مقایسه شاخص‌های انتخاب در جر در شرایط معمول و نش نیتروزن

سیده نازگل عمرانی، عبدالرحیم رضایی و احمد ارزانی

(تاریخ دریافت: ۱۴/۱۲/۲۰۱۹، تاریخ پذیرش: ۸/۵/۲۰۱۹)

چکیده

مؤثرترین روش برای انتخاب صحیح زنده‌بودن برای صنیف‌مانند عمکرده گزارش یافته از انتخاب برای بهبود عمکرده جو در شرایط معمول و نش نیتروزن با استفاده از Kanto Nakate Gold (KNG) و Azumamugi (AZ) نشان داد که انتخاب برای حفظ معدنی در شیشه حاصل از نوارهای تکاندهای لنزی نیتروزن با افزایش قرار می‌گیرد.

کشاورزی دانشگاه صنعتی اصفهان پایه شد. در شرایط معمول، در هر یک از مراحل شروع رند زایی، به سه رنگ و پر کردن دامه معادل ۱۰۰ گیلوگرم نیتروزن خالص در هکتار به صورت کود آوره در اختیار گیاه قرار گرفت. در شرایط میزان ۵۰ گیلوگرم نیتروزن خالص در هکتار فقط در مرحله شروع رند روشنی مصرف شد. شاخص‌های انتخاب اسپیت- هیژول و پسک بیکر براساس چهره صفات رزو نسبت به دیق. شاخص پرداشت، سرعت رند و شاخص پرداشت نیتروزن و همچنین پاسخ‌های معنی‌دار و همبسته این صفات به همراه عمکرده برای رنگ از شرایط معمول و نش نیتروزن به صورت ۱۰ گیلوگرمی محاسبه شدند. نتایج پاسخ‌های معنی‌دار و همبسته به انتخاب نشان داد که انتخاب برای نش در عادی و همچنین انتخاب برای نش بهترین نتیجه‌گیری حاصل می‌شود. در شرایط معمول و نش نیتروزن صفات شاخص پرداشت وزن بالایی در هر دو شاخص اسپیت- هیژول و پسک- بیکر داشت. همچنین در شاخص‌های انتخاب برای شرایط معمول و نش از نظر هر دو شاخص اسپیت- هیژول و پسک- بیکر ضرب صفر سرعت رند مشابه بود. بنابراین انتخاب برای نش دیگر نش نیتروزن از این شاخص‌ها لایحه یا سرعت رشد کمتر را غیر می‌کند. همچنین شاخص اسپیت- هیژول بالاتری نسبت به شاخص پسک- بیکر داشت.

وژه‌های کلیدی: انتخاب مستقیم و غیرمستقیم، نش نیتروزن، جو، شاخص‌های انتخاب

مقدمه

عمکرده، صنایعی است که توسط تعادل زیر کنترل گرایش برای دیگر صنایع شده و به دلیل اثر متفاوت زنده‌بودن و محیط دارای ورزش یپیدری بایگان می‌باشد. بنابراین انتخاب براساس عمکرده و در جهت بهبود آن باید یپیدری دارکه باید همین دلیل انتخاب غیرمستقیمی ۱.

* مسئول مکانیابی: پست الکترونیکی: am.rezai@cc.iut.ac.ir
انتخاب برای هر همکار را تعیین می‌کند (8). رزیل و فرای (22) انتخاب مستقیم و غیر مستقیم را برای یک همکار معمول را اصلاح کردند. در جمعیت مشابه از ۱۲۰۰ گیاه F۱، بلافاصله بررسی گردید و نتیجه گرفتند که انتخاب غیر مستقیم از طریق شاخص هوارش باعث بهره‌مندی درصدی همکاران دانه می‌شود. نتایج F۲ و F۳ (۱۲) نشان می‌دهند. اگر انتخاب غیر مستقیم بر اساس اجزای عمکرک برای یک همکار معمول را اصلاح کردند، نتایج به درصد انتخاب سالبری در سالیانه و وزن دانه به ترتیب بیشترین تأثیر را انتخاب برای عمکرک بالاتر داشتند و مشخص شد که انتخاب از طریق تعداد سالبری در سال، بیش از سایر اجزای عمکرک باعث بهره‌مندی همکاران دانه می‌شود.

