اثر نوع منيع وسطح کلیسیم چریه غذایی و اندازه ذرات سیگم آمک بر وزن گیاه
تویلیدی و سختی استخوان درشت تن در جوجه‌های گوشته

مریم زهرویی ۱، حسن نصیری مقدم ۱، فردیند افتخاری شاهروodi ۲ و محسن دانش‌مسگران ۲

چکیده
به منظور بررسی اثر نوع منيع و سطح کلیسیم چریه غذایی و اندازه ذرات سیگم آمک بر وزن گیاه تولیدی و سختی استخوان درشت تن، آزمایشی با استفاده از ۱۸۸ تفاله جوجه‌گویی انجام گرفت. جوجه‌ها تا پایان روز یک چریه آغازین تجویز داده و سپس به طور تصادفی به ۴۴ گردو شش تقلیل‌های تجویز شدند. به گونه‌ای که از نظر میانگین و نردبند میانگین اختلاف معنی‌داری وجود نداشت. نتایج نشان داد که درصد ابتای ظاهری سیگم در سنین ۲۰ و ۹۴ روزگی مقادیر خاکستر، ماده خشک و طول و ضخامت استخوان درشت تن در سنین ۲۰ و ۹۴ روزگی در جوجه‌های تجویز شده با سیگم آمک بیشتر از سیگم غذایی تجویز شده با پوسته صرف بود (۰/۰۵). سطح کلیسیم به گونه‌ای موردی غذایی مصرفی و ضریب تبدیل غذایی، به ویژه در دوره آغازین کاهش (۱/۰۰) دارد. درصد ابتای ظاهری کلیسیم را در سنین ۲۰ و ۹۴ روزگی افزایش داد (۰/۰۵). سطح کلیسیم متوسط سیگم آمک در ابتای ظاهری در سنین ۲۰ و ۹۴ روزگی نمی‌تواند به‌طور معناداری تغییراتی در نتایج و توزیع سختی و درصد ابتای ظاهری داشته باشد. میزان نتایج و توزیع سختی و درصد ابتای ظاهری داشته باشد. میزان نتایج و توزیع سختی و درصد ابتای ظاهری داشته باشد. میزان نتایج و توزیع سختی و درصد ابتای ظاهری داشته باشد.

واژه‌های کلیدی: جوجه‌های گوشته، اندازه ذرات، منيع کلیسیم، عملکرد تولیدی، استخوان درشت تن

۱. کارشناس ارشد علوم دامی و کارشناس سازمان مدیریت و برنامه‌ریزی خراسان
۲. به ترتیب دانشیار، استاد و استادیار علوم دامی، دانشکده کشاورزی، دانشگاه نور، مشهد
هدف از انجام این آزمایش، بررسی تأثیر نوع منبع کلیسم جیره غذایی در سطح مختلف و اندازه‌های مختلف حرارت، بر وزن و گویی‌های توپولی و استخوان درشت نی جوجه‌های گوشتی است.

مواد و روش‌ها

در این آزمایش 743 نقطه جوجه یک روزه گوشتی تجاری به کار رفت. جوجه‌ها به مدت هفت روز یک جیره تجاری آغذی زده شدند و پس از آن به 42 گروه شش قطعه‌ای تقسیم شدند. به گونه‌ای که میانگین وزن جوجه‌ها در تکرارهای مختلف 1/2 ± 0/21 گرم بود. جوجه‌ها در فضا نگهداری شدند (شش جوجه در هر قفس) و در طول دوره آزمایش، غذا و آب آزادانه در اختیار آن‌ها قرار داشت.

طرح آزمایشی در چارچوب بلوک‌های کامل تصادفی و تیمارها در آن به صورت آستانه‌ای 1 مرتب شده بود. هر یک از هشت جیره آزمایشی به طور تصادفی به هشت گروه از جوجه‌ها (هشت تکرار) اختصاص یافت. در این تیمارها، در سطح مختلف کلیسم، در نوع منبع کلیسم، و سه اندازه مختلف ذرات به کار رفت. سطح کلیسم عبارت بود از 0، 50 و 80 درصد سطح ترویجی شده توسط NRC (25)؛ و نوع منبع کلیسمی یافت از پوده گوشی صورت پیوسته تخم مرغ و استخوان از مرغان تخیچ‌گزار بررسی می‌شود، و لی لی در مورد جوجه‌های گوشتی تحقیقات کمتری وجود دارد (6).

