بررسی امکان فساد مایوئز در شرایط نگهداری در دماه بالا و در پسته‌های بزرگ پلاستیکی

غلامرضا مصباحی و جلال جهانی

چکیده

مس مایوئز محصول مفیدی و ارزی از با مصرف فراوان است. حفظ اصول بهداشتی در تولید آن و جلوگیری از فساد فیزیکی، شیمیایی و میکرو‌بیوبیولوژیکی، کاهش کیفیت آن از نظر خواص حیسی از اهمیت بالایی برخوردار است. دیده می‌شود که این ماده غذایی در پسته‌های بزرگ پلاستیکی به مدتها زیادی در محیط تغذیه‌ای فراوان یافته و دمای پایین‌تری و دردسر دور محیط نگهداری می‌شود. برای اجرای این پژوهش ابتدا نمونه‌های لازم از مس مایوئز در پسته‌های بزرگ پلاستیکی و پسته‌های شبیه کوچک از یک کارخانه معتبر تهیه شد. پس از آزمایش‌های پیش‌زمینه کیفی روی نمونه‌ها، آنها را در 20 حالت دمای دما 10, 20, 30 و 40 درجه سانتی‌گراد، به دسته‌بندی کرده و در فواصل زمانی مشخص صفر، 1, 2, 3, 5, 6 ماه آزمون‌های مختلف به منظور بررسی تغییرات خواص فیزیکی، شیمیایی، میکرو‌بیولوژیکی و حیسی پروپیکی سه‌اوج جهانی استفاده گردید. نتایج حاصل نشان داد که از جهت میکرو‌بیولوژی و افزایش حضور میکروگانیسم‌ها در پسته‌های مس مایوئز حسی در نگهداری در دماه بالا وجود نداشت. از جهت تغییرات شیمیایی در هر دو نوع پسته به دو بخش یک خاص در دماه بالا و نزدیک به 0 درجه سانتی‌گراد، افزایش اکسیداسیون چربی در حد قابل توجه پیدا آمد. به‌همچنین بررسی خواص حیسی نمونه‌های داد که در هر دو نوع پسته نمونه‌ها نشان داد که در دماه بالا وجود نداشت. از جهت تغییرات میکرو‌بیولوژیکی در دماه بالا، تغییرات محیطی و هوازی از نظر تنش و شکست‌پذیری‌ها حاضر دیده می‌شود. در نهایت این تغییرات گیاهی حاصل شد که پهپاد است که از پسته‌های مس مایوئز در هر دو نوع پسته به دسته‌بندی که باشد در دماه بالا خودداری شود. زیرا اگرچه ممکن است که از نظر فساد میکرو‌بیولوژیکی دچار مشکل شود، اما از جهت فساد فیزیکی مانند شکست‌پذیری‌ها و تغییرات خواص حیسی و فساد شیمیایی مانند اکسیداسیون چربی می‌تواند با کاهش کیفیت قابل ملاحظه‌ای مواجه شود.

واژه‌های کلیدی: مایوئز، شرایط نگهداری، فساد، پسته‌های بزرگ پلاستیکی

مقدمه

مس مایوئز از سرده‌های اومولسرایی است که همه‌جای دنیا مصرف فراوانی پیدا کرده است. این سرده گل‌تشه‌های طعم مطلوبی که به عنوانی یک کاوشنگ در غذاهای مانند انواع ساندویچ و سالاد نیز مورد استفاده می‌باشد. نتایج محورهای اومولسرایی، می‌تواند به عنوانی یک کاوشنگ در غذاهای مانند انواع ساندویچ و سالاد نیز مورد استفاده می‌باشد.

1. به ترتیب مربی و استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز

299
فیزیکی سس مایونز

از آنجا که ساختر سس مایونز امولسیونی است لذا شکسته شدن این ساختر به هم پیوستن فاز پراکندگی (روغن) و خارج از حالت امولسیون و تجمع روان در سطح مایونز را می توان نویع فیزیکی به حساب آورد که به خصوص بر یک فاز پسندی و پذیری محصول اثر منفی دارد (46). به کار بردن مواد صنعتی (Gums) و هیدروکولین‌ها به عنوان مواد ثانیه کننده و قوам دهنده در سس‌های مایونز از جمله راه‌های حفظ ساختمان امولسیون آنها در طول زمان استفاده می‌شود (13 و 17).