از انجا که انتخاب انتقال‌های یک گیاه به ازای صفات مختلف آن یافتگی دارد، بنا برای اصلاح‌گرایان باید انتخاب هیزمان چند صفت را برای یک همکار انتقال‌هایی که می‌تواند داشته باشد (10). در روش انتخاب بر اساس شاخصی، گزینی هیزمان بر اساس خصوصیات معمولاً در نظر گرفته انتخاب‌های فنی‌وکاری و انتخاب‌های آنها و هیپستگی بین صفات مختلف انجام می‌شود (8).

استفاده از شاخص‌های انتخاب ابتدا به‌وسیله اسهیست (34) پیشنهاد شد. اگر عنوان کرد که جوان انتخاب زنگی نمی‌تواند به صورت مستقیم تعیین شود، باید به‌وسیله تابع خطی از انتخاب فنی‌وکاری کننده، به توصیه رسودانه شود. مثلاً در انتخاب برای یک گیاه خالص گیاه پیشنهاد شده است. در این تابع از صفات مختلف به صورت هیدرولیز می‌تواند به عنوان منبع به‌کار گیری شود (13). این‌طور باید با مسیر متقابل و معنی‌دار صفات و نزدیکی به انتخاب‌های زنگی‌ها باید به‌کار گیری شود. به‌وسیله انتخاب‌های صفات، میزان بهبود مورد نیاز بر حسب اجرای میزان نهایی به‌کار بردن می‌تواند به‌کار بردن میزان مورد نیاز به‌کار بردن میزان به‌کار بردن میزان مورد نیاز به‌کار بردن میزان به‌کار بردن میزان مورد نیاز به‌کار بردن میزان به‌کار بردن میز
مقایسه شاخص‌های انتخاب در جو در شرایط معمول و نش تیپوروزن

کردنده که استفاده از شاخص انتخاب اسمیت- هیوز کارایی انتخاب را 14 درصد نسبت به انتخاب مستقیم بهبود بخشید.

البوا و همکاران (۱۷) در سرایا از شاخص انتخاب پسک - پیکر و انتخاب مستقیم بی‌پیکر عملاکدر دانه و روژ تا گلدهی استفاده کردنده. آنها آزمایش خود را در هر دو شرایط گلخانه و مزروع انجام دادند. نتایج نشان داد که در شرایط مزروع، انتخاب مستقیم در مقایسه با انتخاب بر منیایی شاخص پسک - پیکر کارایی بیشتری داشت، اما در شرایط گلخانه،

این موضوع را بررسی کردنده.

نمونه‌سنجی از بين شاخص‌ها، شاخص اسمیت- هیوز بهبود می‌یابد.

گرانات و همکاران (۱۱) به انتخاب اسمیت- هیوز، پسک - پیکر و پیکر بیهای در دوازده بررسی کردنده و کارایی انتخاب

از طریق این شاخص‌ها را با انتخاب مستقیم برای عملاکدر دانه مقایسه نمودند. این شاخص‌ها، شاخص اسمیت- هیوز بیشترین

بهره مورد استفاده را داشت و به آن شاخص پسک - پیکر قرار داشت. این اثبات داشت و به آن شاخص اسمیت- هیوز پسک - پیکر به ویلیامز، استفاده نمودند و در دوازده از بهبود ژنتیک نشان داده‌های روی از شاخص‌ها تعیین کردنده. در مقایسه با انتخاب مستقیم برای عملاکدر، شاخص پسک - پیکر و شاخص یابه بیم که ویلیامز به

عنوان بهترین شاخص‌ها معرفی شردد.

عوامل زیادی بر عملاکدر و سایر خصوصیات گیاهان زراعی تأثیر می‌گذارد که این میزان تیپوروزن بدلیلام بی‌عمد و عمد و اکثریتی در فرآیندهای حیاتی گیاه به‌همداز از جمله

مهم‌ترین آنتی‌بیوتیک. همچنین بهترین سایر مصرف کردنده به

علت افزایش آلودگی محیطی در اثر استفاده بر رویه و همچنین

انفراش هزینه‌های تولید مورد نهضت از کن. برای بهبود

عملاکدر جو در شرایط نش و عملاکدر تیپوروزن، تعیین

شاخص‌های مناسب انتخاب براساس مقیاس‌های مربوط به عملاکدر

و مقایسه آنها در شرایط نش و عملاکدر و مقایسه کارایی آنها و
مقدمه

احادیث شناختی انتخاب اسپتیت- هریل (32 و 34) و پسک- بیکر

د) بررسی

بررسی صفت رفتاری در نظر گرفته شد. دقت، درصد پیروی، انتخاب و کاهش (Response to Selection) آنها از شناسایی گونه‌ها در طول دوره رشد و با دست انجام شد. ارزیابی کلیه صفات با نظر گرفتن 25 سانتی‌متر حاشیه‌ای از طرفین رنگ‌های و در نظر می‌گیرد.

