ارزیابی قابلیت داده‌های ماهواره‌ای ETM+ جهت تهیه نقشه طبقات پوششی

"جنگل - اراضی درختچه‌ای – مرتع" (مطالعه موردی حوزه نکا - ظالم رود - مازندران)

هومن لطیفی، جعفر اولادی، عید ساروونی و حمید جلیلوند

چکیده

به عنوان ارزیابی قابلیت داده‌های ماهواره‌ای سنجیده + جهت تهیه طبقات پوششی جنگل - اراضی درختچه‌ای و مرتع از پیوسته یک پک از ورودی‌های متعدد پردازش تصویری، بررسی گردیده است. این پک در ابتدا از تصاویر دسترسی رسانیده شده یا تهیه شده توسط سیستم PAN SHARP و به خصوص در سطح سنجش تصویری 30/30 و 65/65 به بهره‌برداری می‌شود. از جمله این پک دارای چندین پیکسل محدود در راستای محور X و Y ها (سلامتی) از این پک با بررسی می‌شود.

باندهای اصلی و پانکروماتیک استفاده شده بودی که منظره تهیه نقشه واقعی از رشته طبیعی برگزاری تصادفی می‌باشد با قطعات نمونه یک هکتاری استفاده شد. از فرم روش درختی، درختچه‌ای و مرتعی به‌عنوان عوامل تفکیک طبقات استفاده گردید. مجموعه‌ای یک روش جدیدی استعمال شد. از مصرف خودکار انتخاب گردیده استفاده جهت انتخاب تکیه گردیده سنجیده + استفاده گرفت. از روش خودکار انتخاب گردیده جهت استفاده از سنجیده + تکول نماز جهت نماز که حاکم بر کل را با میزان 77/73% و شاخص کیفی 34/38 به مجموعه داده اصلی سنجیده + به دست آمده و تجویز برای استفاده جهت نماز سنجیده + در منطقه مورد مطالعه دارای قابلیت متوسط ارزیابی گردیده. این می‌توان با این معیار نقشه پوششی طبقات پوششی به منظور نقشه تداخل طبیعی پوششی در منطقه مورد مطالعه.

همچنین در اراضی پوششی جنگل از اراضی درختچه‌ای، مرتع، طبقه بندی کننده حداکثر احتمال، معیارهای بیان

جیشه سنجیده + طبقات پوششی جنگل - اراضی درختچه‌ای، مرتع، طبقه بندی کننده حداکثر احتمال، معیارهای بیان

واژه‌های کلیدی: سنجیده + طبقات پوششی جنگل - اراضی درختچه‌ای، مرتع، طبقه بندی کننده حداکثر احتمال، معیارهای بیان

صحح طبقه‌بندی، نکا - ظالم رود

مقدمه

در سال‌های اخیر بر محققین و اهل فن پوششی‌نیست. این کاهش چشمگیر در میزان سطح پوشش جنگل‌های شمال کشور به‌ترین دانشجوی سایر کارشناسی ارشدی (در حال حاضر دانشجوی دکتری) و استاتیستیک جدیدی دانشگاه کشاورزی و پرورشی تهران، مازندران، ساری

1. کارشناسی ارشد سنجیده + در دور، اداره کل آمار و فن‌آوری اطلاعات، وزارت جهاد کشاورزی، تهران

2. کارشناسی ارشد سنجیده + در دور، اداره کل آمار و فن‌آوری اطلاعات، وزارت جهاد کشاورزی، تهران

439
نگرش کیفی (کاهش توزیع گونه‌ها و تغییر تدریجی جوامع جنگلی در اثر دبخشی‌های انسانی و تغییرات محیطی) آثار خود را در محدوده ساخت کلسیمات هم در مناطق جنگل‌های کرانه دریا خور و هم در ارتقافات بالای کلسیمات هم (در مجاورت مراتع بیابانی) نشان داده است. از سویی به دلیل دسترسی مشکلات که کاهش می‌یابد به خصوص شرایط دیوار، تغییرات طبیع و اقلیمی در مناطق متوسط کوهستانی و همچنین عدم انتقال از نقاط نزدیک یکدیگر برحسب طبقات گونه‌گاهی و بررسی روی آن در دوره‌های زمینی کوتاه برمی‌رود زیرا امور جنگلی وجود ندارد. داده‌های پوشش نکتری و منظم در داده‌های ظاهری که طبقات گونه‌گاهی و منطقه، مناسب امکاناتهای اقتصادی را برای این منظور فراهم می‌سازند است.