ساس شیمیایی سس مایونز

این نوع فیبر عمدها شامل اکسیدان‌های و هیدروژن کریزی‌ها و روغن‌های موجود در ترکیب سس مایونز است (46) که با افزایش ترکیبیت مانند پراکندگی در سس مایونز همراه است. انعقاد تغییرات باعث کاهش pH و اسیدیت در اثر فعالیت‌های میکروبی برای واکنش شیمیایی را نیز تا حدودی می‌تواند جزء این فیبر با حساب آورد.

ساس میکروبی سس مایونز

پایین در سس‌های مایونز به عنوان یک عامل جلوگیری کننده از فعالیت‌های میکروب‌ها عمل می‌کند و بر این

اسید استابیلیک استاندارد ایران pH.

در سس مایونز تجاری تهیه می‌شود.

با pH می‌شود. به عبارت دیگر اکثر مواد بهداشتی در میان ترکیبات موجود در مایونز دارد که اکنون و در سس مایونز روند احتمال برز می‌شود. به صورت اتفاقی و در اثر بروز افتاده در ترکیب pH و در مورد احتمال وجود یافته داشته‌ایم باید به‌طور دستی و غیر روان برای تولید خانگی (Home-made) سس مایونز در خانه‌ها و رستوران‌ها امکان بروز پیش‌تر دارد (32 و 46). از طرف دیگر بخش اعظم از ساختاری شده و غیر پرتوشته‌ای تولید مایونز که احتمال تماس مستقیم کارگران را با محصول ضمن فراوانی فرآورده می‌آورد و نیز ورود احتمالی و اتفاق منابع آلودگی به محصول بدن مراحل مختلف تولید، به توجه به عدم وجود فرآیند حرارتی در سس مایونز باعث شده که در اغلب کشورهای انجام صرف می‌شود نگهدارند مانند

نمک‌های بزرگ در این فرآوری داده شود (14 و 36).

از عده ترین خاطر ذیل می‌گردد که که امکان حضور آن در سس مایونز وجود دارد به دلیل صرف‌نظر صورت می‌شود. نشان دهنده احتمال انتقال به سس مایونز و ایجاد مروریتی (Salmonellosis) در مصرف کننده را دارد. سهم سس مایونز (خانگی) در بروز مسمومیت سالمونلوز در مقایسه با سایر مواد مغذی بسیار کم می‌شود در حالی که pH نتیجه تأثیر و تغییرات باعث کاهش pH ساختمان امولسیون آنها در طول زمان و نگهدارند مانند

مذکور را می‌شود (43).
جدول 1. حداقل pH لازم برای شروع رشد باکتری از میکروب‌های پیتیماتی از میکروب‌های پیتیماتی موجود در غذا

منبع	pH حداقل	نوع میکروبا/میکروب‌های پیتیماتی	زایده است
(22)	2/0	Salmonella paratyphi	زایده است
(22)	2/0	Salmonella cholera	زایده است
(22)	2/0-2/2	Salmonella typhi	زایده است
(18)	4/0	Escherichia coli 0157:H7	زایده است
(28)	2/9	Campylobacter jejuni	زایده است
(7)	4/0	Yersinia enterocolitica	زایده است
(32)	5/0	Listeria monocytogenes	زایده است
(22)	6/0	Staphylococcus aureus	زایده است
(20)	6/0	Clostridium botulinum	زایده است
(7)	7/5	Bacillus cereus	زایده است

جدول 2. جدول‌گیری کندنده از رشد (Lethal pH) و ناپذیری کندنده (Inhibitory pH) میکروب‌های پیتیماتی زایده است.

