اثر سطوح مختلف اوره بر ترکیب شیمیایی و ارزش غذایی سیلزاژ دزت در تغذیه گوسفند

افرهام روشنی حقیقی فرد و محمد جواد ضمیری

چکیده
اثر انژونان سطوح مختلف اوره (صفر، 1/5 و 7/5 درصد ماده تر) به گیاه کامل دزت، بر ترکیب شیمیایی و قابلیت هضم در 16 رأس گوسفند نشان داده‌است. در چارچوب یک طرح کامل تصادفی مورد ارزیابی قرار گرفت. تجربه پذیری و ارزش غذایی آن نیز بررسی گردید. با انژونان اوره، pH میزان کل ازت و غلت ازت آماریکی سیلزاژ افزایش یافت (P<0.05). ضریب گوارش پذیری ظاهری کل ازت برای سیلزاژ حاوی اوره بیشتر بود (P<0.05). تعداد ازت در گوسفندان تنگه شده با سیلزاژ حاوی 7/5 درصد از ازت انژونان افزایش یافت (P<0.05). همچنین، تعداد ازت انژونان صفر به حداقل رسید. ازت اوره‌های خون پس از تغذیه با سیلزاژ حاوی اوره بالاتر بود (P<0.05). تعداد ازت پذیری بالقوه، ماده خشک و آلبومین با افزایش انژونان و روزهای با انژونان افزایش یافت، و با سیلزاژ 7/5 درصد ازت بالاتر بود.

واژه‌های کلیدی: سیلزاژ، انژونان، تغذیه پذیری، گوسفند، ویژگی‌های لاغر

مقدمه

انجمن سیلزاژ از عوال علوفه‌ای مطلوب به مقدار زیاد در تغذیه انژونان کاربرد دارد (35). درت به دلیل دارا بودن مقدار پپسیراپ کوبه‌دان، قابل تخمین و توان زیاد عملکرد در هر منیتر، یکی از بهترین و مناسب‌ترین گیاهان برای سیلزاژ است. سیلزاژ، در سیلزاژ متوسط، در تبیه از کارایی خوراک و میزان اقتصادی و غنی از

1. به ترتیب: استادان و استاد علوم دامی، دانشکده کشاورزی، دانشگاه شیراز

167
کاسته می‌شود (۳۲). برای جبران کمبود پروتئین خام می‌توانید در تری‌پکتی یا از این دی‌آمینات مناسب در تهیه نشانه‌گیری کنندگان به حساب می‌آید (۴)، به دستگاهی که استفاده از آنها به ویژه همراه با سیالاز درخت، در جنبه‌های گزینه شیری از دیپراکس معمل بوده است (۱۳) و (۱۹). از میان ترکیبات از دی‌آمینات غیر پروتئینی، افزودن اوره به سیالاز در هنگام سیلو ردن به طور گسترده‌ای مورد توجه و استفاده قرار گرفته است (۲۵ و ۲۶). غنی‌سالی pH علوفه کامل درخت به میزان مناسب اوره، سبب افت‌افزایش pH و مانع رشد کیسه‌ها و قارچ‌ها در سیلو می‌شود (۱۰، ۲۷ و ۲۸). همچنین با ایجاد محیط ثابت در شکم، گوارش پدیده می‌گردد. افزایش این واکنش در تربیت‌های گسترش مصرف سیالاز افزایش می‌یابد (۴۱). وقتی اوره به میزان ۸۵ درصد براساس وزن تر به سیالاز اضافه می‌شود، درصد کل درخت اوره جبه، وزن بدن و درصد پروتئین شیر کاهش پیدا می‌کند (۲۹). رابطه‌ای خصی میان سطح پروتئین خام و میزان اوره وجود دارد (۴۲).
تکنیک توانتنده‌ی نیازهای غذایی غورسدان از تأیید کننده‌ی
سریال‌های یک نوع خشک با نسبت ۰/۵۰ بر اساس میزان روز
خشک مخلوط و در چهارگروه که را به غوسدان تغذیه
شد. میزان ماده خشک در راحتی معادل چهار درصد وزن بدن
سنگین ترین گوسدان در هر پسر بود.

چهارمیزان یک مو دو بخش تفصیلی در ساخته‌های ۸ و
۱۶ در انتخاب غوسدان قرار گرفت. برای جمع‌آوری دردستور و
ادار غوسدان به کمیته‌های جمع آوری مقدار سانسور و در
قسمت‌های انفرادی نگه‌داری شدند.