(1) با پرشور یافتن، رفتارهای رعایی و طبقه حیاتی تیپ‌های جنگلی به کمک آن می‌توان طبقات پوششی را بر اساس فاکتورهای چه گونه‌ها چه نیاز یا نظارت در تراکم پوشش تغییرات نموده و با بررسی آن در دوره‌های زمینی میزان تغییرات کمی (سطح پوششی) یا کیفی (کیفیت پوششی) آن را مشخص نمود که از هنگام انحلال فاکتورهای سبب به مطالعه بروز صفت در جنگل‌های بیابانی سوسن و ساروز در جنگل‌های غرب کشور (زاکس) اشاره نمود (1 و 3).

محل دادن یافتن نام‌های جنگلی یا پوششی بر اهمیت تغییرات رعایی داده‌های ماهورایی در مناطق با پوشش گیاهی متفاوت نظر مرز جوامع گیاهی و محل اکوئون (Ecotone) جهت به حداکثر رساندن اشتباهات در برآورد طبقات پوششی یا تکنیک نموداده (15).

محل دادن یافتن نام‌های جنگلی یا پوششی بر اهمیت تغییرات رعایی داده‌های ماهورایی در مناطق با پوشش گیاهی متفاوت نظر مرز جوامع گیاهی و محل اکوئون (Ecotone) جهت به حداکثر رساندن اشتباهات در برآورد طبقات پوششی یا تکنیک نموداده (15).

نگرش کیفی (کاهش توزیع گونه‌ها و تغییر تدریجی جوامع جنگلی در اثر دبخشی‌های انسانی و تغییرات محیطی) آثار خود را در محدوده ساخت کلسیمات هم در مناطق جنگل‌های کرانه دریا خور و هم در ارتقافات بالای کلسیمات هم (در مجاورت مراتع بیابانی) نشان داده است. از سویی به دلیل دسترسی مشکلات که کاهش می‌یابد به خصوص شرایط دیوار، تغییرات طبیع و اقلیمی در مناطق متوسط کوهستانی و همچنین عدم انتقال از نقاط نزدیک یکدیگر برحسب طبقات گونه‌گاهی و بررسی روی آن در دوره‌های زمینی کوتاه برمی‌رود زیرا امور جنگلی وجود ندارد. داده‌های پوشش نکتری و منظم در داده‌های ظاهری که طبقات گونه‌گاهی و منطقه، مناسب امکاناتهای اقتصادی را برای این منظور فراهم می‌سازند است.

(1) با پرشور یافتن، رفتارهای رعایی و طبقه حیاتی تیپ‌های جنگلی به کمک آن می‌توان طبقات پوششی را بر اساس فاکتورهای چه گونه‌ها چه نیاز یا نظارت در تراکم پوشش تغییرات نموده و با بررسی آن در دوره‌های زمینی میزان تغییرات کمی (سطح پوششی) یا کیفی (کیفیت پوششی) آن را مشخص نمود که از هنگام انحلال فاکتورهای سبب به مطالعه بروز صفت در جنگل‌های بیابانی سوسن و ساروز در جنگل‌های غرب کشور (زاکس) اشاره نمود (1 و 3).

محل دادن یافتن نام‌های جنگلی یا پوششی بر اهمیت تغییرات رعایی داده‌های ماهورایی در مناطق با پوشش گیاهی متفاوت نظر مرز جوامع گیاهی و محل اکوئون (Ecotone) جهت به حداکثر رساندن اشتباهات در برآورد طبقات پوششی یا تکنیک نموداده (15).
شکل 1. نقشه موقعیت منطقه مورد مطالعه و تصویر آن در ترکیب رنگی (ETM+ (4,3,2))

پردازش‌های انجام شده بر روی داده‌های تصویری استفاده شد.

Juniperus sabina L. (Pyrus boissieriana Buhse.) و سفید کرک (Acer hyrcanum Fisch.& C.A Mey.)

