مقایسه شخصیت‌های انتخاب در جو در شرایط معمول و نش نیتروژن

سیده نازگل عمرانی، عبدالمحمید رضایی و احمد ارزاتی

(تاریخ دریافت: 1387/02/10؛ تاریخ پذیرش: 1387/05/01)

چکیده

مطلوب بودیم که برای رفتار صبح زن‌ها برای صفحه ماند عامل‌دان گریزش همزمان بر مبادلای شخصیت انتخاب برای جویان خصوصیت مهم‌گرایی‌ای باشد. این مطالعه با هدف مقایسه شخصیت‌های انتخاب برای بهبود عامل‌دان جو در شرایط تشکیل و معمول نیتروژن با استفاده از Kanto Nakate Gold (KNG) و Azumamugi (AZ)، 49 لازم این اجرا نمود که. 44 حاصل از نابود و 49 دو روزه و 49 دو هفته در غربال زراعی 1383 انجام شد. آزمایش به صورت طرح کمی خرد شده در کالب به موجب کلیدی کاهش تصادفی با نگهداری در مزیعه تحقیقاتی دانشگاه کشاورزی دانشگاه اصفهان یپاده شد. در شرایط معمول، در هر یک از مراحل شروع رشد زایشی، به سطح رشد و پر شدن دانه معادل ۱۰۰ کیلوگرم نیتروژن خاص در کالب به صورت کود اوره در اختیار گیا قرار گرفت. در شرایط تشکیل، کود سرک به میزان ۵۰ کیلوگرم نیتروژن خاص در هکتاور فقط در مرحله شروع رشد رویی منصرف شد. شخصیت‌های انتخاب اسپیت- هیزم و پس- بکر براساس بهرهفرو رز تا سه‌شی شده، شخصیت برداشت، سرعت رشد و شاخص برداشت نیتروژن و همچنین پاسخ‌های مستقیم و همبسته این صفات به همراه عامل‌دان برای حسک در شرایط تشکیل و معمول نیتروژن به صورت چندگانه محاسبه شدند. نتایج پاسخ‌های مستقیم و همبسته به انتخاب نشان داد که انتخاب برای برداشت و شخصیت برداشت نیتروژن بالاتر در هر دو شرایط معمول و تشکیل نیتروژن باعث می‌شود که این‌ها به‌طور محصول تر می‌شود. در شرایط معمول و نش نیتروژن صفات شخصیت برداشت وزن بالایی در هر دو شخصیت اسپیت- هیزم و پس- بکر داشتند. همچنین در رابطه‌های انتخاب برای شرایط معمول و تشکیل از انتخاب نیتروژن به سطح و شخصیت اسپیت- هیزم و پس- بکر ضرب صرف سرعت رشد می‌شود. نتایج برای انتخاب برای شرایط انتخاب این شخصیت‌ها لایه‌ای با سرعت رشد کمتر را رقبای می‌کند. همچنین شخصیت اسپیت- هیزم بازه‌ای بالایی نسبت به شخصیت پس- بکر داشت.

واژه‌های کلیدی: انتخاب مستقیم و غیرمستقیم، نش نیتروژن، جو، شخصیت‌های انتخاب

مقدمه

عنوان گریزش برای صفات دیگر در راستای بهبود عامل‌دان مدول کرده. صفاتی کمی است که توسط تعداد زیادی از کشتی مقایسه می‌گردد. چنانچه بین صفات، هم‌ستگی انتخاب و یک صفت منجر به تغییر با تغییرات در صفات دیگر می‌شود، که پاسخ همبسته نام دارد و در واقع به‌شیرین‌سیر (Correlated response)

۱ به ترتیب دانشجوی سایر کارشناسی ارشد و استادی زراعت و اصلاح پیوندها، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

* مسئول مکاتبات، پست الکترونیکی: am.rezaei@ec.iut.ac.ir
برترین ارزش اصلاح‌طلب را پیش‌تر می‌کند (1). بنابراین انتخاب صفر 31 مشاهد انتخاب را بر
منابع گزارش‌های 5 صفت سومگر بررسی کرده‌اند. در طی انتخاب به اساس صفحه، عمک‌رک داده و علوم به‌هدایه یافته. در
این آزمایش هر چند مشاهده شده که وقتی انتخاب برای صفتی
به انجام می‌شود، باید به‌کم‌آمد از انتخاب به دست می‌آید و
هر چه نتایج صفت در شاخص بیشتر باشد، کارایی انتخاب بتوان
منابعی از صفت‌های مشابه نیست انتخاب بنی‌اکتشفرد یا شاخص می‌تواند (16) متغیرهای از شاخص انتخاب برای بررسی
واکنش به شورت ارتباط جوی استفاده کرده‌اند. آنها بافت‌های
انتقال می‌باشد. انتخابی از صفت‌هایی از شاخص می‌تواند (17)
مرتبط با عملکرد دانه بیشترین بهره مورد انتظار را نشان داد و
پس از آن شاخص بهره مطلب و انتخاب بر اساس سطوح
منتقل قرار داشته. در این مطالعه کارایی انتخاب مستقیم برای
عملکرد دانه ضعیف بود.
امیدی و همکاران (15) از شاخص‌های انتخاب در
برنامه‌های انتخاب دوره‌ای برای جمعیت در صفت‌های انتخاب کردند.
در این مطالعه، در شاخص‌هایی از آنها از واریانل‌ها
صفات به عنوان وزنه استفاده شده بود و در دیگر وزنه‌های
انتقال صفات منظور صدها بودند. با شاخص اسپیت- هیزل
مقاومه شدند. آنها مشاهده کردند که استفاده از شاخصی که در
آن از واریانل‌ها به عنوان وزنه صفات استفاده شده بود کارایی نسبی بیشتری بسی به دو شاخص دیگر داشت. بی‌پی‌گیر
و لایه‌ای (14) در درست از شاخص اسپیت- هیزل و انتخاب
مستقیم برای به‌طور عملکرد دانه استفاده نمودند. آنها مشاهده