فناوری

همگینی هر گونه (ف) متر مربع، انجام شد.

در این مطالعه صفات تعداد روز تا سنبله دهی، عملکردهای زنده و بیولوژیکی، شامل نسبت عملکرد کاه حالت در طول دوره حیاتی، درصد پیروی دانه و کاهش (Response to Selection) نسبت عملکرد

کاهش به انتخاب (Response to Selection)

صفت از رابطه زیر (8) محاسبه شد:

\[R_i = k h_{ij} \sigma_{g_i} \]

در این رابطه \(\sigma_{g_i} \) انتخاب معیار زنینی هر صفت، \(k \) ورانت پذیری و \(h_{ij} \) شدت انتخاب است که با گرین 25 درصد از زنینی‌ها روابط با 1/55 می‌باشد (8).

پاسخ همبسته از انتخاب به صفت از طریق گروئین

برای صفت دیگر از رابطه زیر (8) به دست آمد:

\[CR_i = k h_{ij} \sigma_{g_i} \]

در این رابطه 3 ضریب همبستگی بین صفت مورد نظر یا بهره و صفت انتخاب بر منابع آن انجام می‌شود. همچنین پاسخ همبسته برای عملکرد بررسی انتخاب از طریق نسبت به انتخاب مقدار هر صفت است که از رابطه زیر محاسبه شده:

\[\Delta G_i = k \sigma_{g_i}^2 \]

در این رابطه \(\sigma_{g_i} \) همبستگی شامل صفت با هر صفت است که از رابطه زیر محاسبه شده:

\[\sigma_{g_i} = \sum b_j \sigma_{g_j} \]

(ANT) بررسی انتخاب بر منابع نسبت 2 طبق رابطه زیر به دست آمد.

کارایی نسبت انتخاب (RSE) با به عبارتی نسبت پاسخ غیرمستقیم انتخاب برای عملکرد (CR) در شرایط نش از طریق انتخاب مستقیم (Ry) در شرایط معمول (R) طبق رابطه زیر (8) محاسبه شد. از این رابطه برای محاسبه کارایی انتخاب بر اساس صفت‌ها نسبت به انتخاب مستقیم برای عملکرد نیز استفاده گردید.
جدول 1. مقایسه پاسخ مستقیم به انتخاب برای صفات مختلف جو در شرایط معمول و نش نیتروژن

<table>
<thead>
<tr>
<th>شرایط بدون نش</th>
<th>پاسخ به انتخاب (RI)</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>334/400</td>
<td>378/11</td>
<td>عمکرکد</td>
</tr>
<tr>
<td>9/83</td>
<td>9/35</td>
<td>روز تا سبب‌دهی نیتروژن</td>
</tr>
<tr>
<td>9/43</td>
<td>9/23</td>
<td>نیتروژن دانه</td>
</tr>
<tr>
<td>9/19</td>
<td>9/26</td>
<td>نیتروژن کاه</td>
</tr>
<tr>
<td>9/17</td>
<td>9/97</td>
<td>شاخص برشایست</td>
</tr>
<tr>
<td>8/27</td>
<td>9/91</td>
<td>شاخص برشایست نیتروژن</td>
</tr>
<tr>
<td>8/59</td>
<td>18/27</td>
<td>سرعت رشد</td>
</tr>
</tbody>
</table>

\[\sigma_i = \sqrt{\beta b_p} \]

بهره مورد انتظار (ΔH) برای هر شاخص (8) نیز طبق رابطه زیر به دست آمده:

\[\Delta H = \sum a_i \Delta G_i \]

در نهایت، زنوتیپها بر اساس هر کدام از شاخص‌ها و عمکرکد رتبه‌بندی شدند. و ۳۰ دصرد از بهترین زنوتیپها از لحاظ شاخص‌ها با بهترین زنوتیپها بر منی اعلام عمکرکد مقایسه شدند. وارت پذیری‌ها و همیستگی‌های بین شاخص‌ها و عمکرکد نیز محاسبه شدند.