داده‌های مورد استفاده

داده‌های ماهواره‌ای مورد استفاده در تحقیق به‌کلیه از یک فریم تصویر حاصل از سنجش ETM+ ماهواره لندست 7 بوده و در سیستم جهانی WGS84 در گذر 163 و ریزف 35 واقع شده است. تاریخ اخذ داده مصادف با سی ام ماه می سال ۱۳۸۱ هجری خورشیدی می‌باشد. همچنین در مطالعه حاضر از پیامدهای افزایشی PCI- Geomatica- version.9.1 به عنوان محیط اصلی انتخاب شد.
شکل 2. نمایش تصویر تصحیح نشده (الف) و تصویر تصحیح شده (ب) سری مورد مطالعه پس از رویه اندازی شیب آبشارها

قابل ضیمه داده‌ها، با عملکرد هندسی مشخص شد ریانی از خطای هندسی در پیکسل‌های تصویر وجود دارد که میزان آن در راستای محور Xα تقییا 25 متر و در راستای محور Yα حدود 225 متر بر اورد شد لذا تصحیح و تطبیق هندسی داده‌ها با تحقیق یافته‌های منیا ضرورت بافته.

در این تحقیق روی تصویر تصحیح هندسی ارتو با استفاده از مدل رقمی ارتقاعی (Digital Elevation Model (DEM)) ارتو استفاده گردید. گرفته شد (7). اختلاف و نوع ارتفاعی عرصه که همانگونه که ذکر شد از حدود 7700 ± 2400 متر از سطح دریا در بی‌گیره و نیز اختلاف بینی و بلندی حاصل از آن که در مدل مقادیر است/ باعث انتخاب این روی جهت تصویر تصحیح هندسی گردید (9). لذا با انتخاب تعداد 29 نقطه کنترل زمینی با پراکنندگی مناسب در تمام سطح سری ارتو به صورت هندسی شده و میزان خطای ریشه میانگین (RMSE) مربوط به نقاط کنترل متوسط 88/0 پیکسل در راستای محور Xα و 49/0 پیکسل در راستای محور Yα به دست آمد. یکی از رویه اندازی مجدد شبکه آبشارها تطبیق مناسب بر روی تصویر مشخص داده شد (شکل 2) به دست آوردن گیره برای دادن تطبیق مکانی و طبیعی مجموعه داده مورد استفاده در طبقه بندی و ایجاد تصویر ترکیبی با وضعیت مکانی (Data Fusion) که در اکثریت خودکار (PANSHARP

1386

علم و فناوری کشاورزی و منابع طبیعی / سال پایه‌ای / شماره چهل و چهار (ب) / تابستان 1386
عملیات پیش بردارش به منظور این که بتواند با دقت پیش‌شیر و با اجتناب از تداخل طیفی زیاد، اقدام طبقه‌بندی نمود و تیز نموده دیل تأثیر شاخه‌های گیاهی در آتش‌کار سازی بهتر پوشش گیاهی از منابع شاخه‌های مختلف گیاهی، شاخه‌های (BAND4-BAND3)/(BAND4+BAND3) شاخه از گرفتن بر (IR/R) نیازهای اصلی نسبت (این شاخه حاصل نسبت پنج‌گانه) به دست می‌آید. و پنج‌گانه (BAND4/BAND3) گماشته شده و به مجموعه داده مورد استفاده جهت تطابق نتیجه اضافه شده. به منظور فشرده سازی اطلاعات طیفی با‌پندهای مورد استفاده در تحقیق شامل پان‌تیهای اصلی + اقدام به اجرای Principal Component (PCA) تجزیه مؤلفه‌های اصلی (جهت رسم شاخه‌های گیاهی) گردید. در نتیجه این عمل باندهای پان‌تیهای ایجاد (Analysis) شده که از بین آنها مؤلفه نهایی اسیده نتایج مرتبی برای شاخه‌های پان‌تیهای مورد استفاده در تجزیه پان‌تیهای واپس‌تا نکس باندهای ETM به دوباره یک پار برای باندهای مربوط (1,2,3) و پار دیگر ETM.
جدول 1. مولفه‌های آماری و تعداد یکپک‌های نمونه‌های تعیینی در دو مجموعه داده اصلی و ادغام شده