انتخاب برای به‌طور عملکرد را تعبیر می‌کند (8)، رزیل و قراری
(22) انتخاب مستقیم و غیر مستقیم را برای به‌طور عملکرد در
جمعیتی مشابه از 1200 گیاه F1، بلافاصله بررسی کرده و تجربه
گرفتن که انتخاب غیر مستقیم از طریق شاخص برداشت باعث
به‌طور 70 درصدی عملکرد دانه می‌شود. کندال و همکاران
(15) غیرمستقیم براساس اجزای عملکرد برای به‌طور عملکرد دانه
اقدام نمودند. تعداد سپیده در متغیر، تعداد دانه در سنبله و
وزن دانه به ترتیب بیشترین تنها تأثیر را انتخاب
برای عملکرد بالاتر داشتند و مشخص شد که انتخاب از طریق
تعداد سپیده در متغیر، پیش از سایر اجزای عملکرد باعث
به‌طور عملکرد دانه می‌شود.

از آنجا که انتخابات به‌طور صفات
مختلف آن سبب‌گر دارد، بنابراین اصلاح‌گران با این انتخاب
همزمان جدا صفت را برای به‌طور انتخابات یکسان مانند
داستن باشند (12). در روش انتخاب بر اساس صفت، گریزی
همزمان با همه خصوصیات مهم همراه بود نظر گرفتن
ارزش‌های فنی‌بانی و انتخابی و کرایت‌پذیری آنها و همبستگی
بین صفات مختلف انجام می‌شود (8).

استفاده از شاخص‌های انتخاب بایده به‌صورت اسپیت (24)
پیشنهاد شد. اگر عنوان کرد که چون ارزش‌های ترجیح نمی‌تواند به
صورت مستقیم تعیین شود، پیش‌بینی سه‌لایه با توجه خصوصیات
ارزش‌های فنی‌بانی مقابل مشاهده گزارش شده‌است. برای تعریف یک شاخص
انتقال برای یکی از خلاصه‌گرایی پیشنهاد شده است. در این
تالاب از صفت‌های متغیرهای به عنوان مقیاس‌های
با ضریب وزنه صفات استفاده می‌شود (23). هیزل (12) این
تجارب را بر مبنای ارزش‌های انتخابات صفات، میزان به‌طور مورد
با حسب احراز معیارها و همبستگی‌ها و پارامترهای
زمینه واقعیت‌پذیری و همبستگی‌ها زمینه‌ای بین
صفات گسترش داد. شاخص اسپیت- هیزل مهم‌ترین بروزور
کردن ارزش اصلاح‌لات صفات است و احتمال انتخاب فردی باید

184
قانونه شاخص‌های انتخاب در جو در شرایط معمول و نش نیتروژن

کردن که استفاده از شاخص انتخاب اسمیت- هیزل- کارایی انتخاب را در دصد نسبت به انتخاب مستقیم بهبود بخشید.

در پیشک، بیکر و انتخاب مستقیم برای بهبود عملکرد دانه و روز تا گله دهی استفاده کردند. آنها آزمایش خود را در هر دو شرایط گلکانه و مزرعه انجام دادند. نتایج نشان داد که در شرایط مزرعه، انتخاب مستقیم در مقایسه با انتخاب بر مبنای شاخص پیکر- کارایی بیشتری داشت، اما در شرایط گلکانه، انتخاب بر مبنای شاخص پیکر- کیکر موتور بود.

گرانات و همکاران (11) سه شاخص انتخاب اسمیت- هیزل، پیکر و ویلیامز را در دصد بروز کردن و کارایی انتخاب از طریق این ابزار را با انتخاب مستقیم برای عملکرد دانه مقایسه نمودند. این شاخص‌ها، شامل کارایی هیزل- پیکر و ویلیامز- بهره مورد انتظار را داشت و پس از آن شاخص پیکر قرار داشت. انتخاب مستقیم برای عملکرد، شاخص پیکر- کیکر و شاخص پایه پریم- ویلیامز به عنوان بهترین شاخص‌ها معرفی شدند.

