ترکیب شیمیایی، تجزیه پذیری ماده خشک و پروتئین خام سیلاز پونجیه عمل آوری شده با
اسیدهای فرمیک و سولفوریک و تاثیر آن بر عملکردن گاو‌های هلش‌تاونی تازه‌زا

مهیدی بهگر، محسن دانش‌مدرس، حسن نصری‌مقدم و سعید سیاحی‌نژاد¹

چکیده

اثر اسید فرمیک و اسید سولفوریک بر ترکیب شیمیایی، تجزیه‌پذیری ماده خشک و پروتئین خام سیلاز پونجه و بررسی استفاده از آن در جبره گاو‌های شیردوزه نشان داد که، در مرحله اول پونجیه با اسید فرمیک (صفر)، و ۶۰ میلی‌لیتر در کیلوگرم ماده خشک و اسید سولفوریک (صفر) و ۴ میلی‌لیتر در کیلوگرم ماده خشک و در مقدار ماده خشک (۲۲ و ۳۳ درصد) سیلو شد. در مرحله دوم، فرآیند تجزیه پذیری ماده خشک و پروتئین خام سیلاز شاهد (فقالد ازودنی، تیمار اول) سیلاز پونجه، حاوی اسید فرمیک و اسید سولفوریک (به ترتیب ۱۵ و ۲ میلی‌لیتر در کیلوگرم ماده خشک و تیمار دوم) بود. پونجه خشک (تیمار سوم) با استفاده از روش کیسبه‌های تانیلو اندازه‌گیری شدند. در مرحله سوم در جبره گاو‌های تازه‌زای هلش‌تاونی (۱۱ راس با میانگین روزهای شیرده ۲۸ ± ۵ درصد) از مقدار علف خشک پونجه در جبره یاپا سیلاز پونجه (تیمار اول و دوم مرحله قبل) چاپی‌گذاری شد و به مدت ۴۹ روز در قالب طرح کاملاً تصادفی مورد تغذیه گزاره شدند. افزایش ماده خشک باعث کاهش pH سیلاز شد (۵/۸). پخش سریع تجزیه (a) ماده خشک در سیلاز‌ها می‌باشد. پدری (۲۵/۰) و کنترل از علف خشک پونجه (۵/۰) بود. پخش (a) پروتئین خام در سیلاز حاوی اسید در مقایسه با سیلاز شاهد و علف پونجه پایین تر بود به ترتیب ۲۴/۰، ۲۷/۰ و ۵/۶. پخش (b) پروتئین خام در سیلاز حاوی اسید در مقایسه با سیلاز شاهد و علف پونجه پایین تر بود به ترتیب ۲۴/۰، ۲۷/۰ و ۵/۶. مصرف ماده خشک، تولید و ترکیب شیر تحت تأثیر تیمارها قرار گرفت. اثر زمان بر چربی شیر و مواد جامد فقالد چربی شیر به‌صورت دو رده دو مدت (۵۰) شید (۵۰) گل‌گیری خون در زمان قبل از خوراک‌دهی در فرنگ چهارم آزمایش در دام چهار تغذیه شده به تیمار دو بیشتر از تیمار یک بود (۵۰).

واژه‌های کلیدی: گاو‌های تازه‌زای، سیلاز پونجه، اسید فرمیک، اسید سولفوریک

مقدمه

در مناطقی که به‌دلیل شرایط آب و هوایی امكان خشک کردن علف هر فراهم نمی‌باشد، به‌نیازهای سیلو در مقایسه با خشک کردن علف‌ها به عوامل روشنی مناسب شناخته شده است (۲۰). خشک کردن پونجه در مزرعه باعث از دست رفتن مواد معنی‌دار