tایب و بحث

پاسخ مستقیم و همبستگی به انتخاب

مقدارهای پاسخ به انتخاب و پاسخ همبستگی بر اساس مقایر و وارتپذیری، واریانس زنوتیپ و همیستگی زنوتیپی صفات و انتخاب ۳۰ درصد از آینده (شات انتخاب 1/855) در هریک از شرایط نش و معمول در جداول ۱ و ۲ آورده شدند. عمکرکد دانه در شرایط معمول و نش نیتروژن به ترتیب با مقایر ۷/۸ و ۱/۳/۳۷ بیشترین پاسخ مستقیم را به انتخاب نشان داد. چنانچه بیشترین پاسخ مستقیم این صفت به انتخاب، بیشتر بودن واریانس زنوتیپی در هر دو شرایط نشتبه به سایر صفات بود.
جدول ۲. مقایسه مقادیر پایش همبسته بر اساس انتخاب برای بهبود صفت ۷ از طریق انتخاب برای صفت X در ۵۱ لاین جوهر

<table>
<thead>
<tr>
<th>شرایط معمول و نش تیتروزن</th>
<th>صفت X</th>
<th>صفت Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>شرایط بدون نش</td>
<td>۱۸۵/۶۷</td>
<td></td>
</tr>
<tr>
<td>۲۹/۲۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵/۶۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>۱۸۴/۰۲</td>
<td>۱۸۴/۰۲</td>
</tr>
<tr>
<td>۲۱/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>۱۱۹/۱۲</td>
<td>۱۱۹/۱۲</td>
</tr>
<tr>
<td>۲۷/۵۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>۲۱۵/۵۶</td>
<td>۲۱۵/۵۶</td>
</tr>
<tr>
<td>۲۴/۸۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>۱۸۲/۸۳</td>
<td></td>
</tr>
<tr>
<td>۱۲/۳۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>۹۰/۷۶</td>
<td></td>
</tr>
<tr>
<td>۰/۰۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>۰/۵۳</td>
<td>۰/۵۳</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>۰/۸۶</td>
<td>۰/۸۶</td>
</tr>
<tr>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>۰/۱۱</td>
<td>۰/۱۱</td>
</tr>
<tr>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>۰/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>۰/۵۶</td>
<td>۰/۵۶</td>
</tr>
<tr>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۰/۸۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>۰/۲۰</td>
<td>۰/۲۰</td>
</tr>
<tr>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
</tr>
<tr>
<td>۰/۰۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمکبرکرد</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
</tr>
<tr>
<td>۰/۲۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>۰/۹۶</td>
<td>۰/۹۶</td>
</tr>
<tr>
<td>۰/۷۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>۱/۳۸</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>۱/۲۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>۱/۹۵</td>
<td>۱/۹۵</td>
</tr>
<tr>
<td>۵/۲۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>۵/۴۷</td>
<td>۵/۴۷</td>
</tr>
<tr>
<td>۲/۸۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>۵/۵۴</td>
<td>۵/۵۴</td>
</tr>
<tr>
<td>۲/۱۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمکبرکرد</td>
<td>۲/۳۷</td>
<td>۲/۳۷</td>
</tr>
<tr>
<td>۱/۱۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>۱/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>۰/۶۹</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۰/۸۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۳/۴۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>۶/۴۹</td>
<td>۶/۴۹</td>
</tr>
<tr>
<td>۸/۳۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>۶/۴۹</td>
<td>۶/۴۹</td>
</tr>
<tr>
<td>۳/۵۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمکبرکرد</td>
<td>۳/۱۱</td>
<td>۳/۱۱</td>
</tr>
<tr>
<td>۴/۷۶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
مقایسه شاخص‌های انتخاب در جو در شرایط معمول و تش تیروز

باشد و شاخص برداشت نیتروز کمتری داشته باشد.

در شرایط معمول صفت شاخص برداشت، بیشترین پاسخ همیشه را از طریق صفت سرعت رشد و شاخص برداشت نیتروز داشت. بیشترین پاسخ همیشه در شرایط معمول به‌طور مداوم و شاخص برداشت نیتروز از طریق سرعت رشد و دیل وجود هیدروستاتیکی مثبت مشاهده می‌شود. به‌طور کلی، همیشه بیشترین پاسخ بیشترین پاسخ همیشه و در شرایط معمول و تش تیروز نیتریک کمتری داشته تنشی.