طول دوره آزمایش ۲۰ روز بود که در روز پایان عادت کردند
به ققره ۱۰ روز پایان عادت کردند به چهارمیزان غذایی، مفت
زوی برای جمع‌آوری دردستور و روز آخر برای خونگیری
و نمونه‌گیری از مایع شکم‌بر در نظر گرفته شد. با استفاده از
نمونه‌های ماده آلی، کل آنتی‌بیوتیک و دیارال سالونی
بهنیا می‌سوزاند برای هر نمونه تعمین و ضرایب گوارش
پذیری ظاهری محاسبه‌گردد.

یک روز پس از آخرین روز آزمایش‌های گواش پذیری در
ساعت‌های صفر (ییش از تغذیه)، ۳ و ۶ نمونه از گوسدان
گردیدن خونگیری و حلزون‌نگارش از گواش پذیری
مونوکسیما، با استفاده از کیت ساخت شرکت معرف سازان
انجام شد (۲۵ و ۲۴). در همان روز نیز به تغذیه، ۱/۵ و
۲ و ۵ ساعت پس از تغذیه به سه شکمگیر (به طول
۱۵ میلی‌متر) از مایع شکم‌بر موفر غوسدان نمونه‌گیری یوروک
دو نمونه تعمین گردید. هر نمونه صاف
شد و با جعجم‌های پاییز از اسیدکلرید ۱/۵ ترمول محلول
و حلزون‌نگارش آنتی‌بیوتیک آنتی‌بیوتیک گردید (۲۱).

تجمیع پذیری ماده خشک و ماده آلی سیلای‌ها در سه راس
فورچ نسل سالم، مجهز به کانال‌های شکم‌بر تعمین شد.
گوسدان در مدت آزمایش روشن‌لو مخلوط از یک نوع خشکک
و سیلای زنده در باده اوره (۰/۵۰) در ساعت‌های ۸ و
۱۶ تغذیه شدند. پنج نمونه خشک شده از هر سیلای با آسیاب

داشته‌ای از جمع‌آوری تجربی پذیری به روش
با GLM استفاده از برنامه آماری SAS آنتلیز شدند (۲۴) و آزمون ناسک
برای مقایسه مقایسه به کار رفت. برای تجزیه و تحلیل
داده‌های تجربی پذیری، از معادله نمایی (۲۵)

\[p = a + b(t) \]
عبارت از ازت باشد. (27).

ضریب گراف پذیری طاری ماده خشک، ماده آلی دیوئره سرلول 8 بند همی سلولز و دیوئره سلولی، بين تیمارها نتوان دان‌داد. (17/6) بررسی‌های پیشین نتایج متافاز در مورد افزودن اوره بر ضریب گراف پذیری ماده

خشک سیلز (من به دست آمده، 18/4، 23 و 33).

ضریب گراف پذیری طاری کل از با سیلاز بدون اوره کمتر از پچه بود (6/5 < M). که ممکن است به علت پایین بودن میزان کل از در این تیمار باشد و با برخی از گزارش‌ها (20 و 30) هم‌خوانی دارد. ولی، با تناوب پژوهشی و همکاران (18) مطالعات ندارد. تعادل در این جستجوی تنگی شده به سیلاز 1870 درصد اوره بیشتر از سیلاز 650 درصد اوره بیشتر از سیلاز (P < 0.05). این اختلاف ممکن است خواسته به افزایش میزان دوره از راه دادر و مصرف پرورشیت بی‌درمانی با آموزه بی‌درمانی (این اثر با توجه به تجزیه اوره به آموزه سطحی به فلز معدنی از آزمایش شکم و استفاده بهتر از میکروپلاستیک، (با توجه به افزودن 75/5) اوره بیشتر باشد. نتایج آزمایش پلاک و سیلز (23) نشان دهنده است.

مطالعه انجام شد.

عوارد تازه کارپورتری

برنامه کامپیوتری

تایید شده مداد در نمونه، a مقدار ماده محلول در زمان صفر، b مقدار افزودن دیتر تخمین c ضریب ثابت سرعت هضم و c عدد نتیجه (18/4) است.

