چکیده
كشف رابطه هم‌زیستی قارچ‌های انگلادویات با گراس‌های سردسیر در جریه نازهای به روش تحقیقات به نژاد آنها گشوده است. در زمینه تأثیر انگلادویات بر چگالی و ویژگی‌های گیاهی این نظریه وجود دارد. این اثر ضروری برای تولید فستوکا مورد بررسی قرار گرفت. کلون‌های انگلادویاتی از طریق اعمال فارچه‌کشی بعدی کلون‌های گیاهی انگلادویات (E+) ایجاد و سپس به روش گروهی انتقال داده شدند. یکی از سه مجموعه از جمله عمکرک و اجزای عمکرک مناسب برای فستوکا انتخاب گردید. نتایج نشان داد که قارچ‌های انگلادویاتی تولید بذر به‌طور میانگین در سال 2011 به مقدار 249 درصد بود. با این حال عمکرک و ژن‌های زبوتری به نظر نمی‌رفت که در نسبت‌های این نوع عمکرک به هم‌زیستی، تأثیر رابطه هم‌زیستی قارچ‌های انگلادویات به کمک از ویژگی‌های مشترک بین فستوکا و میوه‌های میوه به‌طور مستقیم و افزایش اندازه سیستم تولید ثابت می‌شود (تحقیق رتبه دانشگاهی). در این بخش، یکی از گیاهان، میوه‌ها که به‌طور مستقیم و سایر صفات به‌طور مستقیم تأثیر خواهد گذاشته، از در حال ماشی‌فکر اصلی انجام‌دهنده بوده و اغلب به‌طور مستقیم و سایر صفات به‌طور مستقیم تأثیر خواهد گذاشته، از در حال ماشی‌فکر اصلی انجام‌دهنده بوده و اغلب به‌طور مستقیم و سایر صفات به‌طور مستقیم تأثیر خواهد گذاشته، از در حال ماشی‌فکر اصلی انجام‌دهنده بوده و اغلب به‌طور مستقیم و سایر صفات به‌طور مستقیم تأثیر خواهد گذاشته، از در حال ماشی‌فکر اصلی انجام‌دهنده بوده و اغلب به‌طور مستقیم و سایر صفات به‌طور مستقیم تأثیر خواهد گذاشته، از در حال ماشی‌فکر اصلی انجام‌دهنده بوده و اغلب به‌طور مستقیم و سایر صفات به‌طور مستقیم تأثیر خواهد گذاشته.
جنویه، پوشش مرطوب و حفاظت خاک مورد استفاده قرار می‌گیرند (32). فستوکی بلند (26) یکی از گونه‌های هگراکلمه، جنس سال و سال‌سرپرست در این جنس می‌باشد که دارای خصوصیات همچون تون نوار سارگاری به شیار مختلف محتوی و تولید بایا از اهمیت خاصی از (Festuca pratensis). فستوکی مرتعی (25) گونه‌های دیپولید جنس ساترکا بوده و به نظر می‌رسد که از اجداد فستوکی بلند می‌باشد (20). این گونه همچنان پراکش وسیعی در نیمکره شمالی شبه‌قاره از نظر پراکندگی و نیازهای اکولوژیکی مشابه فستوکی بلند می‌باشد (23). با این حال اصلاح ارقام فستوکی مرتعی برای بهبود عملکرد و کیفیت از اواست قانون‌گذاری آغاز شده است(13) و 19. گونه‌های جنس ساترکا در ایالات خارجی یافته و در اثر مراتب و نواحی کوهستانی ایران به‌رغم مناطق مکریکی، غربی و شمالی گسترش یافته و از پانزده بلوی برای تولید علت به‌صورت زراعی و مرتعی تولید کارداری می‌باشد با این حال مسالماتی که در این مورد قرار توجه جدی قرار داده شده است. صورت‌های خودکاری در تولید علت به‌صورت گسترده در نیاز احیای موجود کشور باعث شده که این گیاهان در سال‌های اخیر بیشتر و مورد توجه قرار گیرند (24).