¹ به ترتیب دانشجوی سایپ کارشناسی ارشد دانشیار، استاد و دانشجوی سایپ کارشناسی ارشد علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
حمج آب رقیق شده و بر روی علوفه ویژه در فرآیند تئورزون غیر پروتونی بیشتری (14). نتایج اولیه استفاده از اسیدهای معدنی در فرآیند سلیزاسی یک کاهش pH علوفه‌ها به پایین تر از 4 نشان داد که شرایطی متقابل زیاد این نوع سلیزاسیا سبب مشکلات متانلپسمی در گاها می‌گردد. برای رفع این مشکل از مذکور کمتری استفاده و با اسیدهای آلی (معمولاً اسید فرمیک استفاده می‌شود (16). افزودن اسید به علت تخمیر شده بی نوبه به بعضی از اسید‌ها کاهش pH آن و در نتیجه بهبود شرایط سلیزاسی می‌گردد. سلیزاسیون pH کاهش یا افزایش یکی از اسیدهای فرمیک دارای pH باینیتر و همچنین pH بیشتر اسیدهای مورد استفاده از اسیدهای pH بیشتر اسیدهای اسیدهای اسیدهای اسیدهای کاهش غیرپروتونیک کمتری نسبت به علت سلیزاسیون بدون اسید بود (13،14). افزودن اسید به استفاده از اسید فرمیک بیشتر pH نباید کاهش ظرفیت بافری کاهش کاهش تئورزون امیکاکی و نیتروزون غیر امیکاکی در دسترسی از مطالعات هدف است (21). استفاده از اسید فرمیک و یا پیرمزرده سازی باعث یک کاهش بسیار تحقیج و افزایش بخش کند تجربه می‌گردد (12،13 و 23). همچنین اسید فرمیک بازیافت اثرات افزایش داده و تجربیات پروتونی در سیلزاسی را کاهش می‌دهد. گاهی تغییر شده از سلیزاسیا به‌طور کامل به‌طور شرایط بخش یکی از فرمیک مقدار شیرین بیشتری تولید می‌کند (24). این آزمایش به منظور بررسی تأثیر اسید فرمیک و اسید سولفوریک بر خصوصیات شیمیایی سلیزاسیون بیشتر pH نباید (دو سطح ماده خشک). تجربه‌های دو مانند به شکل دوم و پروتونی از pH همچنین تأثیر این بر خصوصیات تولیدی گاهاه تازه‌ها همستان انجام شد.

مواد و روش‌ها

مرحله اول
در این مرحله از آزمایش، بیونجه‌های سرویسدا میانگین ماده خشک ۲۲ درصد برداشت شده و به کمک چاپ به قطرات ۱۰ تا ۲۵ سانتی‌متر خرد گردید. مقادیر مختلف اسید فرمیک (خلوژک ۱/۹ گیاهی و ۶ میلی‌لیتر به ازای کیلوگرم ماده خشک، و اسید سولفوریک (خلوژک ۹/۹) با ژنگلی ۱/۶۴ صفر و ۴ میلی‌لیتر به ازای کیلوگرم ماده خشک) با ۴ بار را...

مرحله دوم
پس از بررسی خصوصیات شیمیایی و تجزیه آماری داده‌های حاصل از سلیزاسیون آزمایش در مرحله اول آزمایش، دو سلیزاسیون pH شده‌های فلوروزیک (شاهد) و سلیزاسیون pH بی‌پذیرش ماده شده دارای اسید فرمیک و اسید سولفوریک (به ترتیب ۱۵ و ۴ میلی‌لیتر در سلیزاسیون pH توسط روش و سوست تعیین شد (21).
دیجیتالیسیشن، تجزیه‌های داده‌ها، مدل سیلزاس با سیستم بلوتوث داده‌ها مورد استفاده قرار گرفته و سپس عمل انوکلوسیسیون در شکم‌های انگلیسی یافته شد (77). پس از خارج کردن کیسه‌ها از شکم‌ها، عمل استخراج تا هنگام خارج شدن آب زلال از کیسه‌ها توسط استخراج شد. سپس کیسه‌ها به مدت 48 ساعت در آون در دمای 70 درجه سانتی‌گراد خشک شدند (15) و مقدار ناپدید شدن ماده خشک و تبخر به نمونه ادقاده‌گیری شد.