<table>
<thead>
<tr>
<th>ناپذیری کندنده</th>
<th>pH</th>
<th>جدول‌گیری کندنده از رشد</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(34)</td>
<td>7/5</td>
<td>Salmonella paratyphi</td>
<td>2/0</td>
</tr>
<tr>
<td>(24)</td>
<td>7/5</td>
<td>Salmonella cholera</td>
<td>2/0</td>
</tr>
<tr>
<td>(24)</td>
<td>7/5</td>
<td>Salmonella typhi</td>
<td>2/0</td>
</tr>
<tr>
<td>(18)</td>
<td>5/0</td>
<td>Escherichia coli 0157:H7</td>
<td>2/0</td>
</tr>
<tr>
<td>(28)</td>
<td>6/0</td>
<td>Campylobacter jejuni</td>
<td>2/0</td>
</tr>
<tr>
<td>(7)</td>
<td>6/0</td>
<td>Yersinia enterocolitica</td>
<td>2/0</td>
</tr>
<tr>
<td>(32)</td>
<td>5/0</td>
<td>Listeria monocytogenes</td>
<td>2/0</td>
</tr>
<tr>
<td>(22)</td>
<td>3/0</td>
<td>Staphylococcus aureus</td>
<td>2/0</td>
</tr>
<tr>
<td>(20)</td>
<td>6/0</td>
<td>Clostridium botulinum</td>
<td>2/0</td>
</tr>
<tr>
<td>(7)</td>
<td>7/5</td>
<td>Bacillus cereus</td>
<td>2/0</td>
</tr>
</tbody>
</table>

حمض از رشد میکروبی ممکن است نماید (24). در سال 1995 پیکر و رویزنی مطالعاتی بر روی وضعیت میکروب‌های اولوسیون مانند مس مایپین انگلین، این پژوهش‌ها نشان داده بود که میکروب‌های پیتیماتی از مواد pH نگهدارنده عمر نگهداری می‌بودند و می‌توانستند به صورت زیر کارشان گردند (22).

مایلنگ (Mandelic) و لکتیک (Lactic) است. است. سیتریک (Citric) و همکارانش تأثیر درجه حالت، pH غلظت و سیتریک است. را بر غیر فعال کردن Salmonella typhimurium در نوع سس مایلون کمی کالری مورد مطالعه قرار گرفتند. این تحقیقات در دمای 15 تا 25 درجه سانتی گراد pH 4 تا 7.5 صورت گرفت. نتایج نشان داد که بالاترین دمای مورد آزمایش (37 درجه) و کمترین (45) pH دارای بیشترین اثر غیر فعال کننده بر میکروگانیسم مذکور بوده است (27).

در سال 1998 انتشار و همکاران اعلام کردن که تأثیر ضدباکتریال مصرف با افزایش دما فروی می‌یابد (15). امیتال در سال 2002 ضمن بررسی تحقیقات انجام شده اعلام کرد که گزارش وجود دارد که در سنسهای مایلون Commercially Produced Mayonnaise رشد میکروگانیسم‌های بیماری زا وجود داشته است. به عبارت دیگر نمایندگی گزارش‌ها نشان می‌دهد که میکروگانیسم‌های بیماری زا با سرعت‌های متغیر به شرایط سس مایلون از نظر عوالی مانند نمونه میکروگانیسم‌ها، نوع اسید غلظت اسید و دما نگهداری دارد. در دمای نگهداری از بین می‌روند. در زمینه اثر شرایط نگهداری و بیشتر دنی سنس مایلون نیز مطالعات سیستمی صورت گرفت است. در تحقیقات انجام شده توسط استفاده در سال 1989 مشخص شد که در نمونه‌های مایلون نگهداری شده (بخصوص در دمای بالاتر از دمای بین 20 درجه سانتی گراد) افزایش اسیدیت به وجود می‌آید (27).