1/4 22 و 23.

در برخی مناطق ایران پوسته صدها به عنوان منبع اصلی کلسیم در جیره غذایی جوجه‌های گوشتی به کار می‌رود. در حالی که خردسالان سنگ آمک حاصل از استخوان سنگ آمک از عضای تک، کاربردی ندارند، در صورت پایین بودن میزان ناخالصی‌های آن (مانند منیزیم و به ویژه نیترات)، می‌تواند به منبع کلسیم مناسب در جیره غذایی جوجه‌های گوشتی به کار برد (22 و 23). سنگ آمک، در مقایسه با پوسته صدف، علاوه بر قیمت کمتر، فاقد ناخالصی‌های مانند شیمیایی‌ها است. در نتیجه کلسیم بیشتری دارد. این نشان دهنده که ویژگی‌های مناسبی از گوناگون تشکیل شده است، که این تفاوت در اندازه ذرات، انرژی منابعی بر عملکرد جوجه‌ها می‌گذارد (6) (4، 22 و 23).

I. Nested
<table>
<thead>
<tr>
<th>نوع</th>
<th>پایه</th>
<th>طناب</th>
<th>پیشگیرن</th>
<th>یکتا</th>
<th>دوپا</th>
<th>سهپا</th>
<th>چهارپا</th>
<th>پنجپا</th>
<th>ششپا</th>
<th>هفتپا</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

توضیحات:
- یکتا: طناب یکتار
- دوپا: طناب دوپار
- سهپا: طناب سهپار
- چهارپا: طناب چهارپار
- پنجپا: طناب پنجپار
- ششپا: طناب ششپار
- هفتپا: طناب هفتپار

توجه:
- سهمیه‌های بالا مربوط به اسکلت‌های مختلف بیماری هستند.
- سهمیه‌های پایین مربوط به نیازمندی‌های پزشکی هستند.
جدول ۲. ترتیب عناصر اصلی منبع کلسیمی مورد استفاده

<table>
<thead>
<tr>
<th>منبع کلسیم</th>
<th>فسفر (%)</th>
<th>متزیم (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پوسته صدف</td>
<td>۳۰/۱</td>
<td>۱/۰۷</td>
</tr>
<tr>
<td>سنگ آهن</td>
<td>۳۷</td>
<td>۲/۰۱</td>
</tr>
<tr>
<td>مونوتولوکس فسفات</td>
<td>۱۶/۴</td>
<td>۲/۳</td>
</tr>
</tbody>
</table>

نتایج

نماهنگی داده شده است.

از آزمایش تا سه روزگر ادامه داشت. ورزش و مصرف خوراک جوجه‌ها در طول دوره آزمایش به صورت هفت‌گی اندوزه گذاری شد. در پایان هر مرحله از دوره پوسته (۱۲۱ و ۶۴ روزگری) اندوزه‌گذاری کلسیم انجام گردید. روش کار به این صورت بود که نخست به مدت ۴ ساعت غذا به جوجه‌ها گروسه گذاشته شد. سپس به مدت ۳۲ ساعت غذا به طور آزادانه در اختیار جوجه‌ها قرار گرفت. پس از پانزده ساعت، قطعی مصرفی در این مدت توزین و از هر تکرار یک نمونه برای اندوزه‌گذاری کلسیم و فسفر برافشته شد. همچنین، مقدار تولید شده در طی ۷۲ ساعت جمع آوری گردید، و از هر تکرار یک نمونه مقدار برافشته، و در فریزر نگهداری شد. پس از اندوزه‌گذاری کلسیم و فسفر مقدار نمونه‌ها از فریزر خارج شده و پس از تعادل رسیدن با رطوبت هوا، میزان ماده خشک و سپس میزان فسفر آن‌ها اندوزه‌گذاری گردید.

