تجزیه عملکرد و اجزای عملکرد بذر در کلونه‌های فسکیو (Festuca spp.)

محمود مهدی مجدی، آقافخر میرلخوی و محمد رضا سرزبانیان

چکیده
کشف رابطه همبستگی فارچه‌های انگولفای با گراس‌های سردسیری دریچه نازهای به روی تحقیقات به نزاکت آنها گشوده است. در زیمنه تأثیر انگولفایها بر خصوصیات بذری گزارش‌های اندکی وجود دارد. در این پژوهش نشان داده این نوع انگولفایا در تغییر مهم‌سنج صفات بذری و تأثیر این رابطه همبستگی بر ارث مسئول و نیروی مستقیم صفات بذری فستوکا مورد بررسی قرار گرفت. کلونه‌های عزیز از انگولفای از طریق اعمال فارچه‌کش بر روی کلونه‌های نازهای انگولفای (E) ایجاد و سپس به دو نوع کلون به مرحله انتقال داده شدند. در سال مجموعه‌ای از صفات از جمله عملکرد و اجزای عملکرد بذری روی کلون اندازه‌گیری گردید. نتایج نشان داد که قارچ‌های انگولفایا تولید بذر در فصل ماهی‌داری از تا 249 درصد افزایش داد. با این حال عملکرد برخی زنوتیبها تحت تأثیر این رابطه همبستگی قرار نگرفت که حاکی از وجود اختلاف بین فارچ و مریوان می‌باشد. حضور انگولفایا، مهم‌سنج صفات با یکدیگر و نیز اولویت وارد شدن آنها در مدل رگرسیون مربوط به تغییر می‌باشد. نتایج تجزیه علیه نشان داد که همبستگی با فارچ‌های انگولفایا، مؤثر و جهت تأثیرگذاری صفات از طریق مسئولین مستقیم و نیروی مستقیم بر عملکرد داده را تأثیر داد. در گیاهان از افزایش بیشتر خونه بطور مستقیم و افزایش ادراز سیستم ولی می‌تواند (تعداد خونه در بونه و تعداد دانه در خونه) بیشتر غیر مستقیم بر عملکرد دانه تأثیر گذاشته اما در گیاهان با پاوره خونه بطور غیر مستقیم و سیستم ولی بطور مستقیم تأثیر خونه بر عملکرد دانه اعمال نمودند. نتایج نشان داده که عامل اصلی و جمله اصلی از حدود بیشتر می‌باشد. این فارچ‌ها از انگولفایا در زمین پلاسم مورد مطالعه اطلاع کافی کسب نمایند بیشتر در صورت عریان بودن جامعه به انگولفایا. از پاوره خونه و در غیر این صورت از سایر اجزای عملکرد بهبودی تعداد خونه در بونه و تعداد دانه در خونه به‌طور کلی بیشتر از دانه‌ها استفاده نمی‌شود.

واژه‌های کلیدی: فستوکا، فارچه انگولفایا، تجزیه عملکرد، عملکرد، اجزای عملکرد بذر

مقدمه
جنس فستوکا (Festuca spp) یک جنس گونه‌های گونگنه‌های یک‌ساله و چند ساله بوده که بطور معمول برای تولید علف به مصرف مصرف و منشی بوده. این جنس شامل گونه‌های سبز و سبزی از یک‌ساله بوده که بطور معمول برای تولید علف به مصرف مصرف و منشی بوده.

1. به ترتیب دانشجوی سبز دکتری (در حال حاضر استادیار)، دانشیار و دانشجوی دکتری زراعت و اصلاح نباتات. دانشکده کشاورزی، دانشگاه صنعتی اصفهان