در آزمایش پروپارسندی، نیاز ملایم درمان و اثرات نتایج استفاده‌گراید. برای تجزیه و بررسی گاه پروپارسندی، در مدل آماری GLM و تجزیه های

 backstory تیمار و تیمار گانچی، همچنین تازگی و تیمار گانچی، و رونک کستار به عنوان کوواریان در نظر گرفته شد.

نتایج و بحث

در هنگام سیلور کرون، اختلاف معنی‌داری از نظر pH بین تیمارها دیده شد (P < 0.05). که با افزایش سطح اوره افزایش یافته (جدول 1). این اثر با توجه به تجزیه اوره به آموزه سطحی به

ظرفیت می‌رسد و گراف پذیری می‌سوزد (22) و 26 و 37 را تایید می‌کند.

گراف در pH سیلز روز پس از سیلور کرون (جدول 2) برای تیمار 1 به طور معنی‌داری از تیمارها 2 و 3 پایین‌تر بود (P < 0.05) ولی تفاوت معنی‌داری میان تیمارها 2 و 3 مشاهده نشد.

شصت روز پس از سیلور کرون، میزان کل از تفاوت

معنی‌داری بین تیمار 1 و تیمارها 2 و 3 شناسان داد (17، 23 و 33) ولی تفاوت معنی‌داری نبود.

غلافت از آزمایش گیاه تازه بین تیمارها متفاوت بود، و میزان آن برای سطح اوره افزایش یافته ولی تفاوت معنی‌داری میان تیمارها 2 و 3 وجود نداشت. میزان از آزمایش 10 روز پس از سیلور کرون در تیمارها 2 و 3 به طور معنی‌داری بیشتر بود (23).

اغفارشی میزان دیوئره سلولی بدون همی سلولز سیلز (6)

روز پس از سیلور کرون نسبت به هنگام سیلور کرون، ممکن است

به علت افزایش مقدار سلولز در خلال فرآیند سیلور کرون بر اثر واکنش‌ها شیمیایی (2) با تجزیه مداد دیگر، از جمله مداد
جدول 1. تأثیر سیلیز و pH بر تارکیب شیمیایی و ارزش غذایی سیلیز در رنگ سفیدکن

<table>
<thead>
<tr>
<th>pH</th>
<th>آمیناتک</th>
<th>همی سلولی</th>
<th>آوره</th>
<th>شکم</th>
<th>تیمار</th>
<th>درصد ماده</th>
<th>دیواره سلولی بدون دیواره</th>
</tr>
</thead>
<tbody>
<tr>
<td>554/98</td>
<td>22/11</td>
<td>9/55</td>
<td>5/57</td>
<td>2</td>
<td>55/25</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>582/24</td>
<td>31/14</td>
<td>9/42</td>
<td>6/82</td>
<td>3</td>
<td>24/68</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>593/32</td>
<td>38/82</td>
<td>9/53</td>
<td>7/85</td>
<td>2</td>
<td>49/22</td>
<td>100</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 2. تأثیر سیلیز و pH بر تارکیب شیمیایی و ارزش غذایی سیلیز در رنگ سفیدکن

<table>
<thead>
<tr>
<th>pH</th>
<th>آمیناتک</th>
<th>همی سلولی</th>
<th>آوره</th>
<th>شکم</th>
<th>تیمار</th>
<th>درصد ماده</th>
<th>دیواره سلولی بدون دیواره</th>
</tr>
</thead>
<tbody>
<tr>
<td>372/33</td>
<td>38/34</td>
<td>9/22</td>
<td>5/82</td>
<td>2</td>
<td>55/25</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>283/23</td>
<td>38/34</td>
<td>9/22</td>
<td>5/82</td>
<td>2</td>
<td>55/25</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>393/24</td>
<td>38/34</td>
<td>9/22</td>
<td>5/82</td>
<td>2</td>
<td>55/25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>411/22</td>
<td>38/34</td>
<td>9/22</td>
<td>5/82</td>
<td>2</td>
<td>55/25</td>
<td>100</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 3. پیشنهادات گزارش پذیری و تعادل از سیلیز مایع شکم‌های مختلف در گوسفنده

<table>
<thead>
<tr>
<th>مقدار ماده (گرم در هر روی)</th>
<th>ماده شکم</th>
<th>دیواره سلولی بدون دیواره</th>
<th>(درصد)</th>
<th>(درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیشنهادات خشک</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
<td>50/95</td>
</tr>
<tr>
<td>پیشنهادات خشک + سیلیز</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
<td>50/95</td>
</tr>
<tr>
<td>پیشنهادات شکم</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
<td>50/95</td>
</tr>
<tr>
<td>پیشنهادات شکم + سیلیز</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
<td>50/95</td>
</tr>
</tbody>
</table>