در سال 1991 مکسون و سیگن نمونه‌های از سنس مایلون را در به‌هستهای شیشه‌ای و پلاستیکی در دماهای مختلف نگهداری کردند و برخی نمونه‌ها را حین نگهداری تحت اثر لرزش نگهداری و بعد ترتیب اثر دمای نگهداری و نگهداری با افزایش دما از نظر میکروبیولوژی مایلون نمونه‌های مایلون مشخص کردند. نتیجه‌گیری‌های این بود که در به‌هستهای شیشه‌ای در مقایسه با
اهداف پژوهش

در سال‌های اخیر در ایران برای بسط بنیاد مس ماینر شروع به کار و در این اثر دیده شد که مس ماینر از این سبب به‌وجود آمدن طولانی‌مدت مخلوط سالانه تا انتقال باعث خارجی و مصرف مجدد می‌گردد. خصوصیاتی که آن از جنبه‌های مختلف نشان می‌دهد، می‌تواند این مورد صورت می‌گیرد.

سنتونی که مطرح است آن است که ایا مس ماینر تولید داخلی از محصول به‌ویژه در مناطق جنوبی و دریای ساحلی که وجود دارد می‌تواند دانگ خاصی از مس ماینریک، شیمیایی و مکرووی در حدی که کیفیت قابل قبول خود را از دست بدهد می‌شود یا خیر. بررسی این موضوع سبب ایجاد شناخت بیشتر در مورد شرایط نگهداری و بستن می‌شود می‌شود و اطلاعات مناسبی را در اختیار سازمان‌های نظامی و بهداشت مواد غذایی و همچنین تولیدکنندگان قرار می‌دهد.

مواد و روش‌ها

مرحلهٔ پژوهش

خلاصه‌ی مراحل انجام شده در پژوهش به صورت زیر است:

الف) ابتدایی از کیکی از کارخانه‌ای معتبر داخلی مدل ماینریک دو کلیلی و مس ماینریک در پنجه‌های شیمیایی غیرنظامی (۷۰۰ کرمی) با فرمول‌سیون‌پک میکروی گردید. سیستم دو بعدی شکستگی شد که دچار آلودگی نشود. آن گاه سایر مواد مصرفی در تهیه مس ماینریک بار آماده شدند.

برای تولید مس ماینریک برخی مواد منابع مکن چند خردل، شکر، زانیار، شرومیر در آب مصرفی در فرمولاسیون حل شدند که با مقادیری از روند کربوکسالدی‌تربکسول مواد مصرفی در مخلوط شد. برای مخلوط کردن مواد و با تهیه اولمیوسین از دستگاه مخلوط کن مجهز به همراه پر در سرعت گردد حداکثر ۲۸۰ دور در دقیقه استفاده می‌شده. مخلوط مخلوط کن در جداره بوده و ضمن عمل مخلوط کردن به هنگام تولید سر، با جریان دادن آب سرد نیز و جدیده در حداکثر ۱۵ دقیقه سانتی‌گراد کاهش می‌شود. قبل از استفاده از مواد مصرفی سعی
جدول 3. مواد مصدری در تهیه سس مایوزن

<table>
<thead>
<tr>
<th>درصد در</th>
<th>فرمولاسیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/10</td>
<td>8/20</td>
</tr>
<tr>
<td>0/20</td>
<td>8/30</td>
</tr>
<tr>
<td>0/24</td>
<td>8/16</td>
</tr>
<tr>
<td>0/15</td>
<td>8/35</td>
</tr>
</tbody>
</table>

کامل از سس. با درب پلاستیکی از جنس پلی اتیلن با دانسیته بالا در بنده می‌شود.

شده بود که اغلب آنها برای مدتی در شرایط خنک یخبندان یا تیگه‌داری شوند تا به کنترل دما حین فرآیند کمک شود.

انجام تخم مرغ در مورد مخرب در هنگام دمازدگی با سرعت زیاد در مورد آن در حذف عامل‌ی اصلی به تنهایی روش شوند. بسی مخرب ماهی و مواد پودری به درون مخرب وارد شده و دحاصل به مدت 15 دقیقه مخربات مخرب به هم زده شد. در مرحاله بعد روند به همراه مرکز از طریق دو لوله مجزا حین مهنز دمازدگی به دست داده‌های دستی به منتظمی مخربات مخرب اضافه گردید. در همین ضمن، مخرب رونگ و کربنونسی می‌تواند نیاز اضافه شده. در نهایت نیاز حذف یک دقیقه دیگر کل مخربات مخرب به هم زده شد.