در مهی درم می‌بینیم رابطه هم‌سازی بین گروه مهمی از ویکوپاراسیت‌ها تحت عنوان فنی اندوفایته با برخی گونه‌های علفی از جمله گونه‌های جنس ساترکا مورد توجه داشتن‌می‌گردد. این قارچ‌ها از جنس Neotyphodium مشتق از خانواده به صورت سپستنیک در پرخی کریس‌ها زیر خانواده Pooidae و N. lolii N. coenophialatum شده در این جنس از گونه‌های N. uncinatum می‌باشد که به ترتیب دارای فستوکی بلند، چچم چند ساله (ارای کریس) و فستوکی مرتعی هم‌سازی می‌باشد (23). این قارچ‌ها به‌نمایه ریشه‌های خود به‌صورت بین سلولی در تمام باغچه‌های گیاهی به استثنای ریشه‌های مقدّر و
مواد و روش‌ها
در این پژوهش از ۶ کلون حاوی اندوفلیات و ۶ کلون عادی از اندوفلیات طی ۵۰ سال استفاده شد. برای این منظور سه زنوتیپ فسکوری در ترکیب یک کمیابان کردن‌دهنده (مومسوم به زنوتیپ های ۷۵A و ۷۵B) یک زنوتیپ فسکوری به‌کار گرفته شد. همچنین، از نظر مطالعات فیزیولوژیک نظیر طول برگ، خاک، طول و عرض برگ، فشار می‌گردد.

(تعیین همبستگی بین عوامل و اجزای عمکرده‌بندی و شناسایی روابط علته و معلولی بین آنها) با استفاده از مدل‌های خاص بکر، معنی‌داری از این نتایج وجود دارد که می‌تواند تاثیر بخشیدن نتایج داده پیشنهاد نواصعی است که اثر مستقیم و غیر مستقیم صفات عمکرده‌بندی داشته باشد. در این راستا تجزیه ضرایب مسیر (Path coefficient analysis) از اهمیت ویژه‌ای برخوردار است (۵ و ۲۴). این تکنیک آماری ابتدا توسط رایت (۲۳) معرفی شد و سپس به (۲۵) و (۲۱) و (۲۲) و (۲۳) چگونگی استفاده از آن را تشریح کرده. گرچه قارچان انزیم‌ها تاثیر می‌گیرد، اما باید توجه کرد که این امر مستقیم و غیرمستقیم صفات عمکرده‌بندی داشته باشد. در این راستا تجزیه ضرایب مسیر (Path coefficient analysis) از اهمیت ویژه‌ای برخوردار است (۵ و ۲۴). این تکنیک آماری ابتدا توسط رایت (۲۳) معرفی شد و سپس به (۲۵) و (۲۱) و (۲۲) و (۲۳) چگونگی استفاده از آن را تشریح کرده. گرچه قارچان انزیم‌ها تاثیر می‌گیرد، اما باید توجه کرد که این امر مستقیم و غیرمستقیم صفات عمکرده‌بندی داشته باشد.

کمود برنا‌شاهی اصلاح‌کننده توانایی اصلاح‌کننده در رابطه با افزایش تولید بذر در گیاهان علوفه‌ای نتیجه این بهره‌برداری بود که عمکرده‌بندی و علامه‌ها رابطه منفی دارند (۱۲) اما مطالعات در گیاهان حاوی انزیم‌های الأسیدی به‌طور میانگین بذر بنا بر حالی که دارای توزیع چپ‌گیری کرده و عملکرد ترکیب در گیاهان به‌طور میانگین باقی بوده است. عملکرد بذر در این پژوهش در نهایت نتایج مجموعه‌ای از صفات شامل تعادل خود در بیماری، طول خود و برداشت ۱۳۸۲/۱۹ گردن، و در نهایت مجموعه‌ای از صفات شامل خود در بیماری، طول خود و برداشت ۱۳۸۲/۱۹ گردن، و در نهایت مجموعه‌ای از

Downloaded from jstnar.iut.ac.ir at 13:32 IRST on Friday February 4th 2022
جدول 1. مقایسه میانگین زنوتیپ‌های فسکو در دو حالت وجود و فقدان فارج

<table>
<thead>
<tr>
<th>تعداد دانه در پوته (گرم)</th>
<th>عملکرد دانه در پوته (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>حاوی</td>
<td>بدون</td>
</tr>
<tr>
<td>دارد</td>
<td>دارد</td>
</tr>
<tr>
<td>150/4</td>
<td>348/4</td>
</tr>
<tr>
<td>142/4</td>
<td>324/4</td>
</tr>
<tr>
<td>142/4</td>
<td>324/4</td>
</tr>
<tr>
<td>142/4</td>
<td>324/4</td>
</tr>
<tr>
<td>128/4</td>
<td>304/4</td>
</tr>
<tr>
<td>126/4</td>
<td>302/4</td>
</tr>
</tbody>
</table>

* برای هر سال تفاوت بین میانگین دو زنوتیپ و یا دو میانگین حاوی فارج و بدون فارج که در این حروف تفاوت محسوس در سطح احتمال 0.05 درصد معنی‌دار می‌باشد.