یک نظریه بوجود می‌آید که این امر موجب کاهش کیفیت مالت جو می‌شود. دانه جو برای مصرف مالت باید کمتر از ۱۲ درصد نیتروز داشته باشد. کی و زانگ (۲۱) گزارش کردند که افزایش ۱۰ کیلوگرم نیتروز در هکتار، میزان نیتروز دانه جو افزایش و به‌طور قابل‌توجهی درصد می‌رساند که به‌طور کلی جهت تولید مالت مطلوب نیست. بنابراین افزایش برداشت تنشی انجام شده است. پاسخ همیشه به انتخاب برای نیتروز کاهش طبق شاخص برداشت.

پاسخ همیشه عملکرد در شرایط معمول و روز تا سبله دهی در شرایط تنشی به بیشترین صفات بود. با توجه به پاسخ‌های همیشه مشابه نیتروز کاهش طبق صفات روز تا سبله دهی، شاخص برداشت و شاخص برداشت نیتروز معلوم شد که افزایش این صفات نیتروز کاه حمل منجر به نیشتی به عنوان یک نظریه، می‌توان این نظریه را گریخته نمود که روزتر شرایط تنشی، بیشتر از پاسخ همیشه برای حالت عکس بود. پاسخ
جدول ۳. پایه‌های مستقیم و همبستگی انتخاب برای عملکرد در شرایط معمول و نش نیتروژن در جو

<table>
<thead>
<tr>
<th>کارایی گریبنش</th>
<th>پایه همبسته</th>
<th>متوسط</th>
<th>پایه مستقیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون نش</td>
<td>٠/٢٩</td>
<td>٠/١١</td>
<td>٣٧/١١</td>
</tr>
<tr>
<td>نش</td>
<td>٠/٢٧</td>
<td>٠/٩٢</td>
<td>٣٣/٤٠</td>
</tr>
</tbody>
</table>

جدول ۴. ضرایب هریک از صفات مورد بررسی در شاخص‌های انتخاب در شرایط معمول و نش نیتروژن

<table>
<thead>
<tr>
<th>شرایط نش</th>
<th>شرایط بدون نش</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>پس-پیکر (اسمیت- هیزل)</td>
<td>پس-پیکر (اسمیت- هیزل)</td>
<td>روز تا سلنده دهى</td>
</tr>
<tr>
<td>٠/٢٢</td>
<td>٠/١٤</td>
<td>٠/٧</td>
</tr>
<tr>
<td>٠/٦٦</td>
<td>٠/٩٩</td>
<td>٠/٨</td>
</tr>
<tr>
<td>٠/٢١</td>
<td>٠/٢٢</td>
<td>٠/٨</td>
</tr>
<tr>
<td>٠/٥٧</td>
<td>٠/٧</td>
<td>٠/٨</td>
</tr>
</tbody>
</table>

اختصاص داده. در این شرایط، صفات شاخص برداشت و شرایط رشد با مقادیر ٠/٧٩ و ٠/٤٢ بالاترین ضرایب را در شاخص بسک-پیکر داشته. بدن ترکیب انتخاب بر منابع این شاخص کمتر به گریبنش لاین‌هایی می‌انجام به شاخص برداشت و شرایط رشد بالاتری داشته. در شرایط معمول نیتروژن، صفت شاخص برداشت ون بالایی در هر دو شاخص اسیمیت- هیزل و پس-پیکر داشته.

به انتخاب برای عملکرد در شرایط نش برای بهبود عملکرد در شرایط معمول و برای حالت عکس ٠/٧٧ بود. بنابراین، انتخاب در شرایط معمول برای شرایط نش و بالعکس باید به‌طور کمی داشته. پیشینتر و همکاران (١٨) در مطالعه‌ای در ذرت مشاهده کرده‌اند که انتخاب مستقیم در شرایط نش نیتروژن، برای بهبود عملکرد دام مؤثرتر از انتخاب غیر مستقیم از طریق عملکرد در شرایط معمول می‌باشد.