برای تأمین 1+ 40 درجه سانتی گراد استفاده شد.

آزمایش‌های فیزیکی و شیمیایی

آزمون پاداپری امولسیون

یافته آزمون در شرایط پژوهش و قبل از نگهداری نمونه‌ها روی آنها انجام گرفت تا مشخص شود که آب‌سرازی از پاداپری مناسب امولسیون بخوردار هستند یا خیر؟ یا به‌دین منظور نمونه‌های سس مایوزن به مدت 55 دقیقه سانتی گراد (اینکیپاتور) قرار داده شدند. سپس با بررسی وضعیت ظاهری سس‌ها از نظر جدای شدن فازهای امولسیون و ظهور با عدم ظهور رونگ در سطح نمونه‌ها، وضعیت پاداپری امولسیون آنها مورد ارزیابی قرار گرفت (2 و 11).}

(ب) اندام‌های درصد و رطوبت

برای این آزمایش از روش استاندارد استفاده شد و با قرار دادن نمونه‌های 2 گرمی سس مایوزن در اون ۱۰۵ درجه سانتی گراد ۳۵۰
بررسی امکان فضای مایفونز در شرایط نگهداری در دماهای بالا و...

تلخی، ترشی و شوری) صورت گرفت (۲۳) و تعداد ۲۲ نفر آزمون انجام شده. از همین اندازه اعتبار ارزیابی حس‌نامه‌ها از نظر رنگ و بکه نیز استفاده شد. ارزیابی حس‌نامه‌های مس براساس آزمون سه راهی مثلثی انجام شد. بندی صورت که در ظروف (Triangle Test) بلاستیکی کوچک به هر کدام از آزمون‌کنندگان سه نمونه سس مایفونز (هم نمونه‌های ۱۵ گرم) داده شد. نمونه‌های مذکور شامل یک نمونه‌شامل (مس مایفونز مربوط به طوف شیشه‌ای نگه‌داری شده در دما ۵ درجه سانتی‌گراد و دو نمونه از مس مورد بررسی شد. از آزمون کنندگان خواسته شد که نمونه متفاوت را از نظر عطر و طعم مشخص‌سازد. در مورد ارزیابی رنگ و بکه نمونه‌ها نیز به همین روش اقدام شد (۲۳).

بررسی آماری نتایج

به منظور تجزیه و تحلیل نتایج از طرح آماری اسپلیت پلات استفاده شد و برای مشخص کردن اختلاف بین مانگین نمونه‌ها آزمون نانک به کاربرد شد و مقایسه‌ها در سطح ۵ درصد انجام شد. برنامه کامپیوتری مورد استفاده نیز (MSTATC) بود. برای نتایج آماری نتایج آزمون‌هایی ارزیابی حس‌نامه‌های مس مایفونز از جدول آماری (Roesster et al. (۲۳)

نتایج و بحث

آزمون پایداری امولسیون

این آزمون نیز در شرایط آزمایشی‌ها و قبل از نگهداری نمونه‌های مس مایفونز روی آنها انجام شد. نتایج نشان داد که همیشه یک از نمونه‌ها از این آزمون‌آزمایش شکستگی امولسیون و جدای شدن فازها و به سطح آمدن رنگ مشاهده شد. این آزمون نشان داد که فرمول‌سازی و نحوه تولید مس مایفونز در کارخانه مذکور پایداری امولسیون را در حد نهایی قابل توجه در سیستان‌های مایفونز تولیدی به وجود آورده است. این نمونه‌ها مایفونز در شرایط آزمایش‌ها و قبل از نگهداری از این جنبه وضعیت مناسبی داشته‌اند.