مرحله سوم
در این مرحله از سیستمز از 11 راس گاو تازه‌زایی را از متوسط وزن 500-550 گرم (متوسط وزن 3 شکم) با روش تزریق داخلی به روش تزریق انتهایی گیری تبخر کرده شیر با روش آزمایشی - تورنتسیون توسط دستگاه اسکیب‌فومتر (Jenway 6105) نمونه‌برداری شد. سپس کیسه‌ها به مدت 48 ساعت در آون در دمای 70 درجه سانتی‌گراد خشک شدند (15) و مقدار ناپدید شدن ماده خشک و تبخر به نمونه ادقاده‌گیری شد.

تجزیه آماری

1. تجزیه آماری داده‌های مرحله اول (آزمایشی

برای تجزیه آماری داده‌های مرحله اول، واریانس مجموعه‌ای استفاده شد. پس از تجزیه داده‌ها از نرم‌افزار SAS GLM از روش استفاده گردید. مقایسه

کیلولوگ ماده خشکک برای ساخت سیلزاس با برگ انتخاب شدن و سلوله‌ها بین 25 روز گشوده شدن و از آنها نمونه‌گیری به عمل آمد. برای تبعیض ضایعی تجزیه‌بندی از دو راس گاو تازه‌زایی (وزن بدن بین 270 و 380 دایر فیس‌تولای شکم‌ها استفاده شد. نمونه‌های خشکگیری شکم‌های سیلزاس با آسیاب دارای اکثریت 5 میلیتراً اسپاین شده و به میزان 5 گرم در کیسه‌های از جنس ابریشم مصنوعی ریخته شد و سپس کیسه‌ها توسط نخ نابولوئی بسته شد. کیسه‌ها دارای ابعاد (185 × 90 میکرون‌بوئن) (21). از تیمار‌های مورد نظر 2 تکرار (در هر گروه نر 2 تکرار) در زمان‌های 4، 8، 16، 24 و 28 ساعت در شکم‌های فرار گرفت. برای بررسی تیمار ناپدید شدن ماده خشک و پرونیت خام در زمان صرف، کیسه‌های حاوی فなのか در زیر شیر آب شسته شدند. برای زمان‌های 2، 4 و 8 ساعت، کیسه‌ها ابتدا حدود 90 درجه سانتی‌گراد خارج شدن آب زلال از کیسه‌ها توسط استخراج شد. سپس کیسه‌ها به مدت 28 ساعت در آون در دمای 70 درجه سانتی‌گراد خشک شدند (15) و مقدار ناپدید شدن ماده خشک و تبخر به نمونه ادقاده‌گیری شد.

هدفه دوره عادت پذیری سیری کردن (AFRC) هفته‌ها برای خوراک‌های آزمایشی (جدول 1) تغذیه شدند (AFRC) سیلزاس؛ بیوینجه (نیمار روغن و دو) گاوگیرین 25 درصد ماده خشکهای خشکگیری خشکگیری در جبرای پایه گردد. تولید شیر بهصورت روزانه تبیه شد و از شیر تبعیض ماده خشک چربی، پرونیت، لاکتوز و مواد خامه‌ای فاقد چربی به‌صورت هفته‌ها نمونه‌گیری به عمل آمد. برای اندازه‌گیری شیر همه نوش دوی یا روزانه به هم مخلوط و نمونه‌گیری انجام شد. ماده خشک موجود در 3 میلی‌لیتر شیر از آن در دمای 100 درجه سانتی‌گراد به مدت 24 ساعت تغذیه شد (2) درصد نهایی مایکلوسکن (Foss Electric model 4000) فنی نمونه‌برداری شد. برای بررسی مایکلوسکن های خون (نیتروژن غیر آمینی و گلکوز) در دو مرحله (هفته چهارم و هفته هفتم) در زمان‌های قبل از خوراک محاسبه به‌صورت عده‌گذاری گردیده می‌شوند و بهای هم نمونه‌های خون (n = 10) هفته‌های پلاسمایFDX آزمایشی یافته شد. پس از افزودن EDTA به‌صورت گردیده کردن نمونه‌ها در 1500 دور در دقیقه به آب به مدت 15 دقیقه به همین شد (14). پلاسمای جدا شده در دمای 20 درجه سانتی‌گراد نگهداری شد و گلکوز و نیتروژن غیر آمینی خون با روش آزمایشی – تورنتسیون توسط دستگاه اسکیب‌فومتر (Jenway 6105) نمونه‌برداری شد. نتایج آزمایشی در زبان تهیه شده (کیبسیا، اوره، زیست‌شناسی، تهران، ایران).