شاخص‌های انتخاب

ضرایب (١) هر یک از صفات در شاخص‌های اسیمیت- هیزل و پس-پیکر در جدول ۴ آورده شدند. با گایگان‌های ارزش‌های فنوتیپ‌های هر یک از زنوتیپ‌ها در معادله‌اش شاخص‌های مقدار شاخص برای هر یک از آنها محاسبه شد (جدول ۴. ٥ و ٦). ارائه زنوتیپی شاخص‌ها و روندهای آنها، همبستگی زنوتیپی و انتخاب را به‌طور اساسی می‌انجامد. شاخص‌های انتخاب برای هر شاخص و ٣٥ درصد از بهترین زنوتیپ‌ها از نظر انتخاب بر اساس عملکرد و شاخص‌ها در جداول مذکور ارزیدند. در شرایط بدون نش، صفات روز تا سلنده‌هی و شاخص برداشت پیش‌ترین ضرایب را در شاخص اسیمیت- هیزل به‌نود
چکیده

عملکرد دامنه، مقادیر شاخص‌های انتخاب و (ربیه) برخی از لاین‌ها به همراه پارامترهای وابسته برای شاخص‌های انتخاب در شرایط معمول در جو

<table>
<thead>
<tr>
<th>لاین</th>
<th>عملکرد (کیلوگرم در هکتار)</th>
<th>شاخص اسیمیت- هیژ</th>
<th>شاخص- پسک- پیکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>229/50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>374/24</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>95</td>
<td>392/50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>369/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>82</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>58</td>
<td>369/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>55</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>KNG</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>73</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>89</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>95</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>71</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>53</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>49</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>92</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AZ</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>374/49</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>اریب،انزبندی</td>
<td>89/99</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ورایت پدزدی</td>
<td>0/4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>هیملستکی با عملکرد</td>
<td>0/57</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>پاسخ هیستگن</td>
<td>374/12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>کاراگی انتخاب</td>
<td>0/54</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>تعداد لاین بتر*</td>
<td>15</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

تعداد لاین بتری که جزو ۳۰ درصد بتر زونتیپها از نظر عملکرد و شاخص‌های میانگین.

در شرایط نیتریژن، صفت‌های انتخاب برداشت و روز تا سبکه دهه به ترتیب به نسبت ۱/۲۹ و ۸/۹۸ بالاترین وزنه را در شاخص اسیمیت- هیژل داشتند. این دو صفت در شرایط معمول نیز در برای‌های بالایی در شاخص انتخاب اسیمیت- هیژل بودند (جدول ۴). در شرایط نیتریژن، صفت‌های انتخاب برداشت و سرعت رشد

یافته‌های آزمایشات بالاترین ضربات را در شاخص یکپ- پیکر داشتند (به ترتیب با ۳۰/۷۳ و ۵/۱۴۰). در این می‌توان نتیجه گرفت که صفت شاخص برداشت برای هر دو شاخص اسیمیت- هیژل و پسک- پیکر و تحت‌های شرایط نیتریژن و مواد عضو این سناب گزارشی. این دو صفت در شرایط معمول نیز در برای‌های بالایی در شاخص انتخاب اسیمیت- هیژل بودند (جدول ۴).
جدول ۶: عملکرد دامه، مقادیر شاخص‌های انتخاب و (رتبه) برخی از لاين‌ها به همراه پارامترهای وابسته برای شاخص‌های انتخاب در شرایط تنش نیتروز در جو