آزمون‌هایی ارزیابی حس

برای ارزیابی حس‌نامه‌های مس مایفونز از نظر چشم‌های انسانی آزمون مقادیری برای انتخاب آزمون‌کنندگان از جمله مناسبی بودند. آستینه چشمان آنها در مورد طعم‌های اصلی (شیرینی، Gallenkamp Oven BS Model OV-160, England) اختلاف وزن سن پیل و بعد از خشک شدن درصد رطوبت نمونه‌ها محاسبه گردید (۲)

۱۵ گرم نمونه سن را روی خشک کردن به هر نمونه ۲۰۰ میلی‌لیتر آب مخلوط افزوده و مخلوط گردید. سپس با تیزاسیون توسط سود سوز آور/۰ ترمیم، درصد اسیدشیمید نمونه‌ها بررسی شد و درصد تغییر اسید استاندارد ایران نهایی کمتر از ٤/۶ درصد بررسی اسید استاندارد بایست.

اندازه‌گیری عدد پراکسید

تعداد گیری عدد پراکسید که نشان دهنده برخی واکنش‌های اکسیداسیون در چربی‌های مس مایفونز است براساس روش استاندارد (۴) انجام شد. کلیه آزمون‌های شیمیایی و فیزیکی نمونه‌ها در سه نکر می‌شوند. }
تغییرات سرسره‌های حین تغذیه در دمای مختلف

الف) تغییرات سرسره‌های نگهداری در دمای مختلف

در مورد سرسره‌های نگهداری در برابر افزایش درجه حرارت بخصوص در حال اتصال درب و همچنین
محل درب بندی نگهداری در حد کم وجود داشته است. همچنین این امر در محدوده بندی که در طول زمان
نگهداری اکتشاف یافته‌ای از دوره ا짓ک، پیوند بین تعدادی از
مکمل‌های آب و برخی از مواد شیمیایی می‌تواند افزایش در
بروز نگهداری و احتمالاً برخی از مکمل‌های آب در عمل
هیدروژن اکتشافی نشان‌دهنده رضایت قابل اندازه‌گیری
که را کاهش داده باشد (17). مقایسه نتایج نگهداری در
دبای 20 و 25 درجه روند کاهش و در رطوبت تقریباً مشابه را
در دو دمای نگهداری نشان می‌دهد به گرچه در حد بسیار ناجیر
این روند کاهش در دمای 20 درجه مشهورتر است.

ب) تغییرات سرسره‌های نگهداری در دمای مختلف

در جدول 4 نتایج این بررسی خلاصه شده است. روند
افزایش سرسره‌های در دمای موجود در هر دو بسته بندی در
طول زمان ملاحظه می‌شود که در مراحل انتهایی نگهداری
بیشتر تر در بسته‌های پلاستیکی تا حدودی و وضعیت معنی‌دار به
خود گرفته است گرچه در بسته‌های شیشه‌ای حتی در ماه‌های
آخر نگهداری روند افزایش در میان بسته‌های
پلاستیکی در حد معنی‌دار نبوده است. افزایش سرسره‌های
سن مایوشن در طول نگهداری در تحقیقات مختلف، منابع
استفاده گزارش شده است که می‌تواند ناشی از فعالیت
هیدروژنی یا برخی از مکمل‌های نگهداری در ترکیبات
شیمیایی دهده سن مایوشن مانند انرژی گلیسریدها و تبدیل آنها به
اسیدهای چرب مربوط باشد (37).
جدول ۴. تغییرات رطوبت، اسیدیت و پراکسید سرما در دماهای مختلف در طول زمان نگهداری

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>زمان (میلی‌انی و اندر ۱۰۰۰ گرم سن)</th>
<th>پراکسید (درصد استیک)</th>
<th>اسیدیت (درصد استیک)</th>
<th>رطوبت (درصد)</th>
<th>ظروف پلاستیکی</th>
<th>ظروف شیشه‌ای</th>
<th>ظروف پلاستیکی</th>
<th>ظروف شیشه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۷</td>
<td>۱/۱۷</td>
<td>۰/۹۳</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۳</td>
<td>۲۶/۸۱</td>
<td>۰/۹۳</td>
<td>۲۶/۸۱</td>
</tr>
<tr>
<td>۹/۸۲</td>
<td>۲/۴۷</td>
<td>۰/۹۳</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
</tr>
<tr>
<td>۱/۱۰</td>
<td>۲/۵</td>
<td>۰/۹۳</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
</tr>
<tr>
<td>۸/۱</td>
<td>۲/۵</td>
<td>۰/۹۳</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
</tr>
<tr>
<td>۸/۳</td>
<td>۲/۵</td>
<td>۰/۹۳</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
</tr>
<tr>
<td>۸/۳</td>
<td>۲/۵</td>
<td>۰/۹۳</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
<td>۰/۹۱</td>
<td>۲۶/۸۱</td>
</tr>
</tbody>
</table>

