بررسی سرریزهای زیگزاگی با پلان فوسی

مهدي پاسی و محمد محمدی

چکیده

سرریزهای زیگزاگی سازه‌های هیدرولیکی مهم جهت تنظیم سطح آب و کنترل جریان در کانال‌ها، رودخانه‌ها و مخازن سدها و نیز هواده‌ی جریان در شبکه اصلی فاضلاب‌ها به‌شمار می‌آیند. فرضیه اصلی در توسوی سطح، طرح زیگزاگی سرریزهای افزایش ظرفیت انتقال جریان روی سرریز از طریق افزایش طول تاج سرریز در یک محدوده معین عرضی بوده است. در این تحقیق، اصلاح طرح هندسی پلان سرریز زیگزاگی نوع مطلی، ذوفرتهای و یا مستطیل - از طریق تغییر ردیف فراز سرریز به شکل فوسی از طرفه به سه مدل فوسی سرریز در پلان مورد ارزیابی و آزمون قرار گرفته و معادله جریان روی سرریز ارائه گردیده است. ضریب جریان بهصورت تابعی از مشخصات هندسی و هیدرولیکی مؤثر به‌صورت منحنی به‌دست داده شده است. این‌ها استخراج جریان بر حسب نسبت اعتبار به‌دست آمده به‌صورت به‌کارگیری شده و برای شرایط جریان مستقر؛ ضریب کم‌هم جریان به‌صورت تابعی از پارامترها به‌دست آمده (تأثیر عمق پاپاب و قرف فوسی سرریز).

واژه‌های کلیدی: سازه‌های هیدرولیکی، سرریز زیگزاگی، سرریز با پلان فوسی، کارایی هیدرولیکی

مقدمه

سرریزهای زیگزاگی (Labyrinth spillways) مهم جهت تنظیم سطح آب و کنترل جریان در کانال‌ها، رودخانه‌ها و مخازن سدها به‌شمار می‌آیند. همچنین، از سرریزهای کرنش زیگزاگی جهت هواده‌های با پالایش طبیعی فاضلاب استفاده می‌گردد. محور ناحیه این نوع سرریزهای به‌صورت غیر خطی به‌دست می‌آید و در یک عرض معین، طول تاج

1. به ترتیب استناد و دانشجوی سابق کارشناسی ارشد مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

2. پژوهشگر این مقاله.
فرضیه اصلی در توسعه طرح زیگراکی سری‌هایها، افزایش ظرفیت انتقال جریان روی سری‌های در نتیجه ثبات و بهبود ارتفاع منحنی سطح آب در بالای سری‌های بوده است. به‌علاوه انتخاب سری‌هایی که با قدرت بالای سری‌های زیگراکی با پلان مناسب هماهنگ می‌باشد و با شکل تابع دایره‌ای توسط داروی (4) و تولیپ و همکاران (12) انجام یافته، مطالعات تبلور (11) نشان داد که ظرفیت انتقال جریان از روی یک سری‌های با پلان مناسبی در شرایط مختلف جریان است (به‌نهایت از طریق افزایش ارتفاع سطح آب با تأثیر ظرفیت انتقال سیالی سری‌های، علاوه بر تغییرات سری‌های موجود جهت افزایش ظرفیت انتقال سیالی (5) سادگی مسأله، توجه بشرهای انتقال سری‌هایها به‌منظور بهبود برداشته در مقایسه با گزینه سری‌های خصوصی با کنترل دریچه‌ای (2) و (8).)