برای تجزیه های تبخر از شیر، ابتدا با بخش پرونیت حفظ شیر روس داده شد (5) و از بخش محلول شفاف فوکنی برای اندازه‌گیری تبخر از شیر با روش آزمایشی – تورنتسیون توسط دستگاه اسکیب‌فومتر (Jenway 6105) استفاده شد (کیبسیا، اوره، زیست‌شناسی، تهران، ایران)
جدول 1. ترکیب مواد خوراکی و ترکیب مواد غذی جیره پایه خوراک‌های آزمایشی

<table>
<thead>
<tr>
<th>کیلوگرم ماده خشک</th>
<th>ماده خوراکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/5</td>
<td>سیلانز درت</td>
</tr>
<tr>
<td>7</td>
<td>علف بونجه 1</td>
</tr>
<tr>
<td>2/7</td>
<td>جو</td>
</tr>
<tr>
<td>3/6</td>
<td>درت</td>
</tr>
<tr>
<td>3</td>
<td>کنجال سویا</td>
</tr>
<tr>
<td>0/6</td>
<td>کنجال نخم پنجه</td>
</tr>
<tr>
<td>0/5</td>
<td>نخم پنجه</td>
</tr>
<tr>
<td>0</td>
<td>تغذیه چندند</td>
</tr>
<tr>
<td>17</td>
<td>سبوس گندم</td>
</tr>
<tr>
<td>0/66</td>
<td>دی کلسیم فسفات</td>
</tr>
<tr>
<td>0/33</td>
<td>آهک</td>
</tr>
<tr>
<td>0/66</td>
<td>نمک</td>
</tr>
<tr>
<td>0/2</td>
<td>مکمل مواد معدنی و ویتامین</td>
</tr>
</tbody>
</table>

ترکیب مواد غذی

پروتئین خام (درصد)

انرژی قابل متابولیسم (مگا کالری در کیلوگرم)

انرژی قابل تخمیر قابل متابولیسم (مگا کالری در کیلوگرم)

پروتئین قابل تخمیر مولت در شکمی (گرم در کیلوگرم)

پروتئین غیر قابل تخمیر (گرم در کیلوگرم)

پروتئین قابل هضم غیر قابل تخمیر (گرم در کیلوگرم)

ایلای نامحول در شونده خشی (درصد)

ایلای نامحول در شونده اسمی (درصد)

عصاره اری (درصد)

کلسیم (گرم در کیلوگرم)

فسفور (گرم در کیلوگرم)

میانگین‌ها در سطح 5 درصد با روش تونکی انجام شد. مدل ریاضی استفاده شده برای انواع منظور به صورت زیر می‌باشد:

\[Y_{ijk} = \mu + A_i + B_j + C_k + A_i \times B_j + C_k + E_{ijk} \]

\[\bar{Y}_{ijk} = \frac{1}{i} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} Y_{ijk} \]

به یک از سیلزه‌های بونجه تیمار 1 و 2 به مقدار 50 رصد ماده خشک جایگزینی علف بونجه شد.

\[Y_{ijk} = \bar{Y}_{ijk} + E_{ijk} \]

\[\bar{Y}_{ijk} = \mu + A_i + B_j + C_k + A_i \times B_j + C_k + E_{ijk} \]
ترکیب شیمیایی تجهیزه‌پذیری ماده خشک و پروتئین خام سیلاز بیولوژیکی نمایه عم‌آری شده‌با...