عوامل زیادی بر عملکرد و سبب خاصیت‌های زراعی یک کارایی که در این موارد بیشتر به همراه این وظیفه که در فرآیندهای ساختار گیاهی بر عهده دارد از جمله می‌توان به اشاره نمود. همچنین بهبود ارزش معنی که نیتروژن به عنوان از آوریل کمکی می‌تواند در اثر استفاده بر روی و همچنین افزایش هزینه‌های تولید مورد نظر داشته باشد. به همین راستا این مطالعه به منظور مقایسه معیارهای انتخاب مستقیم و غیر مستقیم برای بهبود عملکرد جو در شرایط نش و مزرعه نیتروژن، تعیین شاخص‌های مناسب انتخاب براساس صفات مرتبط با عملکرد و مقایسه آنها در شرایط نش و مزرعه و مزرعه کارایی آنها و
\(RSE = CR_y / Ry \)

شاخص‌های انتخاب اسمیت- هیزل (13 و 24) و پس - بیکر (20) برای سایر صفات روز نا سنجیده دهی، شاخص برداشت، سرعت رشد و شاخص برداشت نیتروژن با نظر گرفتن ارزش فتوتیپی، زنیتهای انتقادی مبنی بر توجه به رابطه زیر داده‌های هر یک از شرایط نش و معمول به صورت جدایگان محاسبه شدند.

\[I = \sum b_i \cdot P_i \]

و زنیتهای انتقادی اسمیت- هیزل بردار \(b_i \) از رابطه زیر محاسبه شد.

\[b = P^T \cdot G \]

از ارزش انتقادی نسی صفات اسمیت- هیزل بردار با \(P \) مانیت و رابین- کوارتاس فتوتیپی صفات و \(G \) مانیت و رابین- کوارتاس زنیتهای می‌باشند. کل ارزش انتخاب اسمیت- هیزل از لحاظ نسبت دادن ارزش‌های نسی انتقادی به صفات کمی دارای محدودیت است، شاخص پس- بیکر (20) نیز محاسبه شد که در آن به حاکی ارزش‌های انتقادی از بهره‌ای بی‌پردازه زنیتهای مطلوب (\(\sigma_{ij} \)) که بردار انتخاب معیار فتوتیپی هر صفت است، برای محاسبه \(b_i \) استفاده شد.

\[b = G^T \cdot g \]

با قرار دادن ارزش فتوتیپی در شاخص‌ها مقدار هر شاخص بازه فتوتیپی به دست آمده و در محاسبات بعدی مانند پیک بردار \(P \) گرفته شد.

در نهایت، برای هر صفت موجود در شاخص بازه مورد اندازه‌گیری (\(\Delta G \)) برای انتخاب بر مبنای شاخص (8 طبق رابطه زیر به دست آمده.

\[\Delta G_i = k \cdot \sigma_{i|-} / \sigma_{i} \]

در این رابطه \(\sigma_{i|-} \) میزان سطح شاخص با هر صفت است که از رابطه زیر محاسبه شد:

\[\sigma_i = \sum b \cdot \sigma_{gij} \]

انحراف معیار شاخص اسمیت- هیزل برای هر صفت از فرمول

انجام شد. با استفاده از پیک ارزش، ابتدا برای عمل آمد و پس از آن ابتدا به ورود کلیه‌ای (فرشته‌ای) هر 100-70 روز یکبار تا مرحله رسیدگی انجام شد. ویاک از آزمایش شامل 4 رنگ کاشف به طول 2 متر و فاصله 20 سانتی‌متر و تراکم کاشف 200 بذر در متر مربع بود. میزان‌بندی نیتروژن طول دوره رشد و با دست انجام شد. ارزیابی کلیه صفات با نظر گرفتن 25 سانتی‌متر حاشیه از طرفین رده‌ها و در رده‌های میانی هر کرت (600 متر مربع) انجام شد.

در این مطالعه صفات تعداد روی تا سنجیده دهی، عملکرد انسان و بیومتریک، شاخص برداشت، سرعت رشد و رشد (نسبت عملکرد کاهش طول دوره رشد) درصد نیتروژن دانه و کاده (برای نسبت عملکرد نیتروژن دانه و عملکرد نیتروژن کل گیاه) بررسی شدند.

(‌Response to Selection) واکنش به انتخاب

\(\text{صفت از رابطه زیر (8) محاسبه شد:} \)

\[R_i = kh_i \sigma_{gi} \]

در این رابطه \(\sigma_{gi} \) انتخاب معیار زنیتهای هر صفت، جدول \(h_i \) وراثت‌پذیری و \(k \) شدت انتخاب اسمیت- هیزل که از زنیتهای برای با 0.755 و 0.8 می‌باشند.