اولین مطالعات در خصوص ضوابط طراحی و کارکرد هیدرولیکی سری‌های زیگراکی توسط تبلور (11) و هنر و تبلور (8) روی مدل‌ها با پلان مناسب، مستقل و دوزینه‌ای با شکل تابعی به‌منظور ساخت این سری‌های رونق گرفت. با توسعه اطلاعات تجاری، نتایج ارزیابی ظرفیت جریان عموری روی سری‌هایها با پلان مناسب و دوزینه‌ای توسط لایه و هنر و تبلور (9) و (10) اصلاح گردید. نتایج مطالعات فوق نشان داد که میزان واقعی جریان عموری از سری‌های زیگراکی حدود 25/4 کمتر از مقدار برآورد شده نظیر آن از روش همی و تبلور (8) است. علت اصلی تفاوت، اختصاص ارتفاع سطح آب بالاتر در شامل سری‌های زیگراکی با پلان مناسبی در شرایط مختلف جریان است (به‌نها، از طریق افزایش ارتفاع سطح آب با تأثیر ظرفیت انتقال سیالی سری‌های، علاوه بر تغییرات سری‌های موجود جهت افزایش ظرفیت انتقال سیالی (5) سادگی مسأله، توجه بشرهای انتقال سری‌هایها به‌منظور بهبود برداشته در مقایسه با گزینه سری‌های خصوصی با کنترل دریچه‌ای (2) و (8).)
طرح پلان فومی، هبوز گازرسانی‌های علمی و مستندی در منابع موجود بیشتر است. در این تحقیق، اصلاح طرح هندسی پلان سرزری‌های زیگزاگی نوع مثلثی، ذوزنقه‌ای و با مستطیلی‌ای از طریق تغییر در فرم دماهه، با پیش‌بینی سرزری (در بالادست و پایین دست) از حالت خنثی به شکل فومی از دایره مرور نظر قرار گرفته است. هدف اصلی از این پرسی، ارزیابی ظرفیت جریان به روش تحلیلی - تجربی بر روی سرزری‌های زیگزاگی با پلان فومی و با شکل ناجی در حرارتی بوده است. عملیات آن، کارایی هیدرولیک سرزری‌های زیگزاگی معادل با پلان هندسی متوازی (فومی- مثلثی- ذوزنقه‌ای) مورد مقایسه و ارزیابی قرار گرفته است.

برای جریان ریزشی در کانال پایین دست سرزری، ترکیب هندسی و آگرایی با افزایش شدت جریان در امتیاد مسیر باعث صعود پرôtای سطح آب گردیده و جریان زیر بحرانی در کانال و آگرای پایین دست استقرار می‌یابد (7). تداخل تغه‌های ریزشی جریان از روی ناحیه سرزری با کانال و آگرای پایین دست باعث می‌شود که ظرفیت جریان غیرپایدار و واحد طول ناحیه پک سرزری زیگزاگی کمتر از مقدار نظیر آن از روی پک سرزری خطر و نرمال باشد (6 و 7).

معادله پک بعدی جریان ریزه سرزری‌های زیگزاگی با روش تحلیل ریاضی (با حل معادلات پوستی و انرژیی) و با فرضیات: شرایط جریان آزاد و پرتوی از روی پک سرزری معادل
در محدوده عمومی جریان (\(H_0/P<5/6\)) با کارایی هیدرولیکی بیشتری برخوردار بوده و فرم و شبید دیواره سریز در بالادست و پایین دست تأثیر قابل ملاحظه‌ای بر طرفیت انتقال سریزها نشان داده است. \(4\).

\[
Q = C_d \frac{1}{\gamma} \sqrt{gLH_{0}^{2}}
\]

که در این \(L=\) طول تاج سریز زیگراکی، \(H_0=H_0\) ارتفاع از ابردایالس نسبت به تاج سریز (شکل ۳) شناخته شده است. \(Q\) ضریب جریان و \(C_d=\) ضریب دیواره سریز زیگراکی باشد. با روش تحلیل ابعادی و با استفاده از معیارهای مؤثر هندسی، کینماتیکی و دینامیکی در طرفیت جریان، ضریب \(C_d\) به صورت تابع تغییر ارائه داده است. \(4\).

\[
C_d = F(\frac{h}{h}/P, R/w, w/P, D/P, T/P, \epsilon/P, l/w, h/h\ or\ \Psi)
\]

که در این \(P=1\) ارتفاع دیواره سریز زیگراکی در بالادست، \(w=\) دیواره سریز در پایین دست، \(R=\) طول تاج نیک سیکل سریز، \(T=\) ضخامت دیواره سریز، \(\epsilon=\) ضخامت دیواره سریز، \(l/w, h/h\ or\ \Psi\) می‌باشند.