در سنین ۲۴ و ۵۵ روزگری، از هر تکرار دو جوجه (یک تر و یک ماده) انتخاب و به یک قطعه فلزی داده می‌شد. این میزان به میزان مس اول و دوم کشش شدند. و از لحاظ وضعیت استخوان در بلندی مورد بررسی قرار گرفتند (۱۲، ۱۸، ۲۴ و ۲۷). شاخص‌های اندوزه‌گذاری شده در استخوان درشت نی و عبتار بود از طول، قطر داخلی و خارجی، ضخامت میزان ماده خشک و خاکستر بدون جریب استخوان. داده‌های این آزمایش در چارچوب طرح SAS آمیخته‌ای به روش مدل خطی عمومی ۳ توصیف نتوانست

تجزیه آماری گردیدند (۲۸). میانگین‌ها به کمک روش مقایسه مستقل میانگین‌های شدند. مدل آماری طرح به صورت

1. Ad libitum
2. Tibia
3. General Linear Model
4. Calcium Balance Study
<table>
<thead>
<tr>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% NRC</td>
<td>0.8% NRC</td>
<td>0.6% NRC</td>
<td>0.4% NRC</td>
<td>0.2% NRC</td>
<td>0% NRC</td>
<td>1% NRC</td>
<td>0.8% NRC</td>
<td>0.6% NRC</td>
<td>0.4% NRC</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
<td>q0.2/1</td>
<td>q0/1</td>
<td>q1.0/1</td>
<td>q0.8/1</td>
<td>q0.6/1</td>
<td>q0.4/1</td>
</tr>
<tr>
<td>اسم پیشنهاد</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
</tbody>
</table>

بحث 1

بحث 2

بحث 3

بحث 4

بحث 5

بحث 6

بحث 7

بحث 8

بحث 9

بحث 10
الاثر نوع منع و سطح کلسیم جیره غذایی و اندامه ذرات سنگ آهنی بر....

آمده است. کاربرد سنگ آهن در مقایسه با پوسته صدف، به گونه‌ای معناداری داریم فسفر را در سنین 42 و 54 روزگی کاهش داد (5/00>P). سطح کلسیم معادل 100 درصد در مقایسه با پوسته صدف، فسفر دفع کلسیم و ایج اعضا فسفر را افزایش دادند (5/00>P). سطح کلسیم معادل 100 درصد در مقایسه با پوسته صدف، دفع فسفر و ابتکار میزان ماده خشک و خاکستر و دیده خاکستر بدون فسفر ایج اعضا فسفر (3%) و ایج اعضا کلسیم (12-13 درصد) تنها در نتیجه استفاده از سنگ آهن معیان دار بود (5/00>P). لیکن در مورد ذرات ریز آن، میزان فسفر در این دو سطح کلسیم و میزان دفع فسفر را در سطح کلسیم 85 درصد به طور معین داری کاهش داد (5/00>P). در نتیجه، ابیاقه ظاهری کلسیم و فسفر با استفاده از هر دو سطح کلسیم انباشی معین داری یافت (5/00>P). در سنین 24 و 36 روزگی، اندامه ذرات در مقایسه با دراز ریز دیده در سطح کلسیم 100 درصد به گونه‌ای معناداری میزان دفع کلسیم را کاهش و ابیاقه ظاهری کلسیم را افزایش داد (5/00>P). در سطح کلسیم 85 درصد در مقایسه با دراز ریز دیده در سطح کلسیم 100 درصد به گونه‌ای معناداری میزان دفع کلسیم را کاهش و ابیاقه ظاهری آن را افزایش داد (5/00>P).

شایعه‌های رشد و آهنی شدن استخوان درشت نی
شایعه‌های رشد و آهنی شدن استخوان درشت نی در جدول باور ندارید. در سنین 45 و 54 روزگی، با پرورش از سنگ آهن در مقایسه با پوسته صدف به گونه‌ای معناداری، کاهش دیده در سطح کلسیم 85 درصد در سنین 45 و 54 روزگی در مقایسه با پوسته صدف به گونه‌ای معناداری، کاهش دیده در سطح کلسیم 85 درصد در سنین 45 و 54 روزگی در مقایسه با پوسته صدف به گونه‌ای معناداری، کاهش دیده در سطح کلسیم 85 درصد در سنین 45 و 54 روزگی:

