اثر ویژگی‌های میزان، ارتفاع و جهت شیب بر شدت زنگ به دن جنگل‌ها به فیروزآباد

حیب‌الله حمزة زرقانی و ضیاء‌الدین بنی‌هاشمی

چکیده
در یک بررسی صحرایی در چنگل تحقیقاتی به فیروزآباد به وسعت تقریبی ۱۲۰۰ هکتار و با آزمایشی از روش‌های آماری‌داری شیستماتیک و تصویری، اثر ارتفاع محل رویشگاه‌ها از سطح دریا و جهت شیب قابل آن، جنسیت و سن گیاه میزان، و سطح تاج پوشه به شدت وقوع بیماری زنگ به ببریس گردید.

شدت آلودگی زنگ به با اندازه سن گیاه کاهش می‌یابد. درختان ماده به راحتی بیشتر از درختان نر به بیماری مبتلا می‌شوند، و شدت آلودگی در ارتفاعات بیش از ۲۰۰۰ متر بسیار کم می‌شود. جهت شیب قابل رویشگاه و سطح پوشه تاجی اثری بر شدت آلودگی نداشت.

میان سن و ارتفاع رویشگاه از سطح دریا با شدت آلودگی همبستگی مثبتی داشت، در حالی که میان سطح پوشه تاجی و شدت آلودگی همبستگی منفی داشت.

واژه‌های کلیدی: بیماری زنگ به فارس

مقدمه

پیچیدگی است (۱۴). یکی از مهم‌ترین بیماری‌های این گیاه که در کشورهای دیگر، به ویژه روی پسته مورد توجه قرار گرفته، زنگ Pileolaria terebinthi (DC.) Cast. پسته است. که حاصل آن بیماری زنگ به می‌باشد (۱۰). بیماری زنگ به همراه در کشورهای غربی مصر (۶)، فلسطین و ترکیه (۱۱)، یونان (۸) و برخی از آنها از خانواده Anacardiaeae خانواده برخی پرورش‌گرانت گونه این P. atlantica درخت را نواحی مدیریت‌های پراکنده و زیرگونه‌های این تاکون محسوب می‌شود (۱۱).

مساحت تحت پوشش این گیاه در ایران ۵ تا ۳ میلیون

۱. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد گیاه‌شناسی، دانشگاه کشاورزی، دانشگاه شیراز.
کشورهای دیگر روی پسته وجود دارد.
در ایران این قاره برای نخستین بار در سال 1871 توسط راین هورسروین به نام (P. mitchellii) گزارش شده است. (به تقل از: 1) این بیماری در استانهای فارس، کرمانستان و لرستان وجود داشته و اگری اراضی (1) را از ایلام گزارش کرده است.
پترک برای اولین بار آن را در سال 1956 روان پسته از گنبد گزارش کرده است (به تقل از: 1).
از میزان آسیب این بیماری در جنگل‌های پنجه گزارشی در دست نیست. همچنین یک در دیگر مناطقی نیز کار یافته‌ها مشخص نشده که نیازمند بررسی بیشتر است.
در صورت آلودگی شدید سرشاخه‌های جوان درختن در بارها و خشک بدن آنها در ادامه فصل رشد می‌باشد. آلودگی اولیه با بازیابی سورت می‌گردد و مراحل اسپرمیوئوتروم و به دنبال آن اسپرم نماینده می‌شود (حمره زرقانی و بینی‌هاشی).
نگاه 1378 گزارش مندرج شده. سرشاخه‌های جوان گیاه که رشد سال مال مشخص می‌شوند، در آغاز فصل حالت سیب زردی دارند. و کمی با ادامه فصل، شدیدا آلوده می‌شوند، به طوری که سرچشمه در نهایت به صورت آمیخته از دو روش نمونه‌گیری تصادفی و سیستماتیک بود (4). در این روش، خط اصلی روش آماری‌ برای سورت کلی ارائه شد. سپس از ارائه تصادفی کردن به طریق اعداد تصادفی، محل آغاز نمونه‌برداری تعیین، و نقاط دیگر نسبت به نقطه اول بروز و مطالعه گردید.
روش آماری‌ برداری روش نمونه‌گیری به صورت آمیخته‌ای از دو روش نمونه‌گیری تصادفی و سیستماتیک بود (4). در این روش، خط اصلی روش آماری برای سورت کلی ارائه‌ شد. سپس از ارائه تصادفی کردن به طریق اعداد تصادفی، محل آغاز نمونه‌برداری تعیین، و نقاط دیگر نسبت به نقطه اول بروز و مطالعه گردید.
در این پژوهش، جاده ارتباطی شمالی و جنوبی طرح به عنوان دو خط پایه انتخاب شد و در دو جهت عمود بر آنها (با استفاده از خط تفاضل)، در هر کیلومتر با فاصله 200 متری از خط پایه دو خطوط نمونه به پایه دو خط خط مورد بررسی قرار گرفت. نقاط نمونه به کنار گرده شده‌که در مرکز کدام پایه درخت به وجد داشته باشد. به همین دلیل، پایه به فردی جمعیت درختن، مساحت قطعات نمونه در ارتفاعات مختلف
اثر بررسی‌های موجود، ارتفاع و جهت شیب بر شدت زنگ‌بزی در جنگل‌های به فیروزآباد