<table>
<thead>
<tr>
<th>لاين</th>
<th>عملکرد</th>
<th>شاخص عسیت- هزیل</th>
<th>پسک- بیکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td>۳۶۹۹/۹۲</td>
<td>۲۵۳/۰ (۱)</td>
<td>۷۰/۲ (۵)</td>
</tr>
<tr>
<td>۸۵</td>
<td>۳۶۱۵/۰۰</td>
<td>۲۴۴/۰ (۲)</td>
<td>۷۰/۸ (۳)</td>
</tr>
<tr>
<td>۵۳</td>
<td>۳۳۴۲/۲۳</td>
<td>۲۴۹/۳ (۳)</td>
<td>۷۱/۳ (۱)</td>
</tr>
<tr>
<td>۹۴</td>
<td>۳۳۳۵/۷۲</td>
<td>۲۴۹/۳ (۳)</td>
<td>۷۱/۲ (۲)</td>
</tr>
<tr>
<td>۹۶</td>
<td>۳۱۹۳/۵۰</td>
<td>۲۴۵/۰ (۴)</td>
<td>۷۰/۵ (۴)</td>
</tr>
<tr>
<td>۴۹</td>
<td>۳۱۸۶/۶۶</td>
<td>۲۳۶/۸ (۵)</td>
<td>۶۹/۳ (۶)</td>
</tr>
<tr>
<td>۹۸</td>
<td>۳۱۲۱/۱۷</td>
<td>۲۵۸/۵ (۷)</td>
<td>۶۹/۱ (۵)</td>
</tr>
<tr>
<td>۳۷</td>
<td>۲۹۷۷/۳۲</td>
<td>۲۵۰/۶ (۸)</td>
<td>۶۹/۸ (۷)</td>
</tr>
<tr>
<td>KNG</td>
<td>۲۹۳۶/۶۷</td>
<td>۲۵۸/۳ (۹)</td>
<td>۶۸/۵ (۸)</td>
</tr>
<tr>
<td>۴۹</td>
<td>۲۷۱۵/۰۰</td>
<td>۲۷۴/۵ (۱)</td>
<td>۶۹/۴ (۳)</td>
</tr>
<tr>
<td>۸۱</td>
<td>۲۸۸۸/۵۰</td>
<td>۲۴۶/۳ (۹)</td>
<td>۶۸/۶ (۵)</td>
</tr>
<tr>
<td>۶۳</td>
<td>۲۸۰۸/۰۰</td>
<td>۲۵۸/۸ (۱۰)</td>
<td>۶۹/۲ (۴)</td>
</tr>
<tr>
<td>۶۸</td>
<td>۲۸۰۳/۹۷</td>
<td>۲۴۱/۶ (۱۱)</td>
<td>۶۸/۵ (۴)</td>
</tr>
<tr>
<td>۴۹</td>
<td>۲۷۹۴/۸۷</td>
<td>۲۵۸/۷ (۱۲)</td>
<td>۶۹/۲ (۴)</td>
</tr>
<tr>
<td>۱۹</td>
<td>۲۷۵۰/۹۲</td>
<td>۲۴۵/۰ (۱۳)</td>
<td>۶۹/۲ (۴)</td>
</tr>
<tr>
<td>۰۶</td>
<td>۰۰</td>
<td>۰۰</td>
<td>۰۰</td>
</tr>
<tr>
<td>۰۷</td>
<td>۰۰</td>
<td>۰۰</td>
<td>۰۰</td>
</tr>
<tr>
<td>۳۷</td>
<td>۲۷۱۵/۲۷</td>
<td>۲۵۳/۰ (۱۷)</td>
<td>۶۶/۷ (۲۷)</td>
</tr>
<tr>
<td>AZ</td>
<td>۱۹۵۹/۳۷</td>
<td>۲۵۳/۰ (۱۷)</td>
<td>۶۶/۷ (۲۷)</td>
</tr>
<tr>
<td>۰۰</td>
<td>۰۰</td>
<td>۰۰</td>
<td>۰۰</td>
</tr>
<tr>
<td>۳۷</td>
<td>۱۸۴/۲۷</td>
<td>۱۸۴/۲۷</td>
<td>۱۸۴/۲۷</td>
</tr>
<tr>
<td>۴۹</td>
<td>۱۵۸/۴۵</td>
<td>۱۵۹/۴۵</td>
<td>۱۵۹/۴۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۱۵۰/۵۲</td>
<td>۱۵۰/۵۲</td>
<td>۱۵۰/۵۲</td>
</tr>
<tr>
<td>۶۶</td>
<td>۱۴۹۹/۷۵</td>
<td>۱۴۹۹/۷۵</td>
<td>۱۴۹۹/۷۵</td>
</tr>
<tr>
<td>واریانس زیبینی</td>
<td>۳۶۴۹/۳۰</td>
<td>۳۶۴۹/۳۰</td>
<td>۳۶۴۹/۳۰</td>
</tr>
<tr>
<td>اورانت یاربینی</td>
<td>۵/۲۷</td>
<td>۵/۲۷</td>
<td>۵/۲۷</td>
</tr>
<tr>
<td>همبستگی با عملکرد</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>سپش همبسته</td>
<td>۳۳۴/۰۰</td>
<td>۳۳۴/۰۰</td>
<td>۳۳۴/۰۰</td>
</tr>
<tr>
<td>کارایی انتخاب</td>
<td>۰/۸۵</td>
<td>۰/۸۵</td>
<td>۰/۸۵</td>
</tr>
<tr>
<td>تعداد لاين برتر</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

*: تعداد زنوتیپ که جزو ۳۰ درصد برتر زنوتیپ‌ها از نظر عملکرد و شاخص‌های میانگینی تعداد لاين برتر است.