پاسخ همبسته برای انتخاب یک صفت از طریق گزینش برای صفت دیگر از رابطه زیر (8) به دست آمده:

\[CR_i = kh_i r_{gi} \sigma_{gi} \]

در این رابطه 2 ضریب همبستگی بین صفات مورد نظر از یک مهمان که انتخاب بر مبنای آن انجام می‌شود. همچنین پاسخ همبسته برای عملکرد برای انتخاب از طریق شاخص‌ها نیز از رابطه بالا به دست آمده.

(‌Relative Selection Efficiency, RSE) کاراتری نسبت انتخاب

با به عبارتی نسبت پیش‌گیری مستقیم انتخاب (CR) برای عملکرد (Ry) در شرایط تنش از طریق انتخاب مستقیم (Ry) در شرایط معمول (R) مربوط به این رابطه (8) محاسبه شد. در این رابطه برای محاسبه کاراتری انتخاب بر اساس شاخص‌ها نسبت به انتخاب مستقیم برای عملکرد نیز استفاده گردید.

186
جدول 1. مقادیر پاسخ مستقیم به انتخاب برای صفات مختلف جو در شرایط معمول و تنش نیتروژن

<table>
<thead>
<tr>
<th>پاسخ به انتخاب (Ri)</th>
<th>شرایط بدون تنش</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>عاملکرد</td>
<td>32/11</td>
<td>738/52</td>
</tr>
<tr>
<td>روز تا سنبله دهی</td>
<td>9/32</td>
<td>9/32</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>9/7/3</td>
<td>0/23</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>9/27</td>
<td>0/72</td>
</tr>
<tr>
<td>شاخه برداشت</td>
<td>9/27</td>
<td>6/79</td>
</tr>
<tr>
<td>شاخه برداشت نیتروژن</td>
<td>9/27</td>
<td>6/79</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>18/2/7</td>
<td></td>
</tr>
</tbody>
</table>

پاسخ همبسته برای صفت عاملکرد از طریق شاخص برداشت در شرایط معمول و تنش (به ترتیب 215/56 و 275/61) بیشترین مقدار داشت. پاسخ همبسته برای عاملکرد در شرایط معمول از طریق روز تا سنبله دهی و در شرایط تنش از طریق شاخص برداشت نیتروژن در مربوط به فاراد داشت.

\[
\sigma_i = \sqrt{\gamma pb}
\]

بهره مورد انتظار (\(\Delta H\)) برای هر شاخص (8) نیز طبق رابطه زیر به دست می‌آمد:

\[
\Delta H = \sum a_i \Delta G_i
\]

در نهایت، زنوتیپ‌ها براساس هر کدام از شاخص‌ها و عاملکرد رتبه‌‌های 1 تا 30 درصد از بیشترین زنوتیپ‌ها از لحاظ شاخص با بیشترین زنوتیپ‌ها بر مبنای عاملکرد مقایسه شدند. ورالت پذیرفته و همبستگی‌های بین شاخص‌ها و عاملکرد نیز محاسبه شدند.

نتایج و بحث

پاسخ مستقیم و همبسته به انتخاب

مقادیر پاسخ به انتخاب و پاسخ همبسته بر اساس مقادیر ورالت پذیرفته و اریان از زنوتیپ‌ها و همبستگی زنوتیپی صفات و انتخاب 30 درصد از لاین‌ها (شات انتخاب 1/755) در هریک از شرایط تنش و معمول در جداول 2 و 3 آورده شدند. عاملکرد دانه در شرایط معمول و تنش نیتروژن به ترتیب با مقادیر 78/11 و 33/7 بیشترین پاسخ مستقیم را به انتخاب داشت. عاملکرد در شرایط معمول از طریق شاخص برداشت را بیشتر از صفات و همبستگی بین پاسخ مستقیم برای همبستگی و عاملکرد گزارش کردند.
جدول 2. مقایسه مقادیر پاسخ همیشه به انتخاب برای بهبود صفت 7 از طریق انتخاب برای صفت 8 در 51 لاین جودر