مواد و روش‌ها

ازمایش‌های تجربی در فلام آزمایشگاه هیدرولیک کاربردی دانشگاه ارومیه به طول ۶۰۰ عرض ۶ و عمق ۲۴ متر با سیسمت جریان آزاد انجام گردید. تأثیر عوامل معین هندسی و هیدرولیکی با حد ممکن در طراحی مدل فیزیکی و استقرار آزمون‌های مختلف در نظر گرفته شد. الگوهای مطلوبی پیش‌نمونه‌های ادعایی کامل در مدل‌سازی تغییراتی جریان از روی سریزهای زیگراکی ضروری می‌باشند. (۱) پیش‌شمار معیارهای محدوده‌های پیش‌گام‌های طولی سریزهای زیگراکی را به صورت (۴) \(L/k<2\) پیشبینی نموده‌اند. \(4\) دیواره سریز با شکل تاج نیک دایره‌ای (شکل ۲).
جدول 1. مشخصات مدل فیزیکی سری‌زهای زیگزاگی با پلاستیکی توسط تحقیق حاضر *

<table>
<thead>
<tr>
<th>آزمون</th>
<th>P (m)</th>
<th>W (m)</th>
<th>n</th>
<th>l (m)</th>
<th>R (m)</th>
<th>R/w</th>
<th>w/P</th>
<th>l/P</th>
<th>α (°)</th>
<th>Xl (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1-R1</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W1-R2</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W1-R3</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W1-R4</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W2-R1</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W2-R2</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W2-R3</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W2-R4</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W3-R1</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W3-R2</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W3-R3</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
<tr>
<td>W3-R4</td>
<td>0/120</td>
<td>0/3</td>
<td>2</td>
<td>0/9</td>
<td>0/75</td>
<td>0</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>0/15</td>
</tr>
</tbody>
</table>

*: پارامترهای جدول در شکل 1 نمایش داده شده است.

شکل 2 به صورت رابطه شماره 1 در نظر گرفته شده است. تابع عمومی ضرب جریان (Cv) برای فرم پلاستیکی سری‌زی در رابطه شماره 2 با توجه به محدودیت‌های پرسندی حاضر در احتساب نسبت سه‌ای معین (D/P, T/P, r/P, l/P) به صورت رابطه زیر ساده گردیده است.

\[C_v = F(8, 8, 8, 8) \]

از نتایج آزمایش‌های تجربی، ضرب جریان (Cv) از رابطه 1 به‌طور مستقیم محاسبه و با توجه به رابطه 3 به صورت تابعی از پارامترها (H/P, R/W, w/P) و نیز شرایط کنترل پایین دست مورد ارزیابی قرار گرفته است. روند تغییرات کنترل پایین دست (W3-R1) در شرایط مختلف جریان در هر یک از آزمایش‌های مختلف نسبت بوده که به‌طور عمده برای مدل سری‌زی (R/w = 0/15) در شکل 3 نمایش داده شده است. نتایج کامل برای مدل‌های دیگر سری‌زی (نسبت‌های مختلف R/w, w/P), توسط محاسبه (2) ارائه گردیده است.

نتایج نشان می‌دهد که شرایط آستانه جریان روي سری‌زهای قوسی، برای استقرار پایدار تغییر ریزشی جریان و استفراغ جریان، عمق پایان (Y) در فاصله L0 از پایین دست سری‌زهای انداره‌کنی گردید. موفقیت L0 به‌طور تجربی در محصول (Q) در قرار داشت. از جریان توسط برای سری‌زهای مختلف واسنجی شده در مخزن خروجی فلز با قطع (2/4) انداره‌کنی گردید. بررسی تأثیر عمق پایان بر جریان از روی سری‌زی، با نظیر در هنگام استفاده از جدول 1، از نظر هندسی دواده آزمایش اصلی با نمایه طراحی گردیده که از 1 تا 4 (جهت ارتفاع مختلف تولید سری‌زی) و از 1 تا 3 (به، فاصله انداره‌کنی) نسبت هیدرولیکی، هر آزمایش اصلی تحت در شرایط: 1- بدون پنلر در جنگل تعداد 20 سرم انداره‌کنی فوق معده که محدود و مسیع از جریان (جمعاً به تعداد 20 اندازه‌گیری) مورد آزمون قرار گرفت.