<table>
<thead>
<tr>
<th>مجموعه داده اصلی</th>
<th>تعداد یکپک‌ها</th>
<th>انحراف میانگین</th>
<th>میانگین</th>
<th>نوع پوشش</th>
<th>انحراف میانگین</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>207</td>
<td>0/66</td>
<td>32</td>
<td>2</td>
<td>0/92</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>164</td>
<td>0/88</td>
<td>22</td>
<td>3</td>
<td>0/80</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>141</td>
<td>1/14</td>
<td>31</td>
<td>4</td>
<td>1/54</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>176</td>
<td>3/65</td>
<td>58</td>
<td>5</td>
<td>5/82</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>575</td>
<td>9/21</td>
<td>89</td>
<td>6</td>
<td>1/10</td>
<td>10</td>
</tr>
</tbody>
</table>

از این معیار برای طبقه‌بندی دو طبقه‌های استخراج را با هم دارند، مناسب است (14). در نتیجه این بررسی، برای طبقه‌بندی، حاصل از تعداد طبقه‌بندی در منطقه مانع از بازیابی تکیه‌گاه طبقات در یکپک‌هایی سه باندهای یکپک‌هایی می‌گردد، لذا استفاده از استخراج باندهای موجود در مجموعه داده (شامل پانزده‌ای اصلی، نسبت کیفی شده و مولفه‌های اصلی) در فرآیند طبقه‌بندی مناسب تشخیص داده شد.

پس از انتخاب و بررسی تکیه‌گاه طبقه‌بندی نمونه‌های تعیینی، طبقه‌بندی تصور با استفاده از دو مجموعه داده اصلی (مجموعه داده تکیه‌گاه مکانی (Original Data) و داده‌های ادغام شده (مجموعه داده با تکیه‌گاه مکانی 14/25 متراً) ETM+ (Fused Data) با استفاده از فرمول نمونه‌های تعیینی انجام گرفت. جهت حذف داده‌ها و یکپک‌های اضافی و منفی در سطح تصور طبقه‌بندی شده با استفاده از اعمال یک فیلتر می‌باشد (Mode Filter) در اخد این‌طور 38 باز کرای به‌صورت طبقه‌بندی، معیارهای پایه صحت شامل کلی، شاخه کاپایا، صحت کاربر (User Accuracy) و صحت توپولوژی کابندی (Producer Accuracy) زمینه منطقه مورد محاسبه قرار می‌گرفت.

نتایج

همان‌گونه که ذکر شد، طبقه‌بندی کننده حداقل احتمال بعنوان گروه‌های طبقه‌بندی کننده داده‌اش استفاده شده و دو مجموعه داده اصلی و تکیه‌گاه آن تحت طبقه‌بندی قرار می‌گرفتند. نتایج طبقه‌بندی نشان داد میزان معیارهای باند نسبت (صحبت کلی و شاخه کاپایا) در تصور اصلی طبقه‌بندی شده به میزان اندکی (تا 2 درصد) نسبت به داده تکیه‌گاه بالاتر است. نتایج حاصل از طبقه‌بندی مجموعه داده اصلی ETM+ در شکل 4 نمایش داده شده است.

نتایج حاصل از ارزیابی صحت طبقه‌بندی در دو مجموعه داده، مقایسه تصویر طبقه‌بندی و واقعیت (Producer Accuracy) در مقایسه تصویر طبقه‌بندی و واقعیت (User Accuracy).
جدول ۲ نتایج ارزیابی صحت طبقه بندی در دو مجموعه داده مورد استفاده

<table>
<thead>
<tr>
<th>شاخص کلایا</th>
<th>صحت کلی</th>
<th>صحت کاربر</th>
<th>صحت تولید کننده</th>
<th>نام طبقه</th>
<th>نام مجموعه داده</th>
<th>طبقه بندی کننده %</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۳</td>
<td>۶۷</td>
<td>۴۳</td>
<td>۷۶</td>
<td>گلک (درخت)</td>
<td>جنگل (درخت)</td>
<td>۷۷</td>
</tr>
<tr>
<td>۴۳</td>
<td>۶۷</td>
<td>۴۳</td>
<td>۷۶</td>
<td>اراضی درختچه‌ای</td>
<td>اراضی درختچه‌ای</td>
<td>۷۷</td>
</tr>
<tr>
<td>۴۳</td>
<td>۶۷</td>
<td>۴۳</td>
<td>۷۶</td>
<td>مرتع</td>
<td>مرتع</td>
<td>۴۶</td>
</tr>
<tr>
<td>۴۳</td>
<td>۶۷</td>
<td>۴۳</td>
<td>۷۶</td>
<td>گلک (درخت)</td>
<td>جنگل (درخت)</td>
<td>۷۷</td>
</tr>
<tr>
<td>۴۳</td>
<td>۶۷</td>
<td>۴۳</td>
<td>۷۶</td>
<td>اراضی درختچه‌ای</td>
<td>اراضی درختچه‌ای</td>
<td>۷۷</td>
</tr>
<tr>
<td>۴۳</td>
<td>۶۷</td>
<td>۴۳</td>
<td>۷۶</td>
<td>مرتع</td>
<td>مرتع</td>
<td>۴۶</td>
</tr>
</tbody>
</table>