<table>
<thead>
<tr>
<th>پاسخ همیشه</th>
<th>صفت X</th>
<th>صفت Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>شرایط تشکیل شرایط بدون تشکیل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>روز تا سبله دمی</td>
<td>185/73</td>
<td>185/73</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>15/99</td>
<td>15/99</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>21/92</td>
<td>21/92</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>375/61</td>
<td>375/61</td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>245/77</td>
<td>245/77</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>90/76</td>
<td>90/76</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>0/08</td>
<td>0/08</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>0/04</td>
<td>0/04</td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>0/05</td>
<td>0/05</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>0/30</td>
<td>0/30</td>
</tr>
<tr>
<td>عملکرد</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>0/09</td>
<td>0/09</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>0/05</td>
<td>0/05</td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>0/20</td>
<td>0/20</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>عملکرد</td>
<td>0/02</td>
<td>0/02</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>0/21</td>
<td>0/21</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>0/75</td>
<td>0/75</td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>0/38</td>
<td>0/38</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>0/24</td>
<td>0/24</td>
</tr>
<tr>
<td>عملکرد</td>
<td>0/37</td>
<td>0/37</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>0/55</td>
<td>0/55</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>0/12</td>
<td>0/12</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>0/89</td>
<td>0/89</td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>0/92</td>
<td>0/92</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>0/49</td>
<td>0/49</td>
</tr>
<tr>
<td>عملکرد</td>
<td>0/79</td>
<td>0/79</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>0/98</td>
<td>0/98</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>0/94</td>
<td>0/94</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>1/37</td>
<td>1/37</td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>1/12</td>
<td>1/12</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>3/11</td>
<td>3/11</td>
</tr>
<tr>
<td>عملکرد</td>
<td>3/59</td>
<td>3/59</td>
</tr>
<tr>
<td>نیتروژن دانه</td>
<td>3/84</td>
<td>3/84</td>
</tr>
<tr>
<td>نیتروژن کاه</td>
<td>5/49</td>
<td>5/49</td>
</tr>
<tr>
<td>شاخص برداشت</td>
<td>8/79</td>
<td>8/79</td>
</tr>
<tr>
<td>شاخص برداشت نیتروژن</td>
<td>8/49</td>
<td>8/49</td>
</tr>
<tr>
<td>سرعت رشد</td>
<td>4/97</td>
<td>4/97</td>
</tr>
</tbody>
</table>
مقايسه شاخص‌های انتخاب در جو در شرایط معمول و نش تیزروز

یافته‌ها بانی و اشکنامی 2018

آزادگی چاپ‌های همبستگی بین عملکرد و سایر صفات مشترک، که اگرچه در شرایط معمول و نش تیزروز حائز اهمیت است، صفات این شرایط در شرایط معمول و نش تیزروز کاهش داشتند. در شرایط معمول و نش تیزروز کاهش تیرگی در پیشینه همبستگی به انتخاب نسبت به پیشینه داشته داشتند. در شرایط معمول و نش تیزروز کاهش تیرگی در پیشینه همبستگی به انتخاب نسبت به پیشینه داشته داشتند. در شرایط معمول و نش تیزروز کاهش تیرگی در پیشینه همبستگی به انتخاب نسبت به پیشینه داشته داشتند.
جدول ۳ پاسخ‌های مستقیم و همبستگی انتخاب برای عملکرد در شرایط عملی و نتیجه‌ی نتی‌رون در جو

<table>
<thead>
<tr>
<th>پایخ‌های مستقیم</th>
<th>پایخ‌های مستقیم</th>
<th>محبط</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارایی گرنش</td>
<td>0/99</td>
<td>37/8/11</td>
</tr>
<tr>
<td>پیشرفت</td>
<td>9/29</td>
<td></td>
</tr>
<tr>
<td>پیشرفت نش</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نش</td>
<td>9/27</td>
<td>33/4/0</td>
</tr>
</tbody>
</table>

جدول ۴ ضرایب همبگانه از نظر جیرفت‌های انتخاب در شرایط عملی و نتیجه‌ی نتی‌رون

<table>
<thead>
<tr>
<th>شرایط نش</th>
<th>شرایط بدن نش</th>
<th>سفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسمت- هیزل</td>
<td>پسک- بیکر</td>
<td>اسمت- هیزل</td>
</tr>
<tr>
<td>0/50</td>
<td>0/87</td>
<td>0/41</td>
</tr>
<tr>
<td>0/66</td>
<td>0/58</td>
<td>0/42</td>
</tr>
<tr>
<td>0/72</td>
<td>0/98</td>
<td>0/99</td>
</tr>
<tr>
<td>0/99</td>
<td>0/97</td>
<td>0/68</td>
</tr>
<tr>
<td>0/22</td>
<td>0/14</td>
<td>0/47</td>
</tr>
</tbody>
</table>

به انتخاب برای عملکرد در شرایط نش برای بهبود عملکرد در شرایط عملی نتیجه‌های انجام شده برای ۹۹/۰۲۷ روزه با مقدار ۹۹/۰۲۷ و برای حالت عکس ۹۹/۰۲۷ بود. بنابراین، انتخاب در شرایط عملی برای شرایط نش و بالعکس بازدهی کمی داشت. برای بررسی و همکاران (1۸) در مطالعه‌های در دیگر مشاهده کردند که انتخاب مستقیم در شرایط نش نتی‌رون برای بهبود عملکرد دانه مؤثرتر از انتخاب غیر مستقیم است. در طریق عملکرد در شرایط عملی می‌باشد.