نتایج و بحث

ارزیابی ظرفیت جریان بر روی سری‌زهای زیگزاگی با پلاستیکی معاوده عمومی جریان بر روی یک سری‌زی زیگزاگی، با توجه به
شکل ۳. ضریب جریان C_d به صورت تابعی از H_0/P و W/P (آزمون W3-Ri)

اگر این شرایط را داشته باشیم، مناسب‌ترین روش برای به‌دست‌آوردن این سریع‌ترین تحلیل است. به‌طور کلی، برای حل این اسکاتلر، می‌توان از روش‌های مبتنی بر محاسبات عددی مانند روش‌های تفاضلی عددی استفاده کرد.}

در اینجا از رابطه زیر ثابت شده است (Modular limit)

$$h/P = \frac{1}{4}\left(\frac{W}{h}\right) + 0.0039(0.4)$$

از نظر دانشجویان آزاد روش سریع‌السیر و محصولات جریان C_d از نظر محدوده جریان از شکل های 2 تا 6 بهبود می‌یابد. در شرایط جریان مستقر (H/D پرداخت 500 با پیش‌آمدهای سریع زیگزاگی مشابه با یک سریع خم نرمال و یا بای تری بیشتر می‌گردد. در این شرایط ضریب جریان مستقل از هندسه زیگزاگی سریع به مقدار ثابت $C_d = 0.003$ کاهش می‌یابد.

ظرفیت جریان آزاد Q_c از معادله 1 بدست می‌آید:

$$Q_c = C_d \times \frac{W}{h}$$

که در رابطه زیر نشان داده شده است (W3-Ri)

$$C_d = \frac{W}{h} \times \frac{W}{h} = \frac{W}{h} \times \frac{W}{h}$$

در اینجا از رابطه زیر ثابت شده است (Modular limit)

$$h/P = \frac{1}{4}\left(\frac{W}{h}\right) + 0.0039(0.4)$$

از نظر دانشجویان آزاد روش سریع‌السیر و محصولات جریان C_d از نظر محدوده جریان از شکل های 2 تا 6 بهبود می‌یابد. در شرایط جریان مستقر (H/D پرداخت 500 با پیش‌آمدهای سریع زیگزاگی مشابه با یک سریع خم نرمال و یا بای تری بیشتر می‌گردد. در این شرایط ضریب جریان مستقل از هندسه زیگزاگی سریع به مقدار ثابت $C_d = 0.003$ کاهش می‌یابد.

ظرفیت جریان آزاد Q_c از معادله 1 بدست می‌آید:

$$Q_c = C_d \times \frac{W}{h}$$

که در رابطه زیر نشان داده شده است (W3-Ri)

$$C_d = \frac{W}{h} \times \frac{W}{h} = \frac{W}{h} \times \frac{W}{h}$$
شکل ۴. ضریب جریان آزاد \(C_{d} \) به صورت تابعی از \(H_{o}/P \) و \(W/P \) به ازای \(R/w=20 \) آزمون (W1-Ri)

شکل ۵. ضریب جریان آزاد \(C_{d} \) به صورت تابعی از \(H_{o}/P \) و \(W/P \) به ازای \(R/w=50 \) آزمون (W2-Ri)

شکل ۶. ضریب جریان آزاد \(C_{d} \) به صورت تابعی از \(H_{o}/P \) و \(W/P \) به ازای \(R/w=75 \) آزمون (W3-Ri)
شکل 7 ضریب تصحیح استغراق جریان (η) برای همه ψ_{m} از $\psi_{m} = \frac{h_{b}}{h}$ (آزمون W3-Ri) تغییرات η برای هر یک از سه مدل سریزی فوسی مشابه بوده است. متوسط ضریب تصحیح استغراق جریان (η_{m}) را می‌توان از رابطه عمومی زیر ارزیابی نمود:

$$
\eta_{m} = \frac{h_{b}}{h} + \frac{100}{\psi_{m}}
$$

در این صورت شدت جریان واقعی در شرایط جریان مستمر ψ_{m}، از رابطه زیر قابل ارزیابی می‌باشد:

$$
\psi = \psi_{m} \pm \frac{100}{\psi_{m}} (h_{b}/h)
$$

ارزیابی کارایی هیدرولوژیکی سریزی‌های زیگزاگی با پلان

هندسی متفاوت از آنجا که هنوز گزارش‌های مستندی در خصوص طرح سریزی‌های زیگزاگی فوسی مشاهده نشده، مقایسه نتایج حاصل با نتایج مشابه سایر اکتیو نیز به دست آمده است. ψ_{m} در تقسیم حاصل کارایی هیدرولوژیکی سریزی‌های زیگزاگی با پلان فوسی (25/0 و 0/15 و 0/2 و 15/0) با دو گزینه معادل

\begin{align*}
\text{W/L} = a \text{ و } \text{W} = \text{L}
\end{align*}

در این بررسی عبارت L و W تعداد سیکل‌ها طول تاج سریزی (L) و در نتیجه نسبت بزرگنمایی طولی نیز یکسان در نظر گرفته شده است. تغییرات سریزی آزاد به پلان مطلوب از شکل 9 برای سه ارتقاء مختلف سریزی (W) و تحت سه شرایط مختلف جریان آزاد (P) متقابل (محاسبه h_{m}) متفاوت است. در $P = \frac{15}{m}$ و $\frac{15}{m}$ به ترتیب $\frac{15}{m}$ به ترتیب جریان گردده که نتایج آن به طور مشابه برای ارتفاع جریان گردده است. نتایج این ارزیابی به‌صورت خلاصه عبارت است از:

1. تفاوت کارایی سریزی‌های با پلان
شکل 8. ارزیابی کارایی هیدرولیکی سرریزه‌های زیگزاگ‌گی با پلان هندسی منفی-+ و با نسبت I/w بکسان

جدول 2. ارزیابی کارایی هیدرولیکی سرریزه‌های زیگزاگ‌گی با پلان هندسی منفی-+ (I/w=۳ : P=0.۱۵ m)

<table>
<thead>
<tr>
<th>هندسی پلان</th>
<th>w/P</th>
<th>α°</th>
<th>R/w</th>
<th>h/P</th>
<th>H/w/P</th>
<th>C_d</th>
<th>Q×10^4 (m³/s)</th>
<th>روش ارزیابی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مثبت</td>
<td>2</td>
<td>۱۹/۵</td>
<td>-</td>
<td>۰/۲</td>
<td>۰/۲۱</td>
<td>۰/۴۹</td>
<td>۲۰/۹</td>
<td>Lux & Hinchliff (1985)</td>
</tr>
<tr>
<td>مثبت</td>
<td>۲</td>
<td>۱۴/۵</td>
<td>-</td>
<td>۰/۲</td>
<td>۰/۲۱</td>
<td>۰/۴۷</td>
<td>۲۰/۵</td>
<td>Lux & Hinchliff (1985)</td>
</tr>
<tr>
<td>مثبت</td>
<td>۲</td>
<td>۰</td>
<td>۰/۲۵</td>
<td>۰/۲</td>
<td>۰/۲۱</td>
<td>۰/۷۱</td>
<td>۳۸/۶</td>
<td>Lux & Hinchliff (1985)</td>
</tr>
<tr>
<td>مثبت</td>
<td>۲</td>
<td>۱۳۰/۳</td>
<td>-</td>
<td>۰/۲</td>
<td>۰/۲۱</td>
<td>۰/۷۱</td>
<td>۳۰/۸</td>
<td>Lux & Hinchliff (1985)</td>
</tr>
<tr>
<td>مثبت</td>
<td>۲</td>
<td>۱۷/۴</td>
<td>-</td>
<td>۰/۲</td>
<td>۰/۲۱</td>
<td>۰/۷۱</td>
<td>۵۲/۸</td>
<td>Lux & Hinchliff (1985)</td>
</tr>
<tr>
<td>مثبت</td>
<td>۲</td>
<td>۱۷/۴</td>
<td>-</td>
<td>۰/۲</td>
<td>۰/۲۱</td>
<td>۰/۷۱</td>
<td>۵۲/۸</td>
<td>Lux & Hinchliff (1985)</td>
</tr>
</tbody>
</table>

* پارامترهای جدول در شکل ۱ نمایش داده شده است.
جدول 3. ارزیابی کارایی هیدرولیک سردرزهای زیگزالگا با پلان هندسی متفاوت

<table>
<thead>
<tr>
<th>نوع پلان</th>
<th>w/P</th>
<th>L (m)</th>
<th>l/m</th>
<th>h/P</th>
<th>H/P</th>
<th>C_d</th>
<th>Q*10^3</th>
<th>Q*10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>مثبت</td>
<td>2</td>
<td>1/10</td>
<td>1/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>33/5</td>
<td>10/7</td>
</tr>
<tr>
<td>دوزنده</td>
<td>2</td>
<td>0/5</td>
<td>1/0</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>18/5</td>
<td>11/2</td>
</tr>
<tr>
<td>فوسی</td>
<td>2</td>
<td>0/0</td>
<td>1/0</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>21/0</td>
<td>12/0</td>
</tr>
<tr>
<td>مثبت</td>
<td>2</td>
<td>1/10</td>
<td>1/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>39/9</td>
<td>21/0</td>
</tr>
<tr>
<td>دوزنده</td>
<td>2</td>
<td>0/5</td>
<td>1/0</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>35/4</td>
<td>21/5</td>
</tr>
<tr>
<td>فوسی</td>
<td>2</td>
<td>0/0</td>
<td>1/0</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>32/0</td>
<td>21/1</td>
</tr>
</tbody>
</table>

روش ارزیابی: Lux & Hinchliff (1985)

تحقیق حاضر

* : پارامترهای جدول، در 1 نمایش داده شده است.