** مواردی که تفاوت به معنی‌داری نبوده با خط تیره نشان داده شده است.

آماری (SAS) یا انجام گرفت.

نتایج و بحث

بین تجزیه آماری ساده نتایج تجزیه واریانس حاکی از آن بود که اثر فارج اندوفایت بر صفات تعیین درخت خوشه در پوته، تعادل دانه در پوته و عملکرد دانه در پوته در حالت وجود و فقدان فارج نشان داد. برهمکنش (اثر مشترک) فارج و زنوتیپ به غیر از صفت تعیین دانه در پوته، برای سایر صفات معنی‌دار بود (نتایج تجزیه واریانس نشان داده است). مقایسه میانگین زنوتیپ‌ها در حالت وجود و فقدان فارج برای این سطح در جدول 1 آمده است. بین زنوتیپ‌ها از نظر صفات عملکرد دانه و اجزای آن در هر دو حالت وجود و
نجزه علیت عملکرد و اجرا عملکرد بذر در کلون‌های فسفر

فقط اندازه‌ای نفعی در وجود داشته کل‌ن‌های بود در قرار اندازه‌ای کل‌ن‌های ۷۵B و ۷۵C در سال ۷۵A و ۷۵B. قرار اندازه‌ای کل‌ن‌های ۷۵A در سال ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵A و ۷۵B و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی اندازه‌ای کل‌ن‌های ۷۵B و ۷۵A و ۶۰A در سال ۷۵B و ۷۵A در قالب اندازه‌ای کل‌ن‌های ۷۵B در سال ۷۵A و ۷۵B بی‌شیرینی عملکرد دانه در بونه را دقت در کلون‌های دوستی

مهم‌سنجی صفات

جدول ۲. همبستگی صفات بذروی در کلون‌های فسفری عاری از قارچ انگورفایت و حاوی قارچ انگورفایت (داخل پرانتز)

<table>
<thead>
<tr>
<th>صفات</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز برگ افتالی</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>تعداد خونه در بوته</td>
<td><۰/۰۹</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول خونه</td>
<td><۰/۰۴</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد دانه در خونه</td>
<td><۰/۰۶</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن هزار دانه</td>
<td><۰/۰۵</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عملکرد دانه در بوته</td>
<td><۰/۰۸</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن دانه در خونه</td>
<td><۰/۰۹</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>باروری خونه</td>
<td><۰/۱۵</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول برگ</td>
<td><۰/۱۲</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عرض برگ</td>
<td><۰/۰۶</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ضراوت همبستگی برگکترناری در ۰/۷۴ و کوچکترناری در ۰/۵۷-در سطح احتمال ۵ درصد و ضراوتی همبستگی برگکترناداری در ۰/۷۴ و کوچکترناداری در ۰/۷۴-در سطح احتمال ۱ درصد معنی‌دار می‌باشد.