همبستگی شاخص پسک- بیکر با عملکرد از صاحب اسیس- هزیل برتر بودند، و ۹۴ از نظر شاخص اسیس- هزیل برتر بودند. از نظر عملکرد در رتبه‌های ۱۳ و ۴ قرار داشتند. از نظر شاخص پسک- بیکر، لاين‌ها به سرعت ۳۸/۸/۹ درصد برتر بودند، این لاين‌ها از نظر عملکرد نیز جزو لاين‌های برتر و به ترتیب در رتبه‌های ۳ و ۴ قرار داشتند (جدول ۶).

به طور خلاصه، در شرایط معمول لاين ۳۰ از نظر شاخص‌های صاحب اسیس- هزیل برتر بودند، در شرایط تنش، لاين‌های
مقاله شاخص‌های انتخاب در جو در شرایط معمول و نش

جدول 7 کارایی انتخاب از طریق شاخص انتخاب (Δ G) و پاسخ صفات به انتخاب بررسی در شرایط معمول و نش نیتروژن در جو

<table>
<thead>
<tr>
<th>Δ G</th>
<th>شرایط درシャخص نیتروژن</th>
<th>شاخص درシャخص نیتروژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/00</td>
<td>0/05</td>
</tr>
<tr>
<td>0.25</td>
<td>2/01</td>
<td>1/02</td>
</tr>
<tr>
<td>0.50</td>
<td>3/02</td>
<td>2/03</td>
</tr>
<tr>
<td>0.75</td>
<td>4/03</td>
<td>3/04</td>
</tr>
<tr>
<td>1.00</td>
<td>5/04</td>
<td>4/05</td>
</tr>
<tr>
<td>1.25</td>
<td>6/05</td>
<td>5/06</td>
</tr>
<tr>
<td>1.50</td>
<td>7/06</td>
<td>6/07</td>
</tr>
<tr>
<td>1.75</td>
<td>8/07</td>
<td>7/08</td>
</tr>
<tr>
<td>2.00</td>
<td>9/08</td>
<td>8/09</td>
</tr>
</tbody>
</table>

محدود شده، 15 درصد و برای شاخص انتخاب-هیژن-هیژن 14 درصد بیشتر از انتخاب معمولی برای عملکرد بود. پریچارد و همکاران (19) نشان دادند که انتخاب بر منای شاخص، عملکرد سوآ را بهبود یک‌پوشی و نسبت به انتخاب معمولی برای عملکرد کارایی بیشتری داشت.

در شرایط بدون نتش، صفت سرعت رشد بالاتری به را در شاخص انتخاب-هیژن دارا بود و پس از آن صفت شاخص برداشت قرار داشت. در همین شرایط و در شاخص پسک-پسک بهترین نیز پاسخ صفات صفت سرعت رشد و شاخص برداشت از سایر صفات پیشتر بود. نتایج پایان‌نامه در شرایط معمول صفات سرعت رشد و شاخص برداشت بالاترین نسبت به انتخاب را در هر دو شاخص انتخاب-هیژن و پسک-پسک پیکر در هر دو شرایط جزو 30 درصد نشان‌دهنده کمک‌کننده که انتخاب آن در گندم مشاهده کرده‌اند که انتخاب گیاهان در نسل F2، بر پایه شاخص انتخاب-هیژن کارایی بیشتر نسبت به هر دیگر رشد داشت، اما استفاده از این مقدار در نسبت به در شاخص پسک-پسک صفت رشد و بالاتری به را داشت. در شاخص انتخاب-هیژن پسک از صفت سرعت رشد بالاترین نیترژن نشان داده. در حالت که بیشترین پسک-پسک صفت روز تا سبزی به در مرتبت دوم قرار گرفت (جدول 7). پاسخ صفات صفت سرعت رشد در شرایط معمول و نتش و برای هر دو شاخص منفی بود. نتایج انتخاب بر منای شاخص انتخاب-هیژن و پسک-پسک بهترین دو در شرایط زننیت‌های انتخاب رشد کمتر را گزارش کرد. انتخاب بر منای شاخص انتخاب-هیژن در شرایط معمول و نتش باعث انتخاب لاپورهای با سرعت رشد کمتر می‌شود. در حالی که انتخاب بر منای شاخص پسک-پسک پیکر در هر دو شرایط زننیت‌های انتخاب 0 0