1. Calcium and phosphorus retention in percentage of calcium and phosphorus ingestion
بحث

عملکرد تولیدی

سطح کلسیم میدان 85 درصدی در مقایسه با سطح کلسیم NRC 100 درصدی، باعث بهبود ضریب تبدیل غذایی شد. زیرا افزایش کلسیم جیره بر سبب سایر مواد معدنی ضروری مخلوط اثر منفی دارد، و باعث از بین رفتن تعداد متابولیک می‌گردد. که این امر بر بازده غذایی نیز تأثیر منفی می‌گذارد. (4، 15، 16، 17)

۲۹۵ اندوزه دراز درخت و متوسط سنگ آکهک در مقایسه با سنگ آکهک، و در نتیجه ضریب تبدیل غذایی را کاهش داد. زیرا درازه زمان سنج با کاهش بیش از حد در اختلال دانشی و قابلیت تراکم بیشتر در مقایسه با درخت، می‌تواند باعث افزایش غذا و افزایش سطح کلسیم باشد. در نتیجه این امر مصرف غذا و ضریب تبدیل غذایی افزایش یابد. (۴، 14، 13، 12، 7، 6، 5)

آزمایش‌ها

از آزمایش‌های کلسیم و شاخص‌های رشد و آمکش شدن استخوان درشت درخت استفاده گردید. پوسته صدف دارای ناخالصی‌هایی که سطح کلسیم جیره بر شاخص‌های تولیدی و آمکش شدن استخوان درشت نی بیگانه مشاهده گردید. (۴، 14، 13، 12، 7، 6، 5)

مطالعه با فلش پا را به میزان 1/7 درصد بالا برد (5، 6، 7، 8).

اثر نوع منبع و سطح کلسیم جیره غذایی و اندازه ذرات سنگ آکهک بر

کاهش میزان ابزار ظاهری این در عنصر (پراید مقدار کلسیم و فسفر مصرفی) و کاهش رضایت کلسیم و فسفر در استخوان می‌گردد (4، 12، 13، 14، 15 و 16).

سطح کلسیم 65 درصدی در مقایسه با سطح کلسیم NRC 100 درصدی، باعث بهبود ضریب تبدیل غذایی شد. زیرا افزایش کلسیم جیره بر سبب سایر مواد معدنی ضروری مخلوط اثر منفی دارد، و باعث از بین رفتن تعداد متابولیک می‌گردد. که این امر بر بازده غذایی نیز تأثیر منفی می‌گذارد. (4، 15، 16، 17)

۲۹۵ اندوزه دراز درخت و متوسط سنگ آکهک در مقایسه با سنگ آکهک، و در نتیجه ضریب تبدیل غذایی را کاهش داد. زیرا درازه زمان سنج با کاهش بیش از حد در اختلال دانشی و قابلیت تراکم بیشتر در مقایسه با درخت، می‌تواند باعث افزایش غذا و افزایش سطح کلسیم باشد. در نتیجه این امر مصرف غذا و ضریب تبدیل غذایی افزایش یابد. (۴، 14، 13، 12، 7، 6، 5)

آزمایش‌ها

از آزمایش‌های کلسیم و شاخص‌های رشد و آمکش شدن استخوان درشت درخت استفاده گردید. پوسته صدف دارای ناخالصی‌هایی که سطح کلسیم جیره بر شاخص‌های تولیدی و آمکش شدن استخوان درشت نی بیگانه مشاهده گردید. (۴، 14، 13، 12، 7، 6، 5)

مطالعه با فلش پا را به میزان 1/7 درصد بالا برد (5، 6، 7، 8).

اثر نوع منبع و سطح کلسیم جیره غذایی و اندازه ذرات سنگ آکهک بر

کاهش میزان ابزار ظاهری این در عنصر (پراید مقدار کلسیم و فسفر مصرفی) و کاهش رضایت کلسیم و فسفر در استخوان می‌گردد (4، 12، 13، 14، 15 و 16).