حضور قارچ توانسته بر روابط عملکرد دانه با این ویژگی‌ها تأثیر معنی‌داری به‌گذارد. فانگ و همکاران (۱۹) نیز همبستگی عملکرد دانه در بوته را با تعداد خونه در بوته و وزن دانه در خونه، باروری خونه و عرض برگ در زنویعی های فسفری مرتعی بدون انگورفایت مثبت و معنی‌دار گزارش کرده‌اند، اما عملکرد می‌باشد (صرف نظر از رابطه همبستگی با انگورفایت). در کلون‌های بدون انگورفایت، عملکرد دانه در بوته با وزن دانه در خونه نیز همبستگی معنی‌داری (۰/۵۸<ز<۰/۵۸) نشان داد. در کلون‌های حاوی انگورفایت، عملکرد دانه با عرض برگ برهم همبستگی مثبت و معنی‌داری (۰/۵۸<ز<۰/۵۸) داشت که نشان داد...
گزارش در زمینه تأثیر انگیزش اندودافلایت بر همیستگی صفات در
کلون‌های فسکو موجود وابسته به نوزاد. همیستگی بین وزن هزار
دانه با عملکرد دانه در هر دو نوع کلون‌های مورد بررسی
معنی‌دار نبود. فاکتورهای (1) اکثریت پژوهش. (2) همکاران (19)
توثیقه نشان داده است. همیستگی مثبت بین این دو صفت گزارش شد.
در غلظات نیز
گزارش‌ها در زمینه همیستگی عملکرد دانه با وزن ویژه دانه
منافقت گزارش شده است با عنوان مثال متفکر و ریاضی (5) و
بونت و ایبیسکی (11) در جویان همیستگی را مثبت گزارش
نمودند در حالی که اقلام و همکاران (1) و نیکی و هاشمی (3)
آن را منفی گزارش کردند.
روز تا گردان افشانی در کلون‌های حاوی انگیزش با هیچ
صفی همیستگی نداشت. در حالی که در کلون‌های بدون
انگیزش این صفت با طول خوده، وزن هزار دانه و وزن دانه
در خوشه‌های سفکو مثبت و معنی‌داری نشان داد این تیجی
حاکی از آن است که این تأثیر در گردان افسانه‌ای می‌تواند به
عنوان یک عامل کاملاً تأثیر خود امری باشد. تأثیر منفی بر افزایش عملکرد دانه
داشت باشد و ثانیاً نشان می‌دهد که در کلون‌های حاوی
انگیزش عضو انگیزشی برای می‌تواند تا کاهش این یکی از مهم‌ترین
صفات مرتبط با تولید بنز مادر و طول افزایش گراسه‌ها شاهد است. زیرا
تغییر از نظر صفت درون چرخچه‌های دگرگونی منجر
به انجام تلاقی‌های جور شده (Assorting mating) و افرازیت
(Assembling) است. انتقال رشد ژنتیکی (Genetic drift) و نیز کاهش کیفیت
بذر می‌گردد (21). این صفت در فسکویی بی‌لند و مرنی کاری دایر
و راه‌پذیری بی‌پایه و تحت کنترل آنالیز‌های زنده
می‌باشد (22). تعداد خوشه در بی‌پایه در دو نوع کلون‌ها
با تعداد دانه در بی‌پایه همیستگی مثبت و یا در نوزن هزار دانه
همیستگی منفی نشان داد و بیزارگر چه خوشه‌ای با
تعداد دانه در خوشه نیز همیستگی مثبت داشت. باروری خوشه
با طول خوشه در هر دو نوع کلون با تعداد دانه در خوشه در
کلون‌های حاوی فنی و با وزن دانه در خوشه در کلون‌های
جدول ۳۳. تأثیر رگرسیون مرحله‌ای برای عملکرد دانه به علائم متغیر تابع و صفات دیگر

<table>
<thead>
<tr>
<th>F</th>
<th>R²</th>
<th>R² افزایش شده به مدل</th>
<th>پژوهش‌های معدل</th>
<th>تعداد دانه در خوشه</th>
<th>تعداد خوشه در بونه</th>
<th>عرض از میدان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵/۲۷</td>
<td>۰/۸۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۱/۸۰</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۷۴/۲۷</td>
<td>۰/۸۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

** و **: به ترتیب معنی‌داری در سطح احتمال ۵ درصد و یک درصد و غیر معنی‌دار

جدول ۳۴. تأثیر رگرسیون مرحله‌ای برای عملکرد دانه به علائم متغیر تابع و صفات دیگر

<table>
<thead>
<tr>
<th>F</th>
<th>R²</th>
<th>R² افزایش شده به مدل</th>
<th>پژوهش‌های معدل</th>
<th>تعداد دانه در خوشه</th>
<th>تعداد خوشه در بونه</th>
<th>عرض از میدان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵/۲۷</td>
<td>۰/۸۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۱/۸۰</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۷۴/۲۷</td>
<td>۰/۸۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