یک‌دان بود. به موجب تعيين نفرت‌گردي درختان، صاحب قطعات نمونه با اندازه‌گيري کوچک‌ترین دایره محيط بر حسب درخت قطعه نمونه محاسبه گردید.

ویژگی‌های مورد نظر درخت که یادداشت شد، عبارت است از:

بودند از:

۱. قطر برابر سه (سیم)، ۲. قطر زیگ و کوکچ ناجی، ۳. ارتفاع درخت، ۴. ارتفاع تاج درخت و ۵. شمار سرشاخه آلوده سنال

جایی در تاج درخت

که مورد بکی با استفاده از کالیبر ۱۲ سانتی‌متری و مورد ۲، و مورد ۴، برای مشخص کردن راس و روی صفر خط رأس بلندیها که نزدیک‌ترین سیم تاج و بلندی به علت شرکت بسیار کم درختان در آن ارتفاع، فاصله‌ها کاملاً رعایت نگردید.

ارتفاع فرد آب و ارتفاع بدن آب از سطح دریا و جهت شيب غالب آن به وسیله آبی متر و نقش‌تان تعیین و یادداشت شد. داده‌های گردآوری شده در فرم‌های ویژه یای برای گردآوری. یا توجه به تغییرات شدید در ارتفاع درختان به دلیل یک‌‌نواخت نبود.

سیم، به جای بهره‌گيری از شمار سرشاخه آلوده شده چرخ‌های درخت، شدت آلودگی (بر پایه فرمان سرشاخه آلوده در متراکم) تاج، با تقسيم شمار سرشاخه آلوده شده چرخ‌های یدک تاج درخت بر حجم تاج محاسبه گردید و حجم تاج یک بر حسب متراکم از حاصل ضرب ارتفاع تاج (متر) در قطر کوچک تاج (متر) در قطر بزرگ تاج (متر) به دست آمد.

روش‌های آماری

برای بررسی ارتباط میان نشانی شدت آلودگی با قطر (سن)، جنتیس گیاه، ارتفاع از سطح دریا و تعداد پوشش یک جهت شیب غالب و روش‌های ناپیمودان آماری (SAS) (۱۵) به کار رفت.