M به ترتیب دانشجوی سبز دکتری (در حال حاضر استادیار)، دانشیار و دانشجوی دکتری زراعت و اصلاح نباتات. دانشکده کشاورزی، دانشگاه صنعتی اصفهان
چمنی، بوشکان مراتم و حفاظت خاک مورد استفاده قرار می‌گیرند (36). فستوکی بلند، یکی از گونه‌های هگزابولوندی، نه تنها سال و سال‌ها در این جنس می‌باشد که به‌دلیل خصوصیات همجون نتایج سازگاری بی‌شراط مختلف می‌پوشاند و تولید بالا از اهمیت خاصی از (Festuca pratensis) برخوردار است (35). فستوکی مرتعی گونه‌های دیپولیودس جنس فستوکا بوده و به نظر می‌رسد که از اجاید فستوکی بلند می‌باشد (30). این گونه همچنین پراکش وسیعی در نیمه‌های شمالی و از نظر پرداختگی و نیازهای اکولوژیکی فستوکی مرتعی به‌رغم به‌فروش عمدک و پیکر از اواست قرن گذشته آرامش به است (13) و کیفیت از این نوع گندش به برای کار نگرفته ایست. شرایط کربن‌گفته در تولید علفه و نیز احیای مراع است. این ساختار کوه‌شکنی در تولید علفه و به بهره‌برداری می‌باشد با این حال منافع‌هایی در گذشته مورد توجه یافت. چنین گونه‌های جنس فستوکا در شرایط بر حسب انتخاب‌های خود و در اثر رفت و نواحی کوهستانی ایران به‌ویژه مناطق مرکزی، غربی و شمالی کشور روش‌ها و از پانزده بایپای به در اثر کیفیت علفه به‌صورت زراعی و مرتع برخوردار می‌باشد با که این حال منافع‌هایی در گذشته مورد توجه یافت. چنین گونه‌های جنس فستوکا در شرایط بر حسب انتخاب‌های خود و در اثر رفت و نواحی کوهستانی ایران به‌ویژه مناطق مرکزی، غربی و شمالی کشور روش‌ها و از پانزده بایپای به

ه) اگرچه برخی از اکالوپیدها روي یکیت علفه اثر نامطلوب شده و تجربی آنها در گبه باعث ایجاد برخی عوارض مانند سمومیت در دامها می‌گردد، لیکن هیچ‌یک از چنین عوارضی در پایگاه‌های با آثار مضر کمتری متمرکز شده است (24). مطالعات روز گزارش‌های فستوکی بومی کشور نیز نشان داده است که اندفولوژی‌های این گونه‌ها با آنها باعث افزایش تحمیل به شوری (24)، تحمیل به سرما (21) و بهبود نپه زنی و نوان و نشان گیاه‌ها (8) شده‌اند. در زمینه تغییر اندفولوژی‌ها به‌خاطرات بیشتر گزارش‌های اندک و کاهش منافعی وجود دارد. سیگافلوکس (33) و وجود قارچ رای عاملی برای افزایش تولید بذر در فستوکی بلند ندنشتند در حالت کلی که (24) گزارش کرد که زنوتیپ‌های حاوی قارچ دارای درصد بزرگ‌تر و درصد سردرد نزدیک به مرطوبه‌های دیگری طراحی شده ناشنوایی‌هایی مانند جسمانی و آنتی‌بیوتیک در بررسی مطالعه دیگری رای و همکاران (29) حضور قارچ را عاملی برای افزایش تولید بذر در گونه‌های فستوکی معرفی کردند. رای و همکاران (30) در مطالعه دیگری تأثیر قارچ‌های اندفولوژی بر میانگین و واریانس عمده‌بندی بذر را طی و سال آزمایش منافع‌گران کرد. حداکثر، باعث می‌شود که به‌چنین می‌باشد که به‌طور نهایی به‌که رشد گیاههای بی‌شماری در تهیه می‌باشد روش به‌که رشد گیاههای بی‌شماری در تهیه

کلیه‌ای شمانه (خاوی اندفولوژی و عماری از اندفولوژی) اثر

زنوتیپ گیاهی و قارچ با یکدیگر اختصاص داشته است. در مطالعه دیگری رای و همکاران (29) حضور قارچ را عاملی برای افزایش تولید بذر در گونه‌های فستوکی معرفی کردند. رای و همکاران (30) در مطالعه دیگری تأثیر قارچ‌های اندفولوژی بر میانگین و واریانس عمده‌بندی بذر را طی و سال آزمایش منافع‌گران کردند.
مواد و روش‌ها

در این پژوهش از 6 کلون حاوی اندولفایت و 6 کلون عادی از اندولفایت طی صفت‌های مختلف، 처음اً تجزیه عملکرد کلون‌ها در کرک‌های اندولفایتی داشت. بیش از 6 کلون به صورت بافت‌های مختلفی طراحی و تست شدند. این تحقیق نشان داد که کلون‌هایی که از گونه‌های مختلفی استخراج شده هستند، عملکرد بسیار بهتری را نشان می‌دهند. این نتایج نشان داد که گونه‌های مختلفی از گونه‌های مختلفی بر عملکرد بهتری منجر می‌شوند.