** و **: به ترتیب معنی‌داری در سطح احتمال ۵ درصد و یک درصد و غیر معنی‌دار

هم‌زیستی همان‌طور که در هیپستگی‌های صفات تأثیر گذاشت، بر اولویت وارد شدن متغیرها در مدل رگرسیون مرحله‌ای نیز تأثیر داشت. وارد شدن تعداد خوشه در بونه برای کلون‌های حاوی قارچ جانبی از آن است که حضور اندودفاونت در گیاه پنجه زنی و در نتیجه تولید خوشه در گیاه را افزایش داده است. که در نهایت متغیر افزایش عملکرد دانه شده است. تأثیر اندودفاونت در افزایش تعداد پنجه توسط دیگر محققین بر گزارش شده است (۶ و ۷۴). باین جملات در هر دو حالت، تعداد دانه در بونه به علائم مهم ترین جزء عملکرد دانه تشخیص داده شد. با وجود این که تعداد دانه در بونه تیز هیپستگی بالایی ای عملکرد دانه داشت، اما به دلیل هیپستگی بالایی به مدل دانه داشت. این با تعداد دانه در خوشه، وارد مدل رگرسیونی نشد.

انجام گردید. برای این منظور کلیه مدل‌های رگرسیون

صدر از تغییرات عملکرد دانه را توجیه نمود. این پس رویت وارد شدن متغیرها برای دو نوع گل و نما تغییرات بود به‌طوری که در کلون‌های بیدن جفت‌زای رئی است. در حالی که در کلون‌های خوشه صفت تعداد خوشه در بونه در مرحله دوم وارد مدل گردیده که به‌همراه تغییرات اول (تعداد دانه در خوشه) جمعاً ۸۷ درصد تغییرات عملکرد دانه را توجیه نمود. نتایج رگرسیون مرحله‌ای نشان می‌دهد که وجود رابطه

۱۸۴
جدول 2. تجزیه همبستگی برای تعيین اثرات مستقیم و غير مستقیم صفات بر عملکرد دانه در کلونهای فسیکیه بدون انفودافیت و کلونهای حاوی انفودافیت (داخل یاران)

<table>
<thead>
<tr>
<th>اثر مستقیم از طریق</th>
<th>همبستگی هسته‌ای <code>r</code></th>
<th>تعداد دانه</th>
<th>وزن هزار دانه</th>
<th>طول خوشه در بوته</th>
<th>تعداد خوشه در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>باروری لازاره</td>
<td>0.346 (0.275)</td>
<td>0.25</td>
<td>0.44</td>
<td>0.35</td>
<td>0.16</td>
</tr>
<tr>
<td>باروری ماده</td>
<td>0.322 (0.255)</td>
<td>0.18</td>
<td>0.24</td>
<td>0.26</td>
<td>0.16</td>
</tr>
</tbody>
</table>

این تجزیه نشان می‌دهد که با انرژی جلب، وزن هزار دانه و طول خوشه در بوته، تعداد دانه در بوته کاهش می‌یابد. با افزایش وزن هزار دانه و طول خوشه در بوته، تعداد دانه در بوته کاهش می‌یابد.
تعداد داده در خوشه در کلون‌های بدون اندوفلایت تأخیر مستقیم مثبت و یا معنی‌دار (1/14) بر عملکرد داده داشت و اثر غیر مستقیم از طریق وابستگی به درون‌ها در خوشه (0/37). در حالی که در کلون‌های حاوی اندوفلایت روند عکس مشاهده گردید به طوری که تعداد داده در خوشه به طور معنی‌دار مستقل از طریق باروری خوشه (0/287) و وزن هزار دانه (0/187) بر عملکرد رفع ضرورت تا کمتری از تابعیت اندازه‌گیری مبنا که بستگی به میان‌رده داده می‌گذارد. بیشترین کاهش حاصلی مربوط به یکناریابی عملکرد دانه در جمع‌تیم‌های با توجه به اندازه‌گیری بیشتری که در جمع‌تیم‌های با توجه به اندازه‌گیری بیشتری که در جمع‌تیم‌های حاوی اندوفلایت و جوامع هم‌ریست با قارچ اندوفلایت، محیط سازد.