\[Y_{ijk} = \mu + D_i + W_j + C_{k(i)} + D_iW_j + B(X_{ij} - \overline{X}_j) + E_{ijk} \]

\[Y_{ijk} = \text{عملکرد هر رأس دام} \]

\[\mu = \text{میانگین کل مشاهدات اجتماع} \]

\[D_i = \text{اثر چربی} \]

\[W_j = \text{اثر هفته} \]

\[C_{k(i)} = \text{اثر دام در پیشرفت حفظ} \]

\[D_iW_j = \text{اثر مقابل اسید فرمیک و اسید سولفونیک و ماده خشک واریانس باقی مانده} \]

\[E_{ijk} = \text{باقا باقی مانده} \]

۲. تجزیه داده‌های مرحله دوم

فرآیندهای تجزیه‌پذیری ماده خشک و پروتئین خام با استفاده از مدل ارسکف و مکدونالد تعیین شد (۱۸).

\[P = a + b \cdot (1 - e^{-ct}) \]

\[P = \text{بنیان برای تجزیه پذیری} \]

\[a = \text{پیش‌سپری تجزیه در زمان} \]

\[b = \text{پیش‌کند تجزیه در زمان} \]

\[c = \text{ثابت نرخ تجزیه پذیری} \]

\[t = \text{مدت زمان قرار دادن نمونه در شکمه} \]

برای این‌منظور، داده‌ها با استفاده از نرم‌افزار (۱۹) Biodos (Biosoft corporation, Durham, NC USA) Fig P تجزیه قرار گرفتند.

۳. تجزیه آماری مرحله سوم آزمایش

تجزیه و تحلیل داده‌های حاصل از تأثیر خوراک‌های حاوی سیلاز ماده بیولوژیکی نمایه تغذیه‌گذاری هشته‌بان روی اندام گیری تکرار شده در نشانه‌های دارای تولید شیر مصرف ماده خشک از میانگین هفته‌گی و برای تجزیه این نمونه‌های هفته‌گی استفاده شد. تمامی اطلاعات جمع‌آوری شده در هنگام اول آزمایش که دام‌ها از جیره و نقش پذیری غذای مورد نمودن به عنوان کواریس تحت نظر گرفته شد. داده‌های آزمایش در نرم‌افزار SAS بررسی شدند.

روش تکرار در زمان با روش مورد تجزیه قرار Mixed Model روش تکرار در زمان با روش مورد تجزیه قرار گرفت. برای هدفمند بودن اثر زمان از رگرسیون چند جمله‌ای استفاده شد. اثر زمان با صورت درجه اول (time) در تجزیه آماری بستگی آمد (۲۷). مدل ریاضی استفاده شده به صورت زیر بود.
جدول 2. ترکیب شیمیایی سیاله‌های آزمایشی پونجه با ماده خشک متفاوت و عمل آوری شده با اسید فرمیک و اسید سولفوریک

<table>
<thead>
<tr>
<th>اسید سولفوریک (میلی لیتر در کیلوگرم ماده خشک)</th>
<th>اسید فرمیک (میلی لیتر در کیلوگرم ماده خشک)</th>
<th>ماده خشک (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>SEM</td>
<td>صفر</td>
</tr>
<tr>
<td>0/327</td>
<td>0/14</td>
<td>0/532</td>
</tr>
<tr>
<td>0/78</td>
<td>0/55</td>
<td>0/85</td>
</tr>
<tr>
<td>0/27</td>
<td>0/37</td>
<td>0/48</td>
</tr>
<tr>
<td>0/86</td>
<td>0/39</td>
<td>0/40</td>
</tr>
<tr>
<td>0/25</td>
<td>0/91</td>
<td>0/31</td>
</tr>
<tr>
<td>0/29</td>
<td>0/43</td>
<td>0/38</td>
</tr>
</tbody>
</table>