جدول 4. میانگین pH مایع شکم‌های گوسفنده تغذیه شده با سیلیز یا بدون سیلیز در زمان‌های مختلف پس از تغذیه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>صحت پس از تغذیه</th>
<th>صحت پس از تغذیه</th>
<th>صحت پس از تغذیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیشنهادات خشک</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
</tr>
<tr>
<td>پیشنهادات خشک + سیلیز</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
</tr>
<tr>
<td>پیشنهادات شکم</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
</tr>
<tr>
<td>پیشنهادات شکم + سیلیز</td>
<td>76/27</td>
<td>76/27</td>
<td>50/95</td>
</tr>
</tbody>
</table>

در جداول 1، 2، 3 و 4 در هر ستون میانگین هایی که حروف همانند دارند با یکدیگر اختلاف معنی‌داری ندارند (P>0.05).
جدول 5. میانگین غلظت ازت امروزیکا مایع شکمی خون اسفنجان تغذیه شده با سیلزیا یا بدون سیلزیا در زمانهای مختلف پس از تغذیه (میلی‌گرم در دسی‌لیتر)

<table>
<thead>
<tr>
<th>پس از تغذیه</th>
<th>1/5 ساعت پس از تغذیه</th>
<th>5/10 ساعت پس از تغذیه</th>
<th>9/14 ساعت پس از تغذیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>13/7/10 bc</td>
<td>10/6/7 ab</td>
<td>8/5 ab</td>
</tr>
<tr>
<td>یونجه خشک</td>
<td>10/9/7 bc</td>
<td>11/4/6 ab</td>
<td>8/5 ab</td>
</tr>
<tr>
<td>یونجه خشک + سیلزیا بدون اوره</td>
<td>10/9/7 bc</td>
<td>11/4/6 ab</td>
<td>8/5 ab</td>
</tr>
<tr>
<td>یونجه خشک + سیلزیا با 5 درصد اوره</td>
<td>10/9/7 bc</td>
<td>11/4/6 ab</td>
<td>8/5 ab</td>
</tr>
<tr>
<td>یونجه خشک + سیلزیا با 75 درصد اوره</td>
<td>10/9/7 bc</td>
<td>11/4/6 ab</td>
<td>8/5 ab</td>
</tr>
</tbody>
</table>

1. در هر سناریو، میانگین‌هایی که حروف همانند دارند، با یکدیگر اختلاف محسوسی دارند (P<0.05).

ارور و یا میزان آمومئیا محول بیشتر با این سیلزیا باشد (11). اختلاف در درجه تخمیر خالق (تنول اسیدهای چرب فیبر) بیشتر نمی‌تواند از طریق ترکیب شدن اسیدهای تولیدی با آمومئیا در کانال ملکی بر رشد و تولید آمومئیا اثرات منفی بر رشد و تولید آمومئیا آوره‌گری که توسط این سیلزیا بخور و تغذیه شده باشد، به گونه‌ای که اسیدهای تخمیری بیشتر ذخیره در تیمار 3 تأثیر آمومئیا در بیشتر سلول‌ها و کاهش داده‌شده است که میزان اثر اوره خون پس از تغذیه، و بیشترین آن در 4-6 ساعت پس از تغذیه بیشتر بود (8). در آزمایش دیگری، غلظت ازت امروزیکا غلظت آمومئیا، بیشتری بود (12). همچنین، نشان داده شده که غلظت این سیلزیا به 20 میلی‌گرم در دسی‌لیتر اثرات اوره خون، سبب کاهش میزان اسیدهای غلظت اوره خون است (13). پیشنهاد و همکاران‌ها (14) گزاره کردند که غلظت یک مقدار زیاد پروتئین تجهیز‌پذیر در سیلزیا، که میزان زیادی امروزیکا تولید می‌کند، غلظت ازت اوره خون از 18 میلی‌گرم در دسی‌لیتر بیشتر شده و بیشتر در نمونه اصلی و زنده ماندن رونای آسیب وارد گردید است.