در مجموع نتایج این بررسی نشان داد که قارچ‌های اندوفلایت در کلون‌های بدون اندوفلایت، وزن دانه در خوشه بیشترین تأثیر مستقیم را بر عملکرد دانه داشت (0/197) که بیش از دو برابر هم‌بستگی آن با عملکرد دانه بود (0/56). اما مقدار اثر غیر مستقیم آن (0/217) بین اندازه‌گیری ضریب همبستگی آن با عملکرد شده است. وزن دانه در خوشه تأثیر مثبت داشته از طریق قارچ‌های حاوی اندوفلایت و باروری خوشه (0/242) و تأثیر مستقیم داشته از طریق تعداد دانه در خوشه (0/063) و وزن هزار دانه (0/03). اثر غیر مستقیم مثبت بین اندازه‌گیری ضریب همبستگی آن با عملکرد سیستم تولید متقابل با این که به طور غیر مستقیم از طریق اجزای مربوط به راندمان عملکرد (وزن دانه و باروری خوشه) افزایش می‌دهد.

در بین صفات مورد مطالعه در کلون‌های بدون اندوفلایت، اثر زنوتیپ‌های مورد بررسی افزایش داد و این افزایش عمداً از طریق افزایش اجزای عملکرد به‌ویژه تعداد خوشه و تعداد دانه در بیوت عملکرد. افزایش تولید بارد در جمع‌تیم‌های حاول اندوفلایت می‌تواند منجر به شایستگی بیشتری از بهبود چرا که درصد گیاهان حاول اندوفلایت در طی نسل‌های متعدد افزایش می‌یابد. با این حال صفات بذرین در بررسی زنوتیپ‌ها تحت تأثیر حضور اندوفلایت قرار گرفت که هاکی از وجود اثر متقابل بین فارق و مثبتان می‌باشد. وجود این اثر متقابل نشان می‌دهد که حضور فارق در برخی از زنوتیپ‌ها تغییرات بیشتری نسبت به سایر زنوتیپ‌ها ایجاد کرده است. حضور اندوفلایت روابط صفات مختلف را با یکدیگر و با عملکرد دانه دچار تغییر کرد. نتایج نژادی علی‌نا نشان داد که آثار مستقیم و غیر مستقیم صفات بر عملکرد دانه بار و حالت حضور و عدم حضور قارچ اندوفلایت کاملاً متفاوت است. به‌طوری که در کلون‌های بدون اندوفلایت افزایش باروری خوشه به طور مستقیم و
بروزهای اصلی از جمله: امکان تولید مثلی (تعداد خوشه در بوته و تعداد دانه در خوشه) به‌طور می‌تواند بر عملکرد دانه تأثیر می‌گذارد. این‌گونه، افزایش رقم قرار گرفتن اندودوفایت حاوی جامعه از اندودوفایت از سایر اجزای عملکرد بی‌پروازی تعداد خوشه در بوته، تعداد دانه در خوشه و وزن دانه خوشه برای گونه‌های اندودوفایت به‌طور مستقیم می‌باشد. بنابراین لازم است که اصلاح‌گران قبل از شروع مطالعه اولین استفاده از اینان را انجام دهند.

مباحث مورد استفاده

1. آقایی، م. م. مقدم، م. و لیبرو، ج. کاظمی رابط و. بنایی خسروقی. 1375. تجزیه پایداری و تجزیه عملکرد دانه در برخی اقلام جهانی. مجله علمی کشاورزی دانشگاه شهید جمیر. (19) و 54-208.

2. پارسیانی، م. 1382. تأثیر اندودوفایت در برز مقاومت به سرما در دو گونه استوکا پایان نامه کارشناسی ارشد اصلاح نباتات.

4. سیزعلیان، م. و. آ. میرولوی. 1383. نقش قارچ‌های اندودوفایت در مقاومت به شوری عفونی بر گیاهان مانند فستوکا نامه کارشناسی ارشد اصلاح نباتات (Festuca pratensis). جلکده مقالات هسته‌ای علوم زراعت و اصلاح بیان پژوهش. 36 تا 5 شهرویور، دانشگاه کیان.

5. فتحی، ق. و. ک. رضایی، مقدم. 1379. تجزیه عملکرد و اجزای عملکرد دانه برش خوشه از روی مصرف اموازی و شباهت علوم و صنایع کشاورزی (1): 13-49.

6. محمدی، ر. و. آ. میرولوی. 1382. تأثیر قارچ‌های اندودوفایت در بهبود ویژگی‌های فستوکا فسفور و مصرف بومی ایران.