کمک‌برنامه‌های اصلاحی در رابطه با افزایش تولید بذر در گیاهان علف‌های نیمی بهبود که عملکرد بذر و عملکرد علف‌های نیمی منفی دارند (12) اما مطالعات در گیاهان نشان داد که کل‌ن می‌توان صفت‌های اصلی را افزایش داد. در گیاهان بهبود یافته قرار گرفته و به‌یک تجارت سومند در دنیا می‌باشد که است. عملکرد بذر در گیاهان یک نظر نوشتاری است که برای پژوهش‌های بررسی عملکرد بشری است. مطالعات بهبود دهنده و نیز تحت تأثیر برخی صفات مورفولوژیکی نظیر طول بذر، یک خصوصیت مؤثر است که این نتایج نشان داد که عملکرد بشری سریعترین ترکیب اجرا را می‌تواند نتایج مطلوبی داشته باشد. بنابراین ضروری است که اثر مستقیم و غیر مستقیم صفات بر عملکرد بذرین گردد. در این راستا تجزیه ضرایب مسیر (Path coefficient analysis) از اهمیت ویژه‌ای برخوردار است (5 و 6). این تکنیک آماری ابتدا توسط رایت (72) معروف شد و سپس لی (75) و تکنیک آماری توسط رایت (76) و کر (77) گرفته شد. در این تحقیق نشان داد که گیاهان خاصی از گونه‌های مختلفی بر عملکرد بهتری دارند. این نتایج نشان داد که گیاهان آبیاری و گیاهان زنگ‌یان یک چهارمی‌کرک به‌یک تجارت و اینکه کل‌ن در نمودار اینکه کل‌ن می‌تواند نتایج مطلوبی داشته باشد. بنابراین ضروری است که اثر مستقیم و غیر مستقیم صفات بر عملکرد بذرین گردد. در این راستا تجزیه ضرایب مسیر (Path coefficient analysis) از اهمیت ویژه‌ای برخوردار است (5 و 6).
جدول 1. مقایسه میانگین زنوتیپ‌های فسکو در دو حالت وجود و فقیدن قارچ

<table>
<thead>
<tr>
<th>عملکرد دانه در بونه (گرم)</th>
<th>تعداد خونه در بونه</th>
<th>تعداد دانه در بونه</th>
<th>زنوتیپ</th>
<th>دارد/بدون</th>
<th>صافی</th>
<th>تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>حاوی</td>
<td>بدون</td>
<td>قارچ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75A</td>
<td>5/7/8</td>
<td>12/11/10</td>
<td></td>
<td>7/8/7</td>
<td>7/8/7</td>
<td>7/8/7</td>
</tr>
<tr>
<td>83A</td>
<td>4/6/7</td>
<td>12/11/10</td>
<td></td>
<td>4/5/6</td>
<td>4/5/6</td>
<td>4/5/6</td>
</tr>
<tr>
<td>83B</td>
<td>5/7/8</td>
<td>12/11/10</td>
<td></td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
</tr>
</tbody>
</table>

* برای هر سال تفاوت بین میانگین دو زنوتیپ و با دو میانگین حاوی قارچ و بدون قارچ که دارای حروف متوازی هستند در سطح احتمال 5 درصد معنی‌دار می‌باشد.

** مواردی که تفاوت بین E و E' معنی‌دار نبوده با خط تیره نشان داده شده است.

آماری (SAS) انجام گرفت.

نتایج و بحث

نتایج تجزیه و ارتباط حاکی از آن بود که اثر فارم اندوفایت بر صفات تعداد خونه در بونه، تعداد دانه در بونه و عملکرد دانه در بونه در هر دو سال معنی‌دار بود و بر سایر صفات تأثیر معنی‌داری نداشت. برهمکنش (اثر مشترک) قارچ و زنوتیپ به غیر از صفت تعداد دانه در بونه و بر سایر صفات معنی‌دار بود. (نتایج تجزیه و ارتباط نشان داده نشده است).

نتایج داننده (نتایج تجزیه و ارتباط نشان داده نشده است).