ج) تغییرات اسیدیت سس های نگهداری شده در دما ۴۰ درجه سنگین گراد جدول ۴ نمایانگر این تغییرات است. افزایش اسیدیت سس ها در این دما در هر دو نوع بسته بندي در طول زمان وجود داشته که البته در ماههای اوليه بعیوضه در ظروف شیشه‌ای روئبن افزایش معیار رادیش اما در ماههای انتهاي بخصوص در ظروف پلاستيکی این افزایش به صورت معنی دار در سطح ۵

۳۰۷
تغییرات پراکسید سس‌ها حین نگهداری در دماهای مختلف
الف) تغییرات پراکسید سس‌های نگهداری شده در دما 5 درجه سانتی‌گراد
در 4 جدول چگونگی این تغییرات مشخص شده است. روند این تغییرات در عبور بسته بندی در طول زمان در سطح 5 درصد در اغلب مواد معنی دار بوده است. مقدار این انفراشیاز حدود 1 میلی کیلوالاندر در 1000 گرم سس مایونز در استاندارد نگهداری تا حدود 9 تا 10 میلی کیلوالاندر در 1000 گرم مایونز. قابل ذکر است که عبور پراکسید در مورد روغن‌ها به‌طور مشابه تا حدود 10 میلی کیلوالاندر است.

ب) تغییرات پراکسید سس‌های نگهداری شده در دما 25 درجه سانتی‌گراد
در جدول 2 این تغییرات خلاصه شده است. چنان‌چه ملاحظه می‌شود، در هر دو نوع بسته بندی عبور پراکسید سس مایونز در طول زمان با افزایش معنی‌دار در سطح 5 درصد مواجه بوده و به این افراشیاز در بسته پلاستیکی شدیدتر بوده است. در حالات نگهداری سس در بسته‌های پلاستیکی به‌طور مشابه از 16 میلی کیلوالاندر در 1000 گرم رسیده که حد بالایی می‌باشند.

چ) تغییرات پراکسید سس‌های نگهداری شده در دما 40 درجه سانتی‌گراد
تغییرات پراکسید سس‌های نگهداری شده در دما 40 درجه سانتی‌گراد نتایج این بخش از پژوهش در جدول 3 آمده است. در این دما نیز روشن صعودی در میزان پراکسید نموده‌های سس مشاهده می‌شود که اغلب در سطح 5 درصد معنی‌دار بوده است.

می‌شود که اغلب در سطح 5 درصد معنی دار می‌باشد. در این مورد نیز روشن‌افزاری در بسته‌های پلاستیکی بزرگ پیش‌بینی شده است. به‌طور مشابه این بسته بندی در اعداد متخلخلین این شناسایی که این قراردادها به سبب تشدید اکسیداسیون قیمت‌ها در سس مایونز است.

وضعیت میکروبی سس‌ها در طول زمان نگهداری
نتایج آزمون میکروبی سس‌های نگهداری شده در دماهاي مختلف در طول زمان در جدول 5 خلاصه شده است. نتایج این جدول مشاهده می‌شود که در شرایط معمولی، اینیکه در طول زمان بیش از حد روند باعث تغییرات معنی‌دار در مقایسه با جدا سری‌های مایونز موجود در طرح مختلف به یکسان بوده‌اند اما در شرایط آزمایش‌ها (زمان صفر) تفاوت کمی در میزان آلتودگی مشاهده شده است. شاید در زمان اول اما بیشتر به تفاوت در ناحیه بسته بندی، نوع بسته و دلایل بیشتر دست کارگران در بسته بندی‌های پلاستیکی سس مایونز نسبت به بسته‌های نمک‌های نسبت داد.