پروتئین خام (گرم در کیلوگرم)
پروتئین غیر پروتئینی (گرم در کیلوگرم)
پروتئین حقیقی (گرم در کیلوگرم)
پروتئین آمونیاکی (میلی گرم در دسی لیتر)
دیواره سلولی (گرم در کیلوگرم)

p : میانگین انحراف معیار
SEM : گرفتگی میانگین معیار
P : سطح احتمال معنی‌دار شدن
* : الیاف نامحلول در شوینده خشک

pH

 enjoys a good reputation for being both soft and easy to digest. It is also rich in nutrients, including vitamins C and E, which are essential for maintaining a healthy immune system and reducing inflammation. In addition, asparagus is an excellent source of fiber, which can help with digestion and overall gut health. Whether you enjoy it raw, steamed, or roasted, asparagus is a versatile and nutritious addition to any diet.
جدول 3. ترکیب شیمیایی سیلالزهای نهی شده در مرحله دوم و سوم آزمایش

<table>
<thead>
<tr>
<th>تیمار</th>
<th>ماده خشک</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27/3</td>
<td>5/38</td>
</tr>
<tr>
<td>2</td>
<td>36/12</td>
<td>5/38</td>
</tr>
<tr>
<td>3</td>
<td>19/71</td>
<td>19/91</td>
</tr>
<tr>
<td>4</td>
<td>11/6</td>
<td>10/05</td>
</tr>
<tr>
<td>5</td>
<td>1/28</td>
<td>1/28</td>
</tr>
<tr>
<td>6</td>
<td>15/9</td>
<td>18/12</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

*۱. سیلالز بونجه شاهد. ۲. سیلالز بونجه عمل آوری شده با استیفمیک و اسید سولفوریک (به ترتیب ۱۵ و ۲ میلی لتر در کیلограм ماده خشک). کاهش تخمیر و توقف عمل آنزیم‌های گیاهی (به دلیل pH) کاهش (به دلیل pH) نمایش داده است. این نتایج داده‌های سایر یافته‌های اصلی به ترتیب می‌باشد. ۲. به‌واسطه فاکتور تیمار تخمیر تربیتی و استیفمیک و اسید سولفوریک کاهش تجمیع پروتئین حاصل مقدار نیتروژن آمونیاکی در این سیلالزهای کمتر بوده و همچنین این سیلالزهای دارای پروتئین حیاتی بیشتری بودند. که نتایج به‌گونه‌ای را تأیید می‌نماید (۱۴). با افزایش استیفمیک مقدار دیوایر سولفوریک سیلالز بونجه تغییر می‌کند. نتایج و همکاران (۱۴) نیز دریافتند که استفاده از استیفمیک و فرمالدید دارای اثر اندازی بر دیوایر سولفوریک و دیوایر سولفوریک بدون همی سولفوریک (ADF) است. این حال در آزمایش‌های بابلاک و موروز (۷) و هیرستو و ساندی (۱۴) دیوایر سولفوریک سیلالزهای حاوی استیفمیک کاهش یافت که این مهقافان اثر را به قدرت هیدروالنی اسید فرمیک نسبت دادند.

مرحله دوم

ترکیب دو سیلالز استفاده شده در این مرحله در جدول ۱ ذکر شده است. فراستفاده‌های تربیتی ماده خشک و پروتئین‌ها در ۳ نشان داده شده است. مقایسه شرایط تربیت‌پذیری ماده خشک نشان داد کهبخش ۲ تخمیر تربیتی (a)
جدول 4. فراستیجه‌های تجزیه پذیری ماده خشک و پروتئین خام سیلیز بوته‌های بدون افزودنی. حاصل اسید فرمیک و اسید سولفوریک و علوفه خشک بوته (به ترتیب 15 و 4 میلی لیتر در کیلوگرم ماده خشک) (c±SEM) بخش سرعت تجزیه (b±SEM) بخش نرخ تجزیه‌پذیری (a±SEM) ماده خشک پروتئین خام

<table>
<thead>
<tr>
<th></th>
<th>ماده خشک</th>
<th>پروتئین خام</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/08 ± 0/01</td>
<td>0/30 ± 0/01</td>
</tr>
<tr>
<td></td>
<td>0/12 ± 0/02</td>
<td>0/35 ± 0/01</td>
</tr>
<tr>
<td></td>
<td>0/19 ± 0/15</td>
<td>0/50 ± 0/14</td>
</tr>
<tr>
<td>پروتئین خام</td>
<td>0/06 ± 0/01</td>
<td>0/25 ± 0/02</td>
</tr>
<tr>
<td></td>
<td>0/20 ± 0/03</td>
<td>0/45 ± 0/02</td>
</tr>
<tr>
<td></td>
<td>0/24 ± 0/03</td>
<td>0/55 ± 0/12</td>
</tr>
<tr>
<td></td>
<td>0/25 ± 0/03</td>
<td>0/65 ± 0/12</td>
</tr>
</tbody>
</table>