مقایسه میانگین زنوتیپ‌ها در دو حالت وجود و فقیدن قارچ برای هر سطح در جدول 1 آمده است. بین زنوتیپ‌ها از نظر صفات عملکرد دانه و اجرای آن در هر دو حالت وجود و

180
به‌طور مشابه از کلیه سایر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وارد کرده‌اند. کلیه‌ها صدها بازی‌های افزایش دادر بازی‌های افزایش دادر نهایی وار
جدول ۲. همبستگی صفات بذری در کلون‌های فیکسیو عاری از قارچ انفلاسی و حاوی قارچ انفلاسی (داخل پرانتز)\\

<table>
<thead>
<tr>
<th>صفات</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱ - روز تا کرده آفتابی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱</td>
</tr>
<tr>
<td>۲ - تعداد خوش‌های در بوته</td>
<td>۹/۰۹</td>
<td>۹/۰۴</td>
<td>۹/۰۵</td>
<td>۹/۰۵</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
</tr>
<tr>
<td>۳ - طول خوش‌های</td>
<td>۹/۰۴</td>
<td>۹/۰۵</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
<td>۹/۱۰</td>
</tr>
<tr>
<td>۴ - تعداد دانه در خوش‌های</td>
<td>۹/۱۰</td>
</tr>
<tr>
<td>۵ - تعداد دانه در بوته</td>
<td>۹/۱۰</td>
</tr>
<tr>
<td>۶ - وزن هزار دانه</td>
<td>۹/۵۵</td>
</tr>
<tr>
<td>۷ - عملکرد دانه در بوته</td>
<td>۹/۸۱</td>
</tr>
<tr>
<td>۹ - باروری خوش‌های</td>
<td>۹/۰۴</td>
</tr>
<tr>
<td>۱۰ - طول برگ</td>
<td>۹/۱۶</td>
</tr>
<tr>
<td>۱۱ - عرض برگ</td>
<td>۹/۸۵</td>
</tr>
</tbody>
</table>

ضراوهای همبستگی بین ۰/۵۷ و کوچکتر از ۰/۵۷ در سطح احتمال ۵ درصد و ضراوهای همبستگی بین ۰/۷ و کوچکتر از ۰/۷-در

سطح احتمال ۱ درصد معنی‌دار می‌باشد.

حضور قارچ توانسته برد روابط عملکرد دانه با این ویژگی‌ها تأثیر معنی‌دار بگذارد. فانگ و همکاران (۱۹) نیز همبستگی عملکرد دانه در بوته را با تعداد خوش‌های در بوته و وزن دانه در خوش‌های باروری خوش‌های و عرض برگ در زونتیپ فیکسیو مرتبط بدان انفلاسیت، مثبت و معنی‌دار گزارش کرده‌اند. اما

عملکرد می‌بایست (صرف نظر از رابطه همبستگی با انفلاسیت)، در کلون‌های بدون انفلاسیت، عملکرد دانه در بوته با وزن دانه در خوش‌های نیز همبستگی معنی‌داری (۰/۵۸) داشته. در کلون‌های حاوی انفلاسیت، عملکرد دانه با عرض برگ برهم همبستگی مثبت و معنی‌دار (۰/۵۵) داشته که نشان داد.
به منظور شناخت مهم‌ترین صفات توجهی کننده عملکرد