۱. سطح پوشش، درصدی از ساحه پوسته اصلی محاسبه نموده که به مساحت تاج درختان درون آن پوشش شده، و نسبت به اندازه تراکم درختان (شمار درخت)

۲. Generalized Linear Models

۳. Pearson Correlation Coefficient

۴. Stepwise

۵. Coefficient of determination

Cd Coefficient of determination

ارتباط به فاقدان

۱۰۰% ×۳۳\(\text{تیپی فیزیکی}

۲۱۵
اثر ویژگی‌های میزبان، ارتباط و جهت شیب بر شدت زنگ به تنه جنگل‌های به فیروس‌ایاد

Pileolaria terebinthi

گزاره ۱: آلودگی سرشاخه‌های پنهان در محله اوردوزوم

Pileolaria terebinthi

گزاره ۲: سیروخشکی سرشاخه‌های پنهان در محله اوردوزوم
جدول 1. تجزیه واریانس اثر جهت برش شدت زنگ به در جنگل های به فیروزآباد

<table>
<thead>
<tr>
<th>احتمال</th>
<th>F</th>
<th>میانگین مربعات</th>
<th>جمع مربعات</th>
<th>درجه آزادی</th>
<th>متغیر تفسیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0173</td>
<td>0/75</td>
<td>7741/14</td>
<td>1344/60</td>
<td>29753/03</td>
<td>30000/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. همبستگی شدت آلودگی با سن ارتفاع محل رویشگاه از سطح دریا و تاج پوشش (اعداد بالا ضرایب همبستگی و اعداد پایین سطوح احتمال هستند)

<table>
<thead>
<tr>
<th>تاج پوشش</th>
<th>ارتفاع محل رویشگاه (قرن (سن))</th>
<th>شدت آلودگی</th>
<th>قطر (سمن)</th>
<th>قطر (سمن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/075</td>
<td>0/156</td>
<td>0/000</td>
<td>0/000</td>
<td></td>
</tr>
<tr>
<td>0/375</td>
<td>0/146</td>
<td>0/000</td>
<td>0/000</td>
<td></td>
</tr>
<tr>
<td>0/0001</td>
<td>0/146</td>
<td>0/000</td>
<td>0/000</td>
<td></td>
</tr>
<tr>
<td>0/049</td>
<td>0/146</td>
<td>0/000</td>
<td>0/000</td>
<td></td>
</tr>
<tr>
<td>0/0001</td>
<td>0/146</td>
<td>0/000</td>
<td>0/000</td>
<td></td>
</tr>
</tbody>
</table>

و ارایانس متغیر وابسته (شدت آلودگی) را می‌توان به‌وسیله مقایسه میانگین‌های شدت آلودگی در دو جزئی ارتفاعی نشان می‌دهد که شدت آلودگی در گروه ارتفاعی کمتر از 2000 متر (0/25/0/01) به گونه‌ای متعادل (0/25/0/01) است. ارتفاعی بیش از 2000 متر (0/88/0/01) است. اثر جهت برش غالب و درصد سطح تاج پوشش گیاه بر میزان شدت آلودگی

همبستگی میان درصد سطح تاج پوشش و میزان شدت آلودگی

217
جدول 3 تجزیه واریانس اثر ارتقاف محل روشگاه بر میزان شدت آلودگی

<table>
<thead>
<tr>
<th>اختصار</th>
<th>درجه آزادی</th>
<th>جمع مربعات</th>
<th>میانگین مربعات</th>
<th>F</th>
<th>احتمال</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل</td>
<td>1</td>
<td>2471/46</td>
<td>2471/46</td>
<td>19/29</td>
<td>0/0001</td>
</tr>
<tr>
<td>خطا</td>
<td>221</td>
<td>28317/72</td>
<td>1281/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>222</td>
<td>30589/72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

معنی می‌دهد که درصد از واریانس متغیر مشاهده کرده شد. به این ترتیب درصد 15/58 درصد از واریانس متغیر (شدت آلودگی) را می‌توان به‌رهی درک داد.

