ و گیاه باشد.

در زنگ‌یک، مشخصات گردیده که میان افزایش فراروده (Berberis vulgaris) مقاومت برگهای زرشکی پیچری و آلودگی به بازیابی‌سپورها در هیپستوک مثبت و دارد. بر سر دیگر، با افزایش سری به‌خصوص تیولی‌سپورها در سه‌گانه و سه‌گانه نیز افزایش می‌یابد (7). افزایش در درشتی‌سپورها از نظر دمای، رطوبت، موم، زنگ‌یک و افزایش در زنگ‌یک، با عوامل محیطی تأثیر دارد (8). در نهایت، بررسی‌های میانگین داده‌ها در زنگ‌یک در موسس بازیابی‌سپورها نشان‌دهنده است. مدلی که با رفتار قادیر به دید کننده آثار این عوامل نیز است. بنابراین در این مدل، این آثار به عنوان خطا منظور شدند.
سسگزاری
نگارندگان از کلیه مستقل محرریان مراکز نظریه منابع طبیعی و امور دام استان قارس، به ویژه آنانه مهندس مقدماسی اورجیک مجزی طرح جامع جنگل تحت‌الحمایی بینه، به خاطر همکاری‌هایی به‌دست ایشان تشویق می‌نماید. همچنین از سرکار حامی دفتر ستاری ریاست محرریان بخش آمار دانشگاه علوم دانشگاه شیراز، به خاطر ارائه نظراتی از زندگانی که درمانی می‌نماید.

منابع مورد استفاده

1. ارشادی، ج. ۱۳۷۴. فاصله‌های ایران. وزارت کشاورزی، سازمان تحصیلات، آموزش و تربیت کشاورزی (۱۰)، تهران.
2. خاتم‌نواز، م. ۱۳۶۷. فصلنامه. شماره ۲: تیره پسته (Anacardiaceae). وزارت کشاورزی، سازمان کشاورزی و منابع طبیعی، موسسه تحقیقات جنگل‌ها و مراتع، تهران.
3. رعیتی‌نژاد، ر. ۱۳۷۶. گزارش نهایی طرح بررسی و تعیین میزان روش قطری درختان و دست‌کاری جنگلی فارس، بینه مرکز تحقیقات منابع طبیعی و امور دام استان فارس. (Pistacia mutica).
4. مصداقی، م. ۱۳۷۲. مردادی در ایران. انتشارات آستان قدس، مشهد.
5. استاد و دانشگاه. ۱۳۷۸. میزان فاصله‌های در مناطق مختلف (ترجمه آ. رزولی‌زاده). انتشارات دانشگاه صنعتی اصفهان.
Resour. Instit., Rome, Italy.