ضبط و اندازه‌گیری میزان ترکیبات تجهیز‌پذیر ماده خشک و ماده آلی تیمارها در شکمی خون اسفنجان، در جدول‌های 1 و 2 تشکیل شده است. ضریب باید تجهیز‌پذیر ماده خشک ماده آلی تیمارها با 1/5 درصد اوره کاهش و 1/5 درصد اوره افزایش یافته است. که ممکن است این حالت برای سیلزیا با 75 درصد اوره دیده می‌شود (مربوط ترکیبات تجهیز‌پذیر ماده آلی تیمارها). در هر حال، با استفاده از بهینه‌گرایی زیاد و میزان 5 کمتر، زمان مانندگاری آن در شکمی خشک

172
جدول ۶. میانگین غلظت اورهای خون گوسفندان تعقیب شده با سیلانز یا بدون سیلانز در تیمار

<table>
<thead>
<tr>
<th>تیمار</th>
<th>پیش از تعقیب</th>
<th>پس از تعقیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳/۹۱</td>
<td>۲۸/۸۸</td>
<td>۲۸/۳۱</td>
</tr>
<tr>
<td>۱۴/۲۸</td>
<td>۱۶/۸۸</td>
<td>۱۳/۹۷</td>
</tr>
<tr>
<td>۱۹/۵۹</td>
<td>۳۰/۸۱</td>
<td>۱۶/۳۲</td>
</tr>
<tr>
<td>۲۲/۱۶</td>
<td>۳۲/۸۸</td>
<td>۱۶/۵۹</td>
</tr>
</tbody>
</table>

۱. در هر ستون میانگین های که حروف همانند دارند با یکدیگر اختلاف معنی‌داری ندارند (۵/۵).

جدول ۷. ضرایب و انحراف معیار تاپیدی شدن ماده خشک سیلانز‌های ذرت در کیسه‌های داکرونی در شکم‌های گوسفند

<table>
<thead>
<tr>
<th>ضرایب و انحراف معیار</th>
<th>سیلانز با ۷۵/۵ درصد اوره</th>
<th>سیلانز بدون اوره</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>۰/۰۲۰</td>
<td>۰/۰۱۹</td>
</tr>
<tr>
<td>b</td>
<td>۰/۰۲۷</td>
<td>۰/۰۲۴</td>
</tr>
<tr>
<td>c</td>
<td>۰/۰۲۹</td>
<td>۰/۰۳۲</td>
</tr>
<tr>
<td>a+b</td>
<td>۰/۰۵۲</td>
<td>۰/۰۵۴</td>
</tr>
</tbody>
</table>

\[p = a + b(1 - e^{-b}) \]

جدول ۸. ضرایب و انحراف معیار تاپیدی شدن ماده آلی سیلانز‌های ذرت در کیسه‌های داکرونی در شکم‌های گوسفند

<table>
<thead>
<tr>
<th>ضرایب و انحراف معیار</th>
<th>سیلانز با ۷۵/۵ درصد اوره</th>
<th>سیلانز بدون اوره</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>۰/۰۲۲</td>
<td>۰/۰۲۱</td>
</tr>
<tr>
<td>b</td>
<td>۰/۰۲۷</td>
<td>۰/۰۲۳</td>
</tr>
<tr>
<td>c</td>
<td>۰/۰۳۹</td>
<td>۰/۰۳۸</td>
</tr>
<tr>
<td>a+b</td>
<td>۰/۰۵۴</td>
<td>۰/۰۶۱</td>
</tr>
</tbody>
</table>

\[p = a + b(1 - e^{-b}) \]
جدول ۹ ویژگی‌های دوره پروراوه‌ی پره‌ای تغذیه‌ی شده با سیلال‌های نرته‌ی دارای اثر

<table>
<thead>
<tr>
<th>تیمار ۱</th>
<th>تیمار ۲</th>
<th>تیمار ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمار بره</td>
<td>۱۶</td>
<td>۱۶</td>
</tr>
<tr>
<td>وزن لاشه‌ی گرم (کیلوگرم)</td>
<td>۳۱/۷۸</td>
<td>۳۳/۱۲</td>
</tr>
<tr>
<td>وزن نهایی (کیلوگرم)</td>
<td>۴۶/۲۱</td>
<td>۴۷/۳۲</td>
</tr>
<tr>
<td>میانگین اندازه‌ی وزن روزانه (گرم)</td>
<td>۱۸۲/۶۲</td>
<td>۱۸۴/۶۲</td>
</tr>
<tr>
<td>بازده غذايي</td>
<td>۶/۷۹</td>
<td>۶/۷۹</td>
</tr>
<tr>
<td>ماده خشک مصرفی روزانه (کیلوگرم)</td>
<td>۱/۲۴</td>
<td>۱/۲۵</td>
</tr>
</tbody>
</table>

