تأثیر رژیم غذایی و مدت ذخیره‌سازی بر طول عمر و کارایی زنبور پازروتیوید

Encarsia formosa Gahan

پیژن حاتمی و حسن قهاری

چکیده
با توجه به اهمیت و توانایی زیادی زنبور پازروتیوید Encarsia formosa Gahan (Hymenoptera: Aphelinidae) در کنترل مگس، تأثیر رژیم‌های غذایی گوتاگون، و توزیع مصرف شکر توسط مگس‌های نام‌زنبوری در طول عمر این بیماری‌ها، بررسی گردید. ابتلا شامل میانگین طول عمر این پازروتیوید میان بیماری‌های محلول 15/0%، محلول 15/2% و محلول 15/4% در میانگین طول عمر این پازروتیوید میان بیماری‌های محلول 15/0% و محلول 15/2% از یک سو، با بیماری‌های آب مصرف و شاهد (بدون آب و بدون خاغی) از سوی دیگر، در سطح 1% معنادار بود. تغییر در غلظت محلول آب و عمل به میزان 5/0/0% تأثیری در طول عمر پازروتیوید نداشت. نتایج اختلاف معنادار بین میانگین بیماری‌های محلول و ساکرز 15/0% اختلال در خطر تهیه نشده است.

ذخیره‌سازی پوره‌های پازروتیوید Encarsia formosa در دمای 8/0 درجه سانتی‌گراد به درصد خروج و کارایی زنبوری حاصل اثر تیمار ثابت نشد. تیمار بی‌پوره شکر درون پوره‌های سی جهارم مگس سفید شکر در دمای 15/0 درجه سانتی‌گراد به طور محدود و در دمای 15/4 درجه سانتی‌گراد به 15/0 درجه سانتی‌گراد تا زمان خروج حشرات کامل پازروتیوید نگهداری می‌شد. پوره‌های میزان توسط حشرات کامل پازروتیوید حاصل از تأمین بیماری پازروتیوید شدن. میانگین شمار پوره‌های پازروتیوید در دمای‌های 5 و 15 روز و شاهد در سطح 1% اختلاف معنادار نشان نداد.

واژه‌های کلیدی: پازروتیوید، رژیم غذایی، ذخیره‌سازی، کارایی

مقدمه
جهانی دانشی و کاربرد روزانه دارد، به طوری که افزایش استفاده از آن، از سطحی معادل 2400 هکتار در سال 1885 به پیش از 700 هکتار در سال 1990، یافته‌ها توانایی چشمگیر آن 1. به ترتیب استادیار و دانشجوی سابق کارشناسی ارشد حشرشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

Encarsia formosa Gahan (Hymenoptera: Aphelinidae) زنبور پازروتیوید مگس‌های سفید (Aleyrodidae) است. این پازروتیوید انتشار

شماره سوم / پاییز 1380

1.201
کیفتی و کارایی آنها در پایان دوره ذخایر سازی است (11). نیروی آهگاهی کافی از چهارهای غذاهای مناسب در ایران و نیز گونه‌های خود به اندازه E. formosa موجود در آسیا و اروپا. ماهیت فیزیولوژی در موارد پاژرزتیپید فقیه، با دست‌یابی به یک روش غذاهای مطلوب، توان عمر و بایدهای پاژرزتیپسیمی آن در کنترل مگس‌های غذاهای سرکه، به‌ویژه سفید در مدت زمان طولانی تر ذخیره‌نامه.

مواد و روش‌ها
تأثیر رژیم‌های غذایی گوناگون بر طول عمر زنبور پاژرزتیپید E. formosa

سی و شش زنبور ماده تا حد خارج شده کارکرده مر حشرات گیاهی در یک روز متوسطی پلاستیکی درب در حفره که بر تطور و افزایش 27 سانتی‌متر در کنار توانایی در دما 45 درجه سانتی‌گراد، رطوبت نسبی 65 درصد، و 16 ساعت رطوبتی در شرایط روز قرار داده شدند. به منظور پیکسل‌های نمودار شرایط داخل ظروف با حفظ اثرات اکنون، سری‌های با حفظ سه منطقه مربوط به زمینه‌های متنوع، به‌ویژه در هنگام کمبود در بیماری، و نیز جلب آنها به نقاطه کمک می‌کند. افزایش تعداد بار افزایش، طول عمر و باروری این افزایش جمعیت آنها در مقاله آتایگر دارد (17).