1. سیلز بوته شاهد، 3. سیلز بوته عمولی شده با اسید فرمیک و اسید سولفوریک (به ترتیب 15 و 4 میلی لیتر در کیلوگرم ماده خشک) و 3. علوفه بوته. علوفه سوم

مرحله سوم

ترکیب نسبت استفاده شده در این مرحله در جدول 3 موجود است. این دو سیلز جایگین 50% از علوفه بوته در جریه بهای شد. همچنین داده‌های مربوط به مصرف خوراک، تولید و ترکیب شیر گاهی تازه‌ای هسته‌ای تغذیه شده با خوراک‌های خاص بوته سیلز بوته پز و گاهی بوته حاوی اسید فرمیک (150 میلی لیتر در کیلوگرم ماده خشک) و اسید سولفوریک (40 میلی لیتر در کیلوگرم ماده خشک) در جدول 3 نشان داده شده است.

صرف ماده خشک در گاهی تغذیه شده با تیمار آزمایشی دارای سیلز بوته اسیدها به‌شکل دانه تغذیه شده با تیمار آزمایشی سیلز بوته فاقد اسید بوته، اما این تفاوت از نظر آماری معنی‌دار نبود. همچنین در خصوص تولید شیر و وجود این که تولید در ماده تغذیه شده با تیمار آزمایشی دارای اسید به مقدار 3/6 ردیش بیشتر نسبت به دانه تغذیه شده با تیمار آزمایشی تاریک اسید بوته با این حال تفاوت معنی‌داری در این خصوص مشاهده نشد. تجربه‌های مشابه در خصوص افزایش تولید در آزمایش‌های قبل نیز به‌همراه مدت زمان دارید. همچنین در ترکیب شیر نیز بین دو گروه تفاوت معنی‌داری بالاتری بود. چنین نتایجی توسط هریستو و سنادو (12) نیز گزارش شده است. در مورد تجزیه پذیری پروتئین خام سیلوزازی باعث کاهش بخش سرعت تجزیه (a) و افزایش بخش کن تجزیه (b) پروتئین خام در مقایسه با علوفه خشک بوته گردید که این اثر نتیجه دیگر محققین نیز گزارش شده است (12). در مقایسه با سیلز بوته شاهد و سیلز ظاهروی اسید فرمیک و اسید سولفوریک، سیلز بوته اسید دارای ضریب a 2 پایین نر و ضریب b 0 و 5 در مورد تجزیه پذیری پروتئین خام بالاتری بود. چنین نتایجی توسط هریستو و سنادو (12) نیز گزارش شده است. در دو آزمایش انجام شده توسط ژریک و همکاران (12) پژویه‌سازی و استفاده از اسید باعث کاهش بخش سرعت تجزیه شده است. با توجه به آنتی‌مارکوس نیز نشان داده نشده است. سیلز بوته شاهد و حاوی اسیدها در مقایسه با علوفه بوته ژریک نر بود که این نتیجه نشان می‌دهد که هضم پروتئین سیلز شده از شکم‌ها به قسمت‌های پاس از شکم‌ها تغییر ندارد. که این نتایج در آزمایش‌های دیگر و همکاران (12) که بر روی فیلیت هضم شکم‌های پاس از شکم‌های سیلز و علوفه بوته آزمایش‌های انجام داده بودند نیز به‌دست آمد.
جزدول 5. مصرف ماده خشک، تولید و ترکیب دوره‌های ناهنجاری تغذیه شده با تیمرهای سیلال سیلات پونجه افزودنی و سیلات پونجه عمل اوری شده با اسید فرمیک و اسید پولی‌آمرینک (به ترتیب 15 و 4 میلیلیتر در کیلوگرم ماده خشک)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نیمی از زمان درجه 2</th>
<th>SEM</th>
<th>P</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2/24</td>
<td>2/65</td>
<td>0/99</td>
<td>0/43</td>
</tr>
<tr>
<td>4</td>
<td>2/61</td>
<td>2/34</td>
<td>1/15</td>
<td>3/21</td>
</tr>
<tr>
<td>6</td>
<td>2/69</td>
<td>3/14</td>
<td>3/14</td>
<td>1/15</td>
</tr>
</tbody>
</table>