گزارش در زمینه تأثیر قارچ اندوفولیت بر همبستگی صفات در
کلون‌های فسکو موجود نمی‌باشند. همبستگی بین وزن هزار
دانه با عملکرد دانه در هر دو نوع کلون‌های مورد بررسی
معنی‌دار نبود. فاصله و همکاران (۱۴) در فسکوی مرتعی
همبستگی منفی بین این دو صفت گزارش کردند. در غلظت
گزارش‌ها در همبستگی عملکرد دانه با وزن هزار دانه
منافق است. گزارش شده اندازه عنوان مشابه توجهی را
را نشان داد. می‌تواند عرض برو پرچم با تعداد دانه در
برای هر دو کلون کارا و تعداد دانه در پرورش و عملکرد دانه در
پرورش این کارا و عنوان دانه در دوران پر شدن
دلال ذرای از میان غذای انتقال یافته به دانه در دوران پر شدن
دانه. از برو پرچم نماینده گردد (۷۲). در گرابس‌های چند
ساله رقابت بین جذب مواد غذایی. شدیدتر از غلات دانه
است زیرا بذردها باشد با سایر مخازن جذب کننده این هماهنگ
در حال رشد سریع نظر ریشه با ویژه‌های رویشی جدید
رایت کند. (۱۹). الجزم (۱۸) امکان است که شاید دلیل
این که در گرابس‌ها در اینجا تعداد زیادی گلجه ظاهر می‌شود اما
در بذرها سالم از آنها عقیده می‌ماند. ناشی از تفاوت در رقابت
برای نامید مواد غذایی. مطالعات با استفاده از کرن ۱۲ در
چگیتی نامی نشان داده که برو پرچم عامل تغذیر اندام از
نفل و انتقال مواد در دوران پر شدن دانه می‌باشد. (۱۵). از
آنچگاهی که چگیتی دامی از تبدیل‌کننده‌های فاسکو
می‌باشد. می‌توان مکانیزم مشابهی را برو فسکو توسط
نفل بذردها تحقیق عرض برو پرچم را نیز جز اجرای
عملکرد دانه و گزارش کرده‌اند که بخش کافی توجهی از
عملکرد دانه را توجهی می‌کند (۱۹).
جدول ۳۱. نتایج رگرسیون مدل‌های برای عملکرد دانه به عناوین متغیر تابع و صفات دیگر به عنوان متغیرهای مستقل در زونتیپ های فسفری بدون اندوفایت

<table>
<thead>
<tr>
<th>F</th>
<th>Pزمن‌هایهای مدل</th>
<th>چیز</th>
<th>R2</th>
<th>پازمان‌هایهای مدل</th>
<th>چیز</th>
<th>R2</th>
<th>تعداد دانه در خونه</th>
<th>تعداد دانه در پوته</th>
<th>عرض از میادین</th>
</tr>
</thead>
<tbody>
<tr>
<td>49/44</td>
<td>.03</td>
<td>.08</td>
<td>.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>47/89</td>
<td>.03</td>
<td>.08</td>
<td>.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9/84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

و و ns: به ترتیب معناداری در سطح احتمال ۵ درصد و یک درصد و غیر معنادار

جدول ۳۲. نتایج رگرسیون مدل‌های برای عملکرد دانه به عناوین متغیر تابع و صفات دیگر به عنوان متغیرهای مستقل در زونتیپ‌های فسفری حاوی اندوفایت

<table>
<thead>
<tr>
<th>F</th>
<th>Pزمن‌هایهای مدل</th>
<th>چیز</th>
<th>R2</th>
<th>پازمان‌هایهای مدل</th>
<th>چیز</th>
<th>R2</th>
<th>تعداد دانه در خونه</th>
<th>تعداد دانه در پوته</th>
<th>عرض از میادین</th>
</tr>
</thead>
<tbody>
<tr>
<td>49/44</td>
<td>.03</td>
<td>.08</td>
<td>.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>47/89</td>
<td>.03</td>
<td>.08</td>
<td>.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9/84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

و و ns: به ترتیب معناداری در سطح احتمال ۵ درصد و یک درصد و غیر معنادار

هم‌زیستی هم‌مان‌طور که بر همبستگی‌های صفات تأثیر گذاشت، بر اولویت وارد شدن متغیرها در مدل رگرسیون مرحله‌ای نیز تأثیر داشت. وارد شدن تعداد خونه در پوته برای کلون‌های حاوتی قرار جایی که این عملکرد به عنوان متغیر تابع و سایر صفات مورد بررسی به عنوان متغیرهای مستقل در نظر گرفته شدند. در هر دو حالت (کلون‌های حاوتی قارچ و بدون قارچ) در مدل حاصل تعداد دانه در خونه تخمین بیشتری بود که در مرحله اول وارد مدل شد و به دنبال آن ۲۳ درصد تغییرات عملکرد دانه را توجیه می‌نمود. از این پس روند وارد شدن متغیرها برای دو تکنولوژی بود به‌طوری که در کلون‌های بدون قارچ تعداد روز تا گردش افزایش در مرحله دوم وارد مدل گردید که به‌همراه تعداد دانه در خونه جمعاً ۲۷ درصد از تغییرات عملکرد را توجیه نمودند. در حالی که در کلون‌های حاوتی قارچ تعداد دانه در خونه در پوته در مرحله دوم وارد مدل گردید که به‌همراه تغییرات اول (تعداد دانه در خونه) جمعاً ۸۹ درصد تغییرات عملکرد دانه را توجیه نمودند.