نتایج حاصل از ارزیابی صحت تنش با هنرمندان به شرح زیر می‌باشد:

در تصویر اصلی و پس از اعمال فیلتر مت بالاترین صحت تولید کننده مربوط به طبقه گلک و اراضی درختچه‌ای با مقادیر مشابه ۷۶ درصد بود. همچنین طبقه مرتع بالاترین میزان صحت کاربر را با ۷۶ درصد نشان داد. در تصویر تکیی مدارسی صحت طبقه بندی که از این دسته از اطلاعات بهره‌مندی کرده، به صورت بالاترین میزان صحت تولید کننده با مقادیر ۷۶ درصد تعلق گرفت. به طبقه اراضی درختچه‌ای بود و بالاترین میزان صحت کاربر

بحث

در خصوص تحقیق حاضر می‌توان که در صورت برای عدم به‌ویژه صحت طبقه بندی در تصاویر تکیی مدارسی نسبت به تصاویر اصلی + متصور است. در این تکیی نسبت به تصاویر اصلی + مدارسی از ETM+ تصویر است. در این تکیی نسبت به تصاویر اصلی + مدارسی از ETM+ تصویر است. در این تکیی نسبت به تصاویر اصلی + مدارسی از ETM+ تصویر است.
جدول 3. سطوح تحت پوشش طبقات سه گانه بر اساس طبقه بندی
الف) داده اصلی

<table>
<thead>
<tr>
<th>ردیف</th>
<th>نام طبقه</th>
<th>تعداد پیکسل اختصاص یافته</th>
<th>سطح پوشش (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>جنگلی (درختی)</td>
<td>1817</td>
<td>1862</td>
</tr>
<tr>
<td>2</td>
<td>درختچای</td>
<td>4728</td>
<td>59/59</td>
</tr>
<tr>
<td>3</td>
<td>مرتعی</td>
<td>3191</td>
<td>28/46</td>
</tr>
</tbody>
</table>

ب) داده ترکیبی

<table>
<thead>
<tr>
<th>ردیف</th>
<th>نام طبقه</th>
<th>تعداد پیکسل اختصاص یافته</th>
<th>سطح پوشش (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>جنگلی (درختی)</td>
<td>9877</td>
<td>1865</td>
</tr>
<tr>
<td>2</td>
<td>درختچای</td>
<td>1983</td>
<td>59/59</td>
</tr>
<tr>
<td>3</td>
<td>مرتعی</td>
<td>9354</td>
<td>28/46</td>
</tr>
</tbody>
</table>

نتایج به دست آمده توسط هایمان و همکاران در طبقه بندی جنگلی/ غیر جنگلی توسط روش k-نیآکینترین هم‌سایه کل پیکسل‌های طبقه‌بندی شده در ایالات متحده نشان داده‌های مبنای (k-Nearest Neighbor) (kNN) صحت کارآبرد 36 درصد درای طبقه غیر جنگلی و 96 درای جنگلی می‌باشد (10). این می‌تواند این عمل به نحو کاربردی و تدوین‌های هم‌تاریخ شده در منطقه سود ملیم باشد. در حالی که همان‌گونه که در مطالعه دام و پرورش در ایالات متحده نشان داده شد، دیگر نمودار این تحقیق آشکار شد این منطقه دیگر قرار گرفت در داموز (منطقه محیط جنگلی و مراتع یا یافا) از دستور به کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار تغییر از افزایش چشمگیری در محیط طبقات بینی صحت در صورت هدایه کارگری ترکیب و تغییر در محیط طبقه بندی نشان داده که به نیمی نمودار است. انتظار T
Standardizing Spectral Reflectance