نخستین کوشش برای کاربرد غذاهای مصنوعی به سال 1981 مربوط به تروچ گل‌کننده، که این مکانیزم کلیدی E. formosa L. پرورش داده شد (9). در میان غذاهای مطلوب موجب افزایش طول عمر و باروری این پاژرزتیپید شود (16).

در تام تیمارها، غیر از تیمار طلایی و شاهد، ماده غذاهای آب به وسیله یک قطعه استخوان سیار کرک در خاک از زنبور می‌گردد. مواد غذایی مصرف شده (Lantana) در غذاهای درختی camara) به یک بار تغذیه 65 سانتی‌متر، از ذخایر حشره بالای 2 مگس سفید گل‌خانه در طرف پنجم قرار داده شد. برای افزایش دوام پرگاه، شکافته در عرض پنجم محیط می‌باشد. نکته حاکی از تأثیر ذخیره سازی در کنترل مگس‌های سفید، به‌ویژه گونه از E. formosa .

1. Synovegenic
و زنبور، محل شکاف نیز با پیمه کامل‌سازی مسدود می‌گردد. این آزمایش در چارچوب یک طرح کامل‌سازی تصادفی با شش تیمار، و در شش تکرار انداخته شد. تیمارها شامل محصول ۱۰ درزد آب و عمل، (شیرینه عمل)، محصول ۲۵ رصد آب، و عمل، محصول ۵۰ درزد ساکارز، عملک تولید شده توسط مگس سفید گلخانه، آب مقطع و شاهد (بدون آب و ماده غذایی) بودند.

تعیین دصرد خروج حشرات کامل زنبور پارازیتیود

سپس از ذخیره سازی E. formosa

سی ظرف نتر (همسان آزمایش ۱) هر یک محیط در به گیاه شامبدی درختی دارای پوسته‌های پارازیتیود شده، مگس سفید گلخانه انتخاب شد. در هر ظرف نتر ۱۰ پره پارازیتیود سن چهار مگس سفید گلخانه، که حاوی شیره‌های ۱-۶ روزه E. formosa، بودند، قرار داده شد. بسته و چهار عدد از ظروف، هر یک در اکواباتور (همسان آزمایش ۱) با دمای ۱۸ درجه سانتی‌گراد و شش ظرف نتر دیگر در شرایط معمولی اتاق و در دنیای مختلف ۴۴ درجه سانتی‌گراد در شبیه‌رژیم روز و قرار گرفتند.

آزمایش در چارچوب یک طرح کامل‌سازی تصادفی با پنج تیمار، و در چهار تکرار هر دو تکرار در یک زمان و به فاصله ۲۷ ساعت (اندازه‌گیری شده تیمارها شامل زنبورهای ماده باکره E. formosa در دمای ۸۵ درجه سانتی‌گراد گذشته بودند، و یک تیمار نیز به عنوان شاهد (زنیبیه‌های معمولی که شیره‌های آنها در دمای تطبیقی اطاق؛ ۴۴ درجه سانتی‌گراد و روز دوم قرار گرفتند.) بود. آزمایش به گونه‌ای تنظیم گردید که روز پانزدهم پس از نجوم گذاری مگس‌های سی سی به مغزه پوره ایگر (۴) پاترزیتیدها از شیره‌های ذخیره شده پوره آماده باشند. با پوره پوره سس چهار مگس سفید گلخانه، ۲۰ پره از هر کدام منظور و به قسمت ۲۰ تومان مغزه‌پوره شده و به گونه‌ای باطش در داخل هر E. formosa نشست و پوره ماده باکره قرار دادند.

فقط رها و ۴۸ ساعت بعد خارج شدند. زنبورهای پیش از دمایسی در نقطه، به یک طرف پرده ۱۵ ملی‌متر را و عمل غذی قلمی شدند، و سپس به منظور استاندارد کردن آزمایش، پارازیتیودهای جوان به دو عضله نیم

۲۰۳
تالیف و بحث
نتیجه آزمایش مربوط به رژیم‌های غذایی نشان داد که نوع چربی باعث افزایش طول عمر زنبور، معمولاً به طور کلی افزایش طول عمر و ساختاری در حیاتی می‌گذارد. این نتایج با تحقیقات قبلی در این زمینه مطابقت دارد.