سطح کلسیم 65 درصدی در مقایسه با سطح کلسیم NRC 100 درصدی، باعث بهبود ضریب تبدیل غذایی شد. زیرا افزایش کلسیم جیره بر سبب سایر مواد معدنی ضروری مخلوط اثر منفی دارد، و باعث از بین رفتن تعداد متابولیک می‌گردد. که این امر بر بازده غذایی نیز تأثیر منفی می‌گذارد. (4، 15، 16، 17)

۲۹۵ اندوزه دراز درخت و متوسط سنگ آکهک در مقایسه با سنگ آکهک، و در نتیجه ضریب تبدیل غذایی را کاهش داد. زیرا درازه زمان سنج با کاهش بیش از حد در اختلال دانشی و قابلیت تراکم بیشتر در مقایسه با درخت، می‌تواند باعث افزایش غذا و افزایش سطح کلسیم باشد. در نتیجه این امر مصرف غذا و ضریب تبدیل غذایی افزایش یابد. (۴، 14، 13، 12، 7، 6، 5)

آزمایش‌ها

از آزمایش‌های کلسیم و شاخص‌های رشد و آمکش شدن استخوان درشت درخت استفاده گردید. پوسته صدف دارای ناخالصی‌هایی که سطح کلسیم جیره بر شاخص‌های تولیدی و آمکش شدن استخوان درشت نی بیگانه مشاهده گردید. (۴، 14، 13، 12، 7، 6، 5)

مطالعه با فلش پا را به میزان 1/7 درصد بالا برد (5، 6، 7، 8).

اثر نوع منبع و سطح کلسیم جیره غذایی و اندازه ذرات سنگ آکهک بر

کاهش میزان ابزار ظاهری این در عنصر (پراید مقدار کلسیم و فسفر مصرفی) و کاهش رضایت کلسیم و فسفر در استخوان می‌گردد (4، 12، 13، 14، 15 و 16).

سطح کلسیم 65 درصدی در مقایسه با سطح کلسیم NRC 100 درصدی، باعث بهبود ضریب تبدیل غذایی شد. زیرا افزایش کلسیم جیره بر سبب سایر مواد معدنی ضروری مخلوط اثر منفی دارد، و باعث از بین رفتن تعداد متابولیک می‌گردد. که این امر بر بازده غذایی نیز تأثیر منفی می‌گذارد. (4، 15، 16، 17)

۲۹۵ اندوزه دراز درخت و متوسط سنگ آکهک در مقایسه با سنگ آکهک، و در نتیجه ضریب تبدیل غذایی را کاهش داد. زیرا درازه زمان سنج با کاهش بیش از حد در اختلال دانشی و قابلیت تراکم بیشتر در مقایسه با درخت، می‌تواند باعث افزایش غذا و افزایش سطح کلسیم باشد. در نتیجه این امر مصرف غذا و ضریب تبدیل غذایی افزایش یابد. (۴، 14، 13، 12، 7، 6، 5)
سیاستگذاری

بدین وسیله از معاونت محرّم پژوهش دانشگاه فردوسی مشهد، که بوده جهت تحقیق‌اتی این طرح را تأمین نمودند، تحقیق و سیاستگذاری می‌نماید.

ممنوع مورد استفاده

1. ساعتی، ه. م. شمشایر، ک. نیک‌پور، تهیه و مروری. ۱۳۷۱. غذاهای دام و طیور و مواد غذایی دسته‌ای آنها (جلد دوم). انتشارات نگهداری آن‌ها (جلد دوم).

2. فروخزاری، ه. م. منابعی لیست در رابطه با ویتامین D۳ (ترجمه). چکاکو، دوره دوم، شماره ۶.

3. گلستان، ر. م. سالاری سالاری (ترجمه). ۱۳۷۴. تغذیه طیور. انتشارات وابسته به پژوهش معاونت کشاورزی سازمان اقتصادی کشور.

4. مدیر صانع، ه. م. ۱۳۷۱. مناسب کلسیم و نیتروژن برای درست‌یابی به تولید بهبود در مرغ‌های گوشتخانه (ترجمه). چکاکو، دوره پنجم، شماره ۷.

5. مدیر صانع، ه. م. ۱۳۷۲. آستانه تحمل جوهره‌های در حال رشد نسبت به کلسیم، تأثیر نسبت کلسیم به فسفر قابل استفاده در جوهره غذاهای (ترجمه). چکاکو، دوره دوم، شماره ۷.