آماره R گوی و معنی‌دار یادآوری شده که همبستگی ضرایب همبستگی و تبیین سهم متغیر مستقل Y با X1 و X2 و X3 با مدل X1 در واریانس (شدت آلودگی) تبیین به‌همین‌گونه محسوس گردیده.

R = \sqrt{\frac{\text{سی‌اس‌دی}}{\text{سی‌سی‌دی}}} = \sqrt{\frac{2471/46}{30589/72}} = 0/2407 = R^2 = 0/1558

ضرایب تبیین (X1, X2, X3) با Y نشان می‌دهد که این سه متغیر مستقل در مجموع متوانند 15/69 درصد از تغییرات (واریانس) در شدت آلودگی به‌همراه را تبیین کنند. بر پایه جدول 5 مشخص می‌گردد که 11/27 درصد از واریانس در شدت آلودگی در اثر ارتقاف محل روشگاه، 21/4 درصد به علت تغییر فضای گیاه و 11/24 درصد به سبب تغییر جنسیت گیاه است.

بررسی ضرایب همبستگی و تبیین دو متغیر

ضرایب همبستگی و تبیین برای متغیر مستقل ارتقاف روشگاه از سطح دریا (X1) و متغیر وابسته (شدت آلودگی) از رابطه زیر محسوس گردیده:

R = \sqrt{\frac{\text{سی‌اس‌دی}}{\text{سی‌سی‌دی}}} = \sqrt{\frac{2471/46}{30589/72}} = 0/2407 = R^2 = 0/1558

پیشنهاد می‌شود که دربردارنده ریز زمینی فرد این اثر جوانان، معمولاً به روش مستقل، با سرعت کردن کوچک‌المرکزی به درون ایمیج فرد می‌کنند. ولی در برخی زنگ‌ها نفوذ غیرمستقیم از راه روزانه ترجیح دارد (13). اگر نحوه ایجاد آلودگی توسط بازی‌پذیری‌های این

218
جدول 4. آنالیز واریانس رگرسیون موجد میان متغیرهای مستقل و شدت آلودگی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعداد شاخص</th>
<th>جمع مربوط</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>رگرسیون</td>
<td>3</td>
<td>544/820/60</td>
<td>13</td>
<td>خطا</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>254/12/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>208/91/40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>222</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 5. خلاصه نتایج آنالیز رگرسیون به روش استپ وای برای متغیر وابسته (شدت آلودگی)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تجمعی R^2</th>
<th>جمعی R^2</th>
<th>مرحله</th>
<th>متغیر وارد شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/0127</td>
<td>0/0127</td>
<td>1</td>
<td>X_1 (H)</td>
</tr>
<tr>
<td>2</td>
<td>0/0581</td>
<td>0/0311</td>
<td>2</td>
<td>X_2 (D)</td>
</tr>
<tr>
<td>3</td>
<td>0/1699</td>
<td>0/1699</td>
<td>3</td>
<td>X_3 (S)</td>
</tr>
</tbody>
</table>

برگهای درختان نسبت به نظیر فنولوژی دیرتر از برگهای درختان ماده پدیدار می‌شودند. بنابراین، به نظر می‌رسد که برخی آلودگی چنین نر در بلندی‌ها، مسئله‌ی به هم خوردن همبستگی فنولوژی فاصله‌گذاری می‌گیرند.

در روزهای پس از فرار آزادسازی پدیده‌پذیری دما بالا می‌روید. این امر سبب می‌شود که تیلوسپورهای آماده جوانتری، که به دلیل قوی‌تری نسبت به آن در پریدن و در صورت جواندن هم تمایل نبافتند، مانند ریشه رشد کردند، سپس پلاستیلای شدند و از بین پریدند. پدیده‌پذیری احتمالی آزاد شده نیز به دلیل افزایش دما توانایی انجام اکسیداسیون را تجربه کرده و حتی در صورت انجام لوله تنفسی، احتمالاً به دلیل کلیفته شدن کوتیکول در اثر افزایش سو برگها نمی‌توانند نفوذ نمایند.