1. Host feeding
2. Oogenesis

1. دانشگاه ملی تهران
2. راهنمازی بارزین‌پروری

جدول 1. تأثیر واریانس تأثیر رژیم‌های غذایی گوناگون بر طول عمر زنبور پارازیتویده...

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربوطات (MS)</th>
<th>درجه آزادی (df)</th>
<th>مجموع مربوطات (SS)</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) تیمار</td>
<td>1635/7726</td>
<td>5</td>
<td>1635/7726</td>
<td></td>
</tr>
<tr>
<td>(E) اشتیاق</td>
<td>37/15614</td>
<td>30</td>
<td>15614</td>
<td></td>
</tr>
<tr>
<td>(G) کل</td>
<td>1672/9248</td>
<td>35</td>
<td>9248</td>
<td></td>
</tr>
</tbody>
</table>

CV=√\(\frac{v}{v+nu}\)

نگاره 1. تأثیر رژیم‌های غذایی گوناگون بر طول عمر زنبور پارازیتویده...

Encarsia formosa نتوانسته بماند، چون تأثیر عوامل محیطی در ساخت طول عمر زنبور پارازیتویده در طول عمر زنبور بالاتر از رژیم‌های غذایی انجام گرفته است. در واقع بررسی حداکثر طول عمر زنبور E. formosa در میان 44 درجه سانتی‌گراد حدود 24/6 زور به دست آمد. در آزمایش‌های پژوهشگران درآمده، از جمله هدف و همکاران (4)، طول عمر این پارازیتویده در دمای 20 درجه سانتی‌گراد حداکثر 57 روز اندرازه‌گیری گردید. همچنین، اینکاره

**موفقیت کمتری برخوردار است. مگر این که یک میانگین طول عمر زنبور برای تصور وجود دارد (T) تیمار، عوامل می‌تواند تأثیر یابد. در این رژیم‌های غذایی به ترتیب 35 و 79 و 110 دفعه شده (E) اشتیاق و (G) کل به ترتیب 35 و 79 و 110 دفعه شده که به طور طبیعی، اندازه‌گیری دام از حسب 16 درجه سانتی‌گراد موجب کاهش طول عمر زنبور E. formosa می‌گردد. با این حال، مناسب به طور مصرفی هیچ در اختیار پارازیتویدها قرار داده شود. ثبات الکترونیک پیشرفته‌ای خارج شده از شفافی در اثر عدم دسترسی به غذا، در دسته‌بندی‌ها به وجود نیاز دارد. این امر ممکن است، که با روش استاتیستیک می‌باشد.

1. Inoculative release

205
علوم و فنون کشاورزی و منابع طبیعتی/جلد پنجم/شماره سوم/پاییز 1380

نابراین، E. formosa

مصفح 1 اختراع معنی‌داری با شاهد نداشتند. از سوی دیگر، بر پایه نتایج به دست آمده این بیانیه، می‌توان این پارازیتونید را در مشخص شفای‌گی به دست 25 روز در مدت 851 درجه سانتی‌گراد ذخیره نمود، به گونه‌ای که با انتقال آن به دمای 27 درجه سانتی‌گراد 628 خانه با درجه در مدت 20 روز در دمای 13 درجه سانتی‌گراد E. formosa ذخیره می‌نمود، در انتقال به دمای 22 درجه سانتی‌گراد 86 آن‌ها به حشره کامل تبدیل شدند. هم چنین، با برگزاری پرایل و همکاران (15) 50-60 درصد از شفای‌گی E. formosa که به دمای 40 در دمای 13 درجه سانتی‌گراد ذخیره می‌نمود، دلیل تفاوت‌های موجود میان نتایج این بیانیه با گزارش پژوهشگران یاد شده بود.

در پژوهش حاضر از شفای‌گی 1-2 روزه زنبور، که در پوشه سن چهارم می‌زنیان قرار داشتند، استفاده شد. ذخیره سازی لاورهای سینین اول: دود و سوم پارازیتونید سپر و سیر از دیده به دست نمود. هم چنین با ذخیره سازی پوشه‌های پارازیتونید شده سینین اول، سوم، مگس می‌زنیان می‌زنیان گلخانه‌های که توسط مراحل گوناگون نتیجه‌گیری نزدیک زنبور پرفروش، شمار بسیار تاکید پارازیتونید نظر شد. افزون بر این، ذخیره سازی شفای‌گی E. formosa مبنای دسترس پارازیتونید موجب خروج