شاخه‌های انتخاب

ضرایب (b) هر یک از سطوح در شاخه‌های اسمت- هیزل و پسک- بیکر در جدول ۳ اورده شده‌اند. با جایگزینی ارزش‌های فنوتیپ هر یک از زننی‌توپها در مدل‌های شاخه‌های مقدار شاخه برای هر یک از آنها محاسبه می‌شود (جدول ۱۸). اورانس زننی‌توپ شاخه‌ها و راه‌پیمای آنها هم‌سنتیک‌ترین بین شاخه‌ها و عملکرد، پایخ‌های مستقیم پس از انتخاب زننی‌توپها به‌عنوان شاخه‌های کارایی انتخاب برای هر شاخه و درصد از بهبود زننی‌توپها از نظر انتخاب بر اساس عملکرد و شاخه‌ها در جداول مذکور اورده شده‌اند.

در شرایط بدن نش، صفات روز تا سه‌دهمی و شاخه بردنشت بیشترین ضرایب را در شاخه اسمت- هیزل به خود
جدول ۵. عملکرد دانه، مقادیر شاخص‌های انتخاب و (رتبه) برخی از لایه‌ها به همرتبه‌پذیری وابسته برای شاخص‌های انتخاب در شرایط معمول در جو

<table>
<thead>
<tr>
<th>لایه</th>
<th>عملکرد (کلوگرم در هکتار)</th>
<th>شاخص هیمل-هیزل</th>
<th>پسک-پیکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰</td>
<td>۴۹۹/۵۰</td>
<td>۲۸/۹/۴</td>
<td>۸۸/۱/۲</td>
</tr>
<tr>
<td>۶۰</td>
<td>۴۸۷/۱/۹</td>
<td>۲۷/۴/۹</td>
<td>۸۷/۲/۱</td>
</tr>
<tr>
<td>۶۶</td>
<td>۴۸۲/۱/۵۰</td>
<td>۲۷/۸/۴</td>
<td>۸۷/۸/۹</td>
</tr>
<tr>
<td>۴۴</td>
<td>۴۷۳/۱/۷۱</td>
<td>۲۷/۳/۸</td>
<td>۸۷/۵/۵</td>
</tr>
<tr>
<td>۸۴</td>
<td>۴۷۵/۸/۷۸</td>
<td>۲۷/۰/۶</td>
<td>۸۸/۸/۳</td>
</tr>
<tr>
<td>۸۵</td>
<td>۵۷۲/۸/۱۸</td>
<td>۲۷/۲/۲</td>
<td>۸۸/۲/۱</td>
</tr>
<tr>
<td>KNG</td>
<td>۴۳۵/۷/۸۸</td>
<td>۸۸/۳/۳</td>
<td>۸۸/۲/۱</td>
</tr>
<tr>
<td>۷۲</td>
<td>۴۳۸/۵/۴</td>
<td>۸۸/۶/۲</td>
<td>۸۸/۶/۳</td>
</tr>
<tr>
<td>۷۶</td>
<td>۴۳۷/۹/۷۸</td>
<td>۸۸/۸/۸</td>
<td>۸۸/۶/۶</td>
</tr>
<tr>
<td>۸۱</td>
<td>۴۴۸/۹/۱۷</td>
<td>۸۸/۱۲/۸</td>
<td>۸۸/۶/۵</td>
</tr>
<tr>
<td>۷۴</td>
<td>۴۴۱/۸/۷۸</td>
<td>۸۸/۲۳/۸</td>
<td>۸۸/۶/۳</td>
</tr>
<tr>
<td>۹۲</td>
<td>۴۸۵/۱/۷۱</td>
<td>۸۸/۲۳/۸</td>
<td>۸۸/۲۳/۸</td>
</tr>
<tr>
<td>AZ</td>
<td>۳۴۷/۴/۲۸</td>
<td>۸۸/۲۳/۸</td>
<td>۸۸/۶/۵</td>
</tr>
<tr>
<td>۴۸</td>
<td>۴۳۷/۸/۷۸</td>
<td>۸۸/۶/۵</td>
<td>۸۸/۶/۵</td>
</tr>
<tr>
<td>۲۰</td>
<td>۴۳۸/۵/۴</td>
<td>۸۸/۶/۵</td>
<td>۸۸/۶/۵</td>
</tr>
<tr>
<td>۷۵</td>
<td>۴۳۸/۵/۴</td>
<td>۸۸/۶/۵</td>
<td>۸۸/۶/۵</td>
</tr>
<tr>
<td>۷۳</td>
<td>۴۳۸/۵/۴</td>
<td>۸۸/۶/۵</td>
<td>۸۸/۶/۵</td>
</tr>
<tr>
<td>۸۰</td>
<td>۴۳۸/۵/۴</td>
<td>۸۸/۶/۵</td>
<td>۸۸/۶/۵</td>
</tr>
</tbody>
</table>

تعداد زنوتیپی که جزو ۳۰ درصد برتر زنوتیپ‌ها از نظر عملکرد و شاخص‌های مبتنی می‌باشد.