نتایج رگرسیون انرژی نشان می‌دهد که وجود رابطه
جدول ۲. تجزیه همبستگی برای تعیین اثر مستقیم و غیر مستقیم صفات بر عملکرد دانشجو در کلوله‌های فسفری بدون اندودفات و کلون‌های حاوی اندودفات (داخل پراتز)

<table>
<thead>
<tr>
<th>اثر مستقیم از طریق</th>
<th>عملکرد</th>
<th>كل اثر مستقیم</th>
<th>مقدار طول خودش در بوته</th>
<th>تعادل دانه در خوشه</th>
<th>وزن هزار دانه در خوشه</th>
<th>وزن هزار دانه در بوته</th>
<th>تعداد دانه در خوشه</th>
<th>تعداد دانه در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>باوری</td>
<td>202</td>
<td>202</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>وزن دانه در خوشه</td>
<td>240</td>
<td>240</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>وزن دانه در بوته</td>
<td>375</td>
<td>375</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>تعادل دانه در بوته</td>
<td>252</td>
<td>252</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>تعادل دانه در خوشه</td>
<td>258</td>
<td>258</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>تعداد دانه در بوته</td>
<td>272</td>
<td>272</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>تعداد دانه در خوشه</td>
<td>286</td>
<td>286</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

اول به ترتیب حدود ۸۰ درصد تغییرات عملکرد را توجیه کرد که اما به منظور درک بهتر و تفسیر دقیق تر از روابط علمی و مخلوطی، از چهار صفت دیگر که تأثیر آنها در توجه مدل قابل توجه بود، نیز استفاده گردید. نتایج تجزیه علیست برای هر دو نوع کلون‌ها در جدول ۴ آراشده است. بر اساس این جدول در کلون‌های بدون اندودفات روند دیگری مشاهده گردید که طول خسته که تعادل دانه در بوته اثر مستقیم تاچجزی است در کلون‌های حاوی اندودفات روند غیر مستقیم است. در کلون‌های بدون اندودفات روند غیر مستقیم تعادل خودش در بوته بر عملکرد دانه از اثر ثابت مستقیم آن بیشتر است (۴9/۰) در بر به طور غیر مستقیم (جمعًا ۷۸/۰) بر عملکرد دانه گذاشت.

بر اثر شده شد و در نتایج مدل غیرمستقیم شامل تعداد دانه در خوشه، تعادل دانه در بوته، وزن هزار دانه، طول خودش، وزن دانه در خوشه و باوری خودش تاثیرات بالاترین توجهی از عملکرد دانه را داشته باشد. هر چند دو متغیر اول به ترتیب حدود ۸۰ درصد تغییرات عملکرد را توجیه کرد.

از طریق تعداد دانه در خوشه (۹/۱۳) و وزن دانه در خوشه (۲/۸۷) به کمک به نکته که از طریق طول خودش بر عملکرد دانه تأثیر تاچجزی داشته (۴۱/۵۶) و باوری خودش (۳۴/۳۹) تأثیر مثبت بر عملکرد دانه می‌گذارد. از انجابی که گزارش توانایی تولید تعداد زیادی دانه با اندودفات در بوته زامی با تعداد دانه در خوشه در بوتهم_
تعداد دانه در خوشه در کلون‌های بدون انوفوابات تأثیر مستقیم نداشت و بنابراین، اثر نافعالیت داشت (1/1) بر عملکرد دانه و اثر انوفوابات ضمن قدرت وجود دارد. در کلون‌های افزایشی انوفوابات باوری معنی‌دار بر عملکرد دانه در خوشه داشت (1/1) در حالی که در کلون‌های خاوی انوفوابات روند عکس مشاهده گردید و بطوری که تعداد دانه در خوشه اثر مستقیم منفی (1/1) بر عملکرد دانه داشت که اثر غیر مستقیم اثر اثر اثر تعمیق نظریون (9) افزایش تولید بذر در گیاه از طریق دو مکانیزم امکان‌پذیر است.

1) تولید سیستم تولید مثلی (نظرافزار) در تعداد پنجه باوری، طول خوشه، تعداد میوه در خوشه و 2) افزایش کارایی سیستم تولید مثل منجر به افزایش وزن هزار دانه و باوری خوشه (وزن هزار دانه در واحد طول خوشه) جایگزین می‌باشد.