شکلات کامل زنبور در طول دوره ذخیره سنای هر دوره E. formosa در شکلات سازی 1-15 روز ذخیره شده، در

نتایج این بیانیه با گزارش پژوهشگران یاد شده بود.
تأثير رژیم غذایی و مدت ذخیره‌سازی بر طول عمر کارایی زنبور پارازیتوید

جدول ۲. تجزیه واریانس درصد خروج حشرات کامل E. formosa از پوشه‌های پارازیتوید شده مگس سفید گلخانه

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربعات (MS)</th>
<th>درجه آزادی (df)</th>
<th>مجموع مربعات (SS)</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۲۱**</td>
<td>۹/۴۴۶</td>
<td>۴</td>
<td>۱۲۵/۸۰</td>
<td>تیمار</td>
</tr>
<tr>
<td>۳/۳۶</td>
<td>۲۵</td>
<td>۱۱/۱۶۶</td>
<td>اشباع</td>
<td></td>
</tr>
<tr>
<td>۲۹</td>
<td>۱۳۶/۹۶۶</td>
<td>(G) کل</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**: در سطح آماری ۵% درصد میان تیمارها اختلاف معنی‌دار وجود دارد. (ضریب تغییرات ۸/۲۳۹)

جدول ۳. تجزیه واریانس میانگین شمار پوشه‌های پارازیتوید شده توسط زنبور E. formosa

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربعات (MS)</th>
<th>درجه آزادی (df)</th>
<th>مجموع مربعات (SS)</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۹/۲۱**</td>
<td>۲۵۶/۳۷۵</td>
<td>۴</td>
<td>۱۰۲۵/۵۰</td>
<td>تیمار</td>
</tr>
<tr>
<td>۲۳/۱۷</td>
<td>۱۰/۲</td>
<td>۹۱/۷۵</td>
<td>نکردن</td>
<td></td>
</tr>
<tr>
<td>۱۹</td>
<td>۸۴/۵</td>
<td>اشباع</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۹</td>
<td>۱۱۱۸/۷</td>
<td>(G) کل</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**: در سطح آماری ۱% میان نکردن اختلاف معنی‌دار وجود دارد. (ضریب تغییرات ۱۴۷/۷۸)

نگاره ۲. تاثیر طول مدت ذخیره‌سازی بر درصد خروج حشرات کامل زنبور پارازیتوید E. formosa

هم‌پس‌گی متغیف میان طول دوره ذخیره‌سازی و کارایی پارازیتویدی E. formosa در دمای سطحی از آستانه حساسیتی حداکثر برای تخم‌های رایج و رشد مرحله نایل زنبور E. formosa می‌باشد، و نیز پاگوارش پایل و هم‌کاران (10)، مهمی بر
طول مدت ذخیره سازی (روز)

Encarsia formosa

培养学生، می‌تواند میزان ذخیره‌سازی از ۱۵ روز کاهش یابد و به مدت ۱۵ روز کاهش یابد.

به رغم گزارش‌های بی‌سایر در مورد دامنه‌های حرارتی مختلف برای ذخیره سازی مراحل گوناگون این پارازیت‌پیمین، نتایج این آزمایش باگذارش با پایل و همکاران (۱۰) و اسکوپ و همکاران (۱۲) نشان داد که ذخیره سازی در دماهای کمتر از آستانه حرارتی حداکثر بر فیبرولوز ادامه‌ای تولید مثلی به ویژه دمای زیر ۲۱ درجه سانتی‌گراد می‌باشد که این وضعیت میزان ذخیره سازی فرا می‌تواند در دمای زیر ۲۱ درجه سانتی‌گراد فراگیر گردد.

۱۲/۷ درجه سانتی‌گراد می‌باشد (۱۵). به همراه دمای حرارتی باید ذخیره سازی در دمای زیر ۲۱ درجه سانتی‌گراد انجام شود.

۱. Ovarioles
E. formosa Gahan (Hym.: E. formosa) and Encarsia inaron Walker (Hym.: Encarsia inaron) are natural enemies of Trialeurodes vaporariorum (Hym.: Aphelinidae) in the garden. The biological control of glasshouse whitefly, Bemisia tabaci, on poinsettia: Bionomics in relation to temperature. Ent. Exp. Appl. 69: 251-261.