منبع: لكلیک گروه در دوره‌های ناهنجاری تغذیه شده با تیمرهای سیلال سیلات پونجه افزودنی و سیلات پونجه عمل اوری شده با اسید فرمیک و اسید پولی‌آمرینک (به ترتیب 15 و 4 میلیلیتر در کیلوگرم ماده خشک)

1. هفته‌های آزمایش

شکل 1. میانگین احتراف معیار P سطح اختلاف معنی‌دار هفته‌های آزمایش در گروه‌های تغذیه شده با خوراک سیلان پونجه فرد افزودنی و سیلان سیلات (به ترتیب 15 و 4 میلیلیتر در کیلوگرم)

شکل 2. میانگین حفظیات حریق در هفته‌های آزمایش در گروه‌های تغذیه شده با خوراک سیلان پونجه فرد افزودنی (به ترتیب 15 و 4 میلیلیتر در کیلوگرم)

427
جدول 4: ضرایب گلکزر و نیتروژن اورهای پلاسمای خون گاو‌های نازک‌زای هشت‌اشب تغذیه شده با خوراک‌های حاوی سیلان پونیچه فاقد افزودنی و سیلان پونیچه عمل آوری شده با اسد فرمیک و اسد سولفوریک (به ترتیب 15 و 4 میلی لیتر مایع کیل‌گرم ماده خشک)

<table>
<thead>
<tr>
<th>نمونه‌کننده دوم</th>
<th>تیمار</th>
<th>P</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/77</td>
<td>1/08</td>
<td>52/17</td>
<td>52/96</td>
</tr>
<tr>
<td>0/72</td>
<td>2/56</td>
<td>22/95</td>
<td>25/62</td>
</tr>
<tr>
<td>0/5</td>
<td>2/77</td>
<td>56/42</td>
<td>59/62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نمونه‌کننده اول</th>
<th>تیمار</th>
<th>P</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/22</td>
<td>1/04</td>
<td>41/11</td>
<td>46/62</td>
</tr>
<tr>
<td>0/93</td>
<td>1/68</td>
<td>11/04</td>
<td>12/42</td>
</tr>
<tr>
<td>0/68</td>
<td>0/98</td>
<td>11/24</td>
<td>12/65</td>
</tr>
</tbody>
</table>

1. جریه حاوی سیلان پونیچه شاهد و 2. جریه حاوی سیلان پونیچه عمل آوری شده با اسد فرمیک و سولفوریک (به ترتیب 15 و 4 میلی لیتر در کیل‌گرم ماده خشک).

2. به ترتیب قبل و بعد نوش آزمایش دهی. P: سطح استحصال معنی‌دار شدن. SEM: معنی‌داری توسط تیتل همبستگی انتقال و برودریک (2) نیز گزارش شده است. این محققین این اطمینان را به بالاتر بودن انرژی در خوراک‌های حاوی پنیچه تیمار شده با اسد فرمیک نسبت دادند. همچنین برودریک و همکاران (5) نتایج معنی‌داری را در گلکزر خون بین دام‌ها تغذیه شده از عفونت پونیچه و سیلان پونیچه مشاهده نکردند. با وجود این در آزمایش دلارک و همکاران (2) مطالعه استفاده

منابع مورد استفاده

2. دلارک، م. و. م. دانش‌سرای. 1382. مولفه‌های تئیمیایی و گوارشی (شکم‌هایی و رودهای) سیلان پونیچه عمل آوری شده با

348