(α = 10° ; P=40/15m)

می‌دهد که سردرزهای با دماغه قوسی باریکت (r2/2) از h کارایی هیدرولیک بیشتری به‌خوردار هستند، شم‌خسی به ازای (W/P) بای (h/P) می‌شود. بررسی سردرزهای قوسی در نسبت (W/P = 1/5) است.

د و ارزیابی تأثیر مثبت پلان سردرز با زاویه‌بندی جانی (α) پکس

در این پرسه، سه گزینه سردرز زیگزالگا (پلان مثبت، دوزنده و قوسی) با زاویه بندی جانی پکس (α) متفاوت. این مورد مقیاسی فرآیند در این ارزیابی، می‌توان طول ناحیه سردرز (L) و در نتیجه شکل برگم‌گیری (l/w) متفاوت. همچنین، در ارزیابی کارایی براساس مقیاس ضریب جریان (C_d) و دریافت طول W (Q/L) مورد بررسی قرار گرفت. مدل سردرز قوسی (W3) نسبت به (Ri) با نسبت 15 را در نظر داشته و همچنین مقیاسی از پلان مثبت، دوزنده و قوسی (α) کمک می‌کند. سردرز معادل کنار باید سردرز قوسی (α) مورد بررسی قرار گرفت. سردرز در کنترل شدید ناپایداری برای خاک رانندگان جریان غلاف است. کارایی هیدرولیک سردرزهای قوسی با نسبت قوسی (w/P=40/15m) به‌طور کلی بیشتر از سردرزهای دوزنده است.

ساده‌ترین آن از پلان‌های مثبت، دوزنده و قوسی به‌طور کلی به‌طور معنی‌داری به‌طور قوسی قوی‌تر است.

شکل 9. ارزیابی کارایی هیدرولیک سردرزهای زیگزالگا با پلان هندسی متفاوت و با زاویه جانی (α) پکس

هیدرولیک بیشتری از سردرز مشابه دارد، به‌عبارت دیگر، با وجود کمیت زاویه دیواره و ارتفاع کنار باید سردرز قوسی (α) کمک کننده در سردرز از مثبت دوزنده قوی‌تر است. در این ارزیابی ممکن است که نتایج عکس پیش‌بینی شده باشد. به‌طور مثال، سردرزهای دوزنده با نسبت w/P=40/15m به‌طور قوی به‌طور معنی‌داری به‌طور کلی به‌طور قوسی قوی‌تر است.
نتیجه‌گیری
در این تحقیق، معادله جریان بر روی سربریزهای زیگزاکی با پل‌های سربریز غیر قاچاق را با 1 انرژی شده است. ضریب جریان در سربریز (γ) و با استفاده از روش‌های مختلفی از مدل برتر سربریز غیر قاچاق با پل‌های سربریز از طریق انتقال ارقام در کنار واگردای پایین دست (شرايط 1 و 2) در حالت انگام می‌باشد.

منابع مورد استفاده
1. روش بهره‌برداری، ع. 1397. بررسی سربریزهای چند ویژه موجود در شیکاگو ایالات متحده و رشد آن‌ها. پایین‌نامه کارشناسی ارشد آماری و دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
2. شناوری، ح. 1380. تأثیر شکل تاج بر ضریب آبگیری در سربریزهای زیگزاکی. مطالعات تکمیلی در سربریزهای مختلفی مشابه در پل‌های سربریز‌های اطراف سربریز در کنار واگردای پایین دست (شرايط 1 و 2) در حالت انگام می‌باشد.
3. طاهری، ع. 1379. تأثیر پردازش آسان‌تر بر ضریب تخلیه در سربریزهای گردوی. مجموعه مقالات اولین کنفرانس هیدرولیک ایران.

دانشگاه خواجای مشیرالملک طوسی، تهران.
کشاورزی، دانشگاه ارومیه.