جدول ۱۰ ویژگی‌های لاشه پره‌ای پرواراوه‌ی تغذیه‌ی شده با سیلال‌های نرته‌ی دارای اثر

<table>
<thead>
<tr>
<th>تیمار ۱</th>
<th>تیمار ۲</th>
<th>تیمار ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمار بره</td>
<td>۱۶</td>
<td>۱۶</td>
</tr>
<tr>
<td>وزن لاشه گرم (کیلوگرم)</td>
<td>۲۷/۳۸</td>
<td>۲۷/۳۸</td>
</tr>
<tr>
<td>وزن لاشه سرده (کیلوگرم)</td>
<td>۲۷/۳۸</td>
<td>۲۷/۳۸</td>
</tr>
<tr>
<td>وزن ران (کیلوگرم) در نمی‌لایش</td>
<td>۳/۲۰</td>
<td>۳/۲۰</td>
</tr>
<tr>
<td>وزن دست (کیلوگرم) در نمی‌لایش</td>
<td>۲/۱۹</td>
<td>۲/۱۹</td>
</tr>
<tr>
<td>وزن راسته (کیلوگرم) در نمی‌لایش</td>
<td>۲/۱۹</td>
<td>۲/۱۹</td>
</tr>
<tr>
<td>وزن پیش‌سینه و قلوه‌های (کیلوگرم) در نمی‌لایش</td>
<td>۰/۶۶</td>
<td>۰/۶۶</td>
</tr>
<tr>
<td>وزن گرد (کیلوگرم) در نمی‌لایش</td>
<td>۰/۶۶</td>
<td>۰/۶۶</td>
</tr>
<tr>
<td>وزن کل دنبه (کیلوگرم)</td>
<td>۰/۷۱</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td>طول ماهیچه راسته (سانتی متر)</td>
<td>۲/۰۰</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td>عرض ماهیچه راسته (سانتی متر)</td>
<td>۰/۶۶</td>
<td>۰/۶۶</td>
</tr>
</tbody>
</table>

ضخامت چربی زیرپوستی (سانتی متر)

<table>
<thead>
<tr>
<th>نمودار</th>
<th>ضخامت چربی زیرپوستی (سانتی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td>b</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td>c</td>
<td>۰/۷۱</td>
</tr>
</tbody>
</table>

توجه: این سیلات نسبت به دیگر تیمار‌ها، از طریق هضم پیش‌تر مواد غذایی در استخوان گوارش است. ویژگی‌های دوره پروراوه‌ی لاشه، به ترتیب در جدول ۹ و ۱۰ نشان داده شده است. ضخامت‌های بین‌پوشی در تیمارهای ۱ و ۲ بطور مخصوص دارای (P<0/۰) از تیمار ۳

پیش‌تر. میان ویژگی‌های دیگر دوره پروراوه‌ی لاشه گوسفندان

علت سرعت تجزیه پیش‌تر، کوتاه‌تر بوده و می‌تواند بر میزان سرعت عبور مواد از پروآوه و اندازه‌ی مصرف خوراک، به دلیل تخلیه سریعتر شکمش، مؤثر باشد.

مجموع ۴۰۰ با توان تجزیه پذیری بالقوه ماده خشک و آلی در شکمش، برای سیلات با ۵ درصد از درازه پروراوه به طور شایان توجه افزایش یافته که نشان دهنده توان تجزیه پذیری بالقوه
اثر سطوح مختلف اوره بر ترکیب شیمیایی و ارزش غذایی سیلان در تغذیه گوسفند

۱۸۶

مباحث مورد استفاده

۱. فضایی، ج. ۱۳۷۳. میزان اثرات جدید احتباسات پروتئین در تغذیه نشانگان. فصلنامه پژوهش و سازندگی: ۲۴: ۱۰۱-۱۰۳.
۲. لطیفي، ب. ۱۳۷۴. ارزیابی یک سیستم خوب، غنی سایر و هدر رفتن موارد در آن. قصص نامه علمی، اقتصادی و پزشکی: ۱۲: ۲۷-۲۷.