با نگاهی به ضرایب تبیین حاصل از معادله رگرسیون، مشخص می‌شود که در مجموع اثر سیاه‌چال و ارتقاء محل رویشگاه از سطح زیری بر شدت آلودگی 10/79 درصد از کل واریانس مشاهده شده می‌باشد. این مثل‌که کاملاً طبیعی است، که آلودگی آسو سیلیس در دامنه‌ای محدود اثر ناشناخته ندارد.

جدول 6. مقاومت برگهای زرشک‌بچه (Berberis vulgaris) به پدیده‌پذیری R_j و آلودگی به R_j در زینگ نیز از راه مستقیم باشد، که اظهار می‌کند آلودگی نتیجه‌ی در ماده پدیدار می‌شود. در بلندی‌ها، نیز اختلاف معنی‌دار آلودگی میان درختان نر و ماده را می‌توان به فنولوژی گیاه نسبت داد.

در زینگ سیاه مشخص گردیده که سیان افراشی از جوانتی به $Puccinia graminis$ پسیری و آلودگی به پدیده‌پذیری از هم‌پیوندی مبتلا و وجود دارد. با سنگ دیگر، با افراشی سبز، ضخامت کوتیکول سلولهای اپیدی و متغیری به سرور شدن مکانیکی توسط هستوریوم و میخ رنگ برای پدیده‌پذیری پزشکی‌بچه (Berberis vulgaris) در زینگ نیز از نظر دما و رطوبت مورد نیاز برای جوانتری می‌باشد. در پردازه پاراکتی دما هستند و با یک که پردازه دمای اورتاپسبوره‌های زینگ سیاه گسترده و سطح 23-27 درجه گردیده، ولی پدیده‌پذیری در این قاره برای نفوذ به ایزادر میزانی در 20 میلی‌متر، ساعات وقت نیاز دارد.

پیش‌ترین آزادسازی پدیده‌پذیری زینگ به در 16 مارس (26 اسفند) سال 1964 اتفاق افتاد. در این تاریخ جوانتری برگ درختان به پزشک نیز، در دما در نقطه جنگلی یکسان در مواردی برگ‌ها از هم جداگردیده بودند. از سوی دیگر،
سیاسگزاری
نگران‌دنداری از کلیه مسئولین محنک مرکز تحقیقات منابع طبیعی و امور دام استان قارس، به ویژه آقای مهندس محمد قاسم اورجی، محدوده جریان تحقیقاتی بنته، به خاطر همکاری‌هایی که در بهبود ایشان تمکن می‌نمایند، همچنین از سرکرده خانم دکتر سوسجی رایست محسوم به مرکز دانشکده علوم دانشگاه شیراز، به خاطر ارائه نظرات ارزش‌دار به مرکز تحقیقات منابع طبیعی و امور دام استان قارس، به محض دانشگاه شیراز، به خاطر ارائه نظرات ارزش‌دار به مرکز دانشگاه قدردانی می‌نمایند.

مانع مورد استفاده
1. ارشادی، ج. 1374. فناوریهای ایران. وزارت کشاورزی و منابع طبیعی. تهران.
2. خاتم‌سازی، م. 1367. فناوری ایران. شماره 3: بی‌هوش و بهبود صنعتی (Pistacia vera).
3. رزینی‌درادی، ر. 1373. گزارش نهایی طرح بررسی و تعیین میزان رشد قطعی درختان و درخت‌های جنگلی فارس. به منبع مهندس محمد قاسم، وزارت کشاورزی و منابع طبیعی.
4. صمدی، م. 1372. مرتبه‌های در ایران. انتشارات استان قارس، مشهد.
5. وست، وود، آ. 1378. میزان کاری در مناطق متعدد. (تشریح توسط رسولزادگان، انتشارات دانشگاه صنعتی اصفهان).

Resour. Instit., Rome, Italy.