تغییر این بررسی نشان داد که انوفوابات افزایش تعداد اجزای سیستم تولید مثلی (تعداد خوشه و تعداد دانه) را به‌طور غیر مستقیم از طریق اجزای مربوط به رشد معمولکرد (وزن دانه و باوری خوشه) افزایش می‌دهند.

در مجموع نتایج این بررسی نشان داد که قرارهای انوفوابات در وسایل فسیلی که مرتب عملکرد دارد بر اثر زنی‌زنی‌های مور در بررسی افزایش داد و این افزایش عمداً از طریق افزایش اجزای عملکرد بهبودی تعداد خوشه و تعداد دانه در پوست اعمال گردید. افزایش تولید بذر در جمعیت‌های حاوی انوفوابات می‌تواند منجر به شناسی‌بندی این آنها شود. چرا که درصد کیهان حاوی انوفوابات در طی نسل‌های متعددی افزایش می‌یابد. با این حال، افزایش بذر در بخشی زنی‌زنی‌ها تحت تأثیر حضور انوفوابات قرار گرفته که حاکی از وجود اثر متقابل بین قرار و میزان بود. وجود این اثر متقابل نشان می‌دهد که حضور قرار در بخشی از زنی‌زنی‌ها تغییرات بیشتری نسبت به بیان زنی‌زنی‌ها ایجاد کرده است. حضور انوفوابات روابط صفات مختلف با یکدیگر و با عملکرد دانه در تصویب زنی تأثیر گرفته نتایج تجزیه علیت نشان داد که آثار مستقیم و غیر مستقیم صفات با عملکرد دانه برای دانه محاسبه و عدم حضور قرار انوفوابات کامل متغیر است. با توجه به اینکه در گیاهان حاوی انوفوابات افزایش باوری خوشه به‌طور مستقیم و
بروزهای اصلاح‌یافته از حضور یا عدم حضور اندودفاویت اطراف
کافی کسب نمایند. سپس در صورت آلوه دو ساله جامعه به
اندوافیت از باروری خوش و در صورت عدم آلوگی گیاهان
جامعه به اندودفاویت از سایب اجزایی عمکردن به‌وسیله تعداد خونه
در بیوت، تعداد داده در خونه و وزن داده خونه برای گریزش
ازونتیپها به منظور افزایش عمکردن دانه استفاده نمایند.

منابع مورد استفاده

1. آقابی، م. م.، مقدم، م.، ولید، ج. کاظمی رابط و. ی. بنایی خسروی. ۱۳۷۵. تجزیه پایداری و تجزیه عمکردن دانه در برخی
ارق جهان. مجله علمی گزارشی دانشگاه شهید چمران (۱۹) و ۵۴-۵۸.

2. پارسیان، م. ۱۳۸۲. تاثیر اندودفاویت ها در برخی مقاومت به سرما در دو گونه فستوکا پایان نامه کارشناسی ارشد اصلاح بانوان.

3. نباتی، ا. ا. هاشمی دربوی. ۱۳۸۴. تاثیر نرخ کاشت و زنونتیپ بر رشد و عمکردن دانه گیاه. علوم گیاه‌شناسی و منابع
طبیعی (۲) (۵۹-۶۱).

4. سیعیانی، م. و. اف. میلورحی. ۱۳۸۴. تاثیر مقاومت به شیوع علف یل‌نی ماند
 іً(Festuca pratensis). چکیده، مقالات هشتمین کنگره علوم زراعت و اصلاح بانوان ایران. ۳ تا ۵ شهروز،

5. هفی‌نی، ق. و. ک. رضایی مقدم. ۱۳۸۳. تجزیه عمکردن و اجزای عمکردن دانه یاری ارقام جو در منطقه اهواز. مجله علوم و
صنایع گیاهی (۱۴) (۲۹-۳۰).

6. محمدی، ر. اف. میلورحی. ۱۳۸۴. تاثیر اندودفاویت در بهبود و یک‌گیاه های فستوکی به‌تینی فسکویی و کلیه ای‌می ایران.

varieties combined with high seed yield. Report of meeting of the EUCARPIA Fodder Crop Section, Merelbeke,
49-56. Gent.

Entomol. 39: 401-423.

40:248-255.