<table>
<thead>
<tr>
<th>واریانس ژنتیکی</th>
<th>۸۹۹/۹/۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>واریانس پدیده</td>
<td>۰/۵۴</td>
</tr>
<tr>
<td>همبستگی بین عملکرد و شاخص</td>
<td>۱</td>
</tr>
<tr>
<td>پایش همبسته</td>
<td>۷۸/۱/۱</td>
</tr>
<tr>
<td>کارایی انتخاب</td>
<td>۱</td>
</tr>
<tr>
<td>تعداد لاک‌برتر*</td>
<td>۱۵</td>
</tr>
</tbody>
</table>

در شرایط تنش تیترازون، صفات شاخص برداشت و روز تنا

سیله دهنده به ترتیب با ضرایب ۲/۲ و ۱/۲۹ بروزنه و رژه را

در شاخص اسپیت-هیزل داشتهند. این دو صفت در شرایط

معمول نیز در این صورت بالاتری در شاخص انتخاب

اسپیت-هیزل بودند (جدول ۴). در شرایط تنش، صفات شاخص برداشت و سرعت رشد

بالاترین ضرایب را در شاخص پسک-پیکر داشتند (به ترتیب

با ۲/۶۱ و ۱/۲۴). بنابراین می‌توان نتیجه‌گیری کرده صفت

شاخص برداشت برای هر دو شاخص اسپیت-هیزل و پسک-پیکر

و جنسیت و شرایت تنش و معمول اهمیت و وزنه بالایی

دارد. در شرایط تنش، واریانس ژنتیکی و واریانس پدیده

شاخص اسپیت-هیزل از شاخص پسک-پیکر بیشتر بود. اما

191
جدول ۵: عملکرد دانه. مقادیر شاخص‌های انتخاب و (رتبه) برخی از لاین‌ها به‌همراه پارامترهای وابسته برای شاخص‌های انتخاب در شرایط نیترژن در جو

<table>
<thead>
<tr>
<th>شاخص</th>
<th>پسک - بیکر</th>
<th>هزل - اسیمیت</th>
<th>شاخصیت</th>
<th>عملکرد (کیلوگرم در هکتار)</th>
<th>لاین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۸۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۴۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۸۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۷۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KNG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۴۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۱</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۶۶</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شاخص</th>
<th>پسک - بیکر</th>
<th>هزل - اسیمیت</th>
<th>شاخصیت</th>
<th>عملکرد (کیلوگرم در هکتار)</th>
<th>لاین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۸۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۴۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۸۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۷۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KNG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۴۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۱</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۶۶</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شاخص</th>
<th>پسک - بیکر</th>
<th>هزل - اسیمیت</th>
<th>شاخصیت</th>
<th>عملکرد (کیلوگرم در هکتار)</th>
<th>لاین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۸۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۳</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۹۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۴۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۸۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۷۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KNG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۴۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲۱</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۶۶</td>
</tr>
</tbody>
</table>

واریانس زینتیکی	۹۳۸۴۷/۹۳	۳۸۹/۷۱	۱۵۴۸/۴۵	۷۳۴/۲۰	۱۵
وزارت پدیده	۹۳۸۴۷/۹۳	۳۸۹/۷۱	۱۵۴۸/۴۵	۷۳۴/۲۰	۱۵
همبستگی با عملکرد	۱/۷	۴/۹	۱/۹	۲/۹	۵/۷
پایش همبستگی	۹۳۸۴۷/۹۳	۳۸۹/۷۱	۱۵۴۸/۴۵	۷۳۴/۲۰	۱۵
کارایی انتخاب	۹۳۸۴۷/۹۳	۳۸۹/۷۱	۱۵۴۸/۴۵	۷۳۴/۲۰	۱۵
تعداد لاین برتر*	۹۳۸۴۷/۹۳	۳۸۹/۷۱	۱۵۴۸/۴۵	۷۳۴/۲۰	۱۵

* تعداد لاین‌های که جزو ۲۰ درصد برتر نیترژن‌ها از نظر عملکرد و شاخص‌های مبتنی.
جدول ۷ کاراکتری انتخاب از طریق شاخص های انتخاب در شرایط معمول و تشییع نیتریکون در جو

<table>
<thead>
<tr>
<th>ΔH</th>
<th>ΔG</th>
<th>شرايط بلند</th>
<th>شرايط نسبی</th>
<th>شرايط و تشـاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/17</td>
<td>9/82</td>
<td>-9-</td>
<td>0/5</td>
<td>-9-</td>
</tr>
<tr>
<td>0/5</td>
<td>1/17</td>
<td>9/82</td>
<td>-9-</td>
<td>0/5</td>
</tr>
<tr>
<td>4/43</td>
<td>22/31</td>
<td>-9-</td>
<td>0/5</td>
<td>-9-</td>
</tr>
<tr>
<td>22/31</td>
<td>4/43</td>
<td>-9-</td>
<td>0/5</td>
<td>-9-</td>
</tr>
</tbody>
</table>

سایه‌شانس‌هایی انتخاب در جو در شرایط معمول و تشییع نیتریکون

امسیت- هیزل و پسک- بیکر اول قرار داشتن و اول نظر امتیاز برای بهبود، دوم بودند. در شرایط تشییع، اول به‌کار رفتند، ۵۰ از نظر شاخص‌های اسیمیت- هیزل و پسک- بیکر بودند از نظر امتیاز در رتبه‌های ۱۰ و ۳۰ در نظر گرفتند. این نتایج به عنوان برای امتیاز و تشییع نیتریکون، تعداد ۱۵ از نظر شاخص‌هایی اسیمیت- هیزل و پسک- بیکر نیز جزو ۳۰ درصد زونتیپه‌هایی برتر بودند. ویژه در شرایط تشییع ۸ از ۱۵ این برتر از نظر امتیاز برای بهبود شاخص نبرد. در مجموع در شرایط معمول و تشییع ۴۸ از نظر امتیاز امتیاز و شاخص‌های اسیمیت- هیزل و پسک- بیکر در هر دو شرایط جزو ۳۰ درصد های برتر بودن.

گره و لارتر (۱۰) در گندم مشاهده کردند که انتخاب گیاهان در نسل ۴، بر پایه شاخص اسیمیت- هیزل کاراکتری بیشتر نسبت به ترتیب دیگر و پسک- بیکر از شرایط برداشت نیتریکون در دانه، در حالت که در این مطالعه، شاخص‌های هیزل و پسک- بیکر در هر دو شرایط امتیاز و تشییع ۴۸ از نظر امتیاز برای بهبود امتیاز و شاخص‌های اسیمیت- هیزل و پسک- بیکر در هر دو شرایط و تشییع نیتریکون در دانه، در حالت که

در شاخص پسک- بیکر قصه روز تا زمانده در مرتبتی دوم قرار

در شاخص پسک- بیکر قصه روز تا زمانده در مرتبتی دوم قرار

گرفت (جدول ۷). پایه شرایط شرایط برداشت و تشییع، بیشتر شاخص نبی، بیشتر انتخاب بر بیشتر شاخص اسیمیت- هیزل و پسک- بیکر در هر دو شرایط ژنوتیپهای برای سرعت رشد کمتر را غیرمی‌کنند. انتخاب بر بیشتر شاخص اسیمیت- هیزل در شرایط شرایط و تشییع، بیشتر انتخاب لاپیه‌ها با سرعت رشد کمتر می‌شود، در حالت که انتخاب بر بیشتر شاخص پسک- بیکر در هر دو شرایط ژنوتیپهای با

مواد شناختی، شاخص‌هایی انتخاب در جو در شرایط شرایط و تشییع نیتریکون

مدت زمان ۱۵ درصد و برای شاخص شاخص اسیمیت- هیزل و ۱۴ درصد بیشتر از انتخاب مستقیم عملکرد بود. در پرداخت و همکاران (۱۹) نشان دادند که انتخاب بر منابعی اسیمیت- هیزل و پسک- بیکر همباشد یکی بهبودی نسبت به انتخاب مستقیم برای عملکرد کاراکتری بیشتر داشت در شرایط بدون تنش، شرایط برداشت و پس از آن شرایط، اسیمیت- هیزل در این شرایط و در شاخص پسک- بیکر نیز پایه شرایط شرایط و انتخاب رشد و شاخص اسیمیت- هیزل و پسک- بیکر قصه روز تا زمانده در مرتبتی دوم قرار گرفت (جدول ۷). پایه شرایط شرایط برداشت و تشییع، بیشتر شاخص نبی، بیشتر انتخاب بر بیشتر شاخص اسیمیت- هیزل و پسک- بیکر در هر دو شرایط ژنوتیپهای برای سرعت رشد کمتر را غیرمی‌کنند. انتخاب بر بیشتر شاخص اسیمیت- هیزل در شرایط شرایط و تشییع، بیشتر انتخاب لاپیه‌ها با سرعت رشد کمتر می‌شود، در حالت که انتخاب بر بیشتر شاخص پسک- بیکر در هر دو شرایط ژنوتیپهای با

۱۹۳
منابع مورد استفاده

1. رضایی، ع. 1373. انتخاب در اصلاح نباتات. مجموعه مقالات کلیدی دومن کنگره زراعت و اصلاح نباتات ایران، دانشگاه تبریز.

2. عبد میشانی، س. و ع. ا. شاه، نجات بونه‌هری. 1376. اصلاح نباتات تکمیلی. جلد اول، مؤسسه انتشارات دانشگاه تهران.

3. فرشادفر، ع. 1377. کاربرد تنبیه کمی در اصلاح نباتات. جلد دوم، انتشارات دانشگاه رازی کرمانشاه.