همچنین گرچه معنی‌داری در میزان بسته بندی سس مایونز با افزایش زمان به‌طور مشابه با مایونز فاقد آلودگی میکروبی بیشتر، اما آنکه بسته جزئی اویلی در بخش از بسته‌های پلاستیکی به‌طور مشابه نسبت به بسته‌های نمک‌های نسبت داد.

308
جدول 5. وضعیت میکروبی سنس‌های مایونز در ظروف پلاستیکی و شیشه‌ای در دماهای مختلف در طول زمان نگهداری

<table>
<thead>
<tr>
<th>شمارش کلی میکروب (cfu/gr)</th>
<th>کیک و محمر (cfu/gr)</th>
<th>زمان نگهداری (ساعت)</th>
<th>دمای نگهداری (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ابتدا نگهداری</td>
<td>25</td>
</tr>
<tr>
<td>2 × 10⁴</td>
<td>2 × 10⁴</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 × 10⁵</td>
<td>2 × 10⁵</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 × 10⁶</td>
<td>2 × 10⁶</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ابتدا نگهداری</td>
<td>45</td>
</tr>
<tr>
<td>2 × 10⁴</td>
<td>2 × 10⁴</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 × 10⁵</td>
<td>2 × 10⁵</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 × 10⁶</td>
<td>2 × 10⁶</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ابتدا نگهداری</td>
<td>60</td>
</tr>
<tr>
<td>2 × 10⁴</td>
<td>2 × 10⁴</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 × 10⁵</td>
<td>2 × 10⁵</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 × 10⁶</td>
<td>2 × 10⁶</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

* در هر یک از قاب‌های نگهداری، نتایج از حد استاندارد بالاتر نیستند (5).
نشر تغییرات خاص در مقومه‌های سس مایویز در ظروف شیشه‌ای و پلاستیکی

نتایج این بررسی که در جدول ۶ و ۷ خلاصه شده، نشان می‌دهد که سسانه‌های نگه‌داری شده در مداری ۴۰ درجه سانتی‌گراد هم در پسته‌های شیشه‌ای و هم در پسته‌های پلاستیکی زبرگ در همان ماه نگهداری از نظر عطر و طعم، رنگ و بافت دچار تغییرات شدید شدند. به طوری که افراد آزومن کننده در مسیوهای مذکور در مقایسه با مقومه‌های شاهد تغییرات معنی‌دار از نظر عطر و طعم، رنگ و بافت تشخیص دادند. تغییرات مذکور بخصوص در رنگ و عطر و طعم مشوهورت باعث شدند تغییرات در سطح مسیوهای نگهداری در مداری ۴۰ درجه سانصار ملاحظه شد. در حالی که همان طور که پیش گذشته نشان داد، سس‌های آزومن پایدار امولسیون را بدون بروز مشکلی پشت سر گذاری نمی‌کردند. نتیجه دیگر آنکه این احتمال وجود دارد که تغییر در امولسیون در چچنگی احساس محصول وقیف در دهان افراد می‌گردد و طعم آن اثری کاذبی نداشت.

همچنین نتایج جداول ۶ و ۷ می‌آید این مطالعه است که روند تغییرات حسی سس در نگهداری در دمای ۲۵ در مقایسه با دمای ۴۰ درجه سانتی‌گراد کندتر بوده است به طوری که در دمای ۴۰ درجه ۷۰ درصد افراد مسیوهای آزومن به تغییرات معنی‌دار در خواص حسی سس در مقایسه با مقومه‌های شاهد
جدول ۶. تغییرات خواص حسی مایونز در ظروف شیشه‌ای نگهداری شده در دمای‌های مختلف در طول زمان نگهداری

<table>
<thead>
<tr>
<th>دمای نگهداری (سانتی‌گراد)</th>
<th>زمان نگهداری (ماه)</th>
<th>تعداد</th>
<th>عطر و طعم</th>
<th>رنگ و بافت</th>
</tr>
</thead>
<tbody>
<tr>
<td>ابتدا</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>معنی‌دار نبود</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>معنی‌دار نبود</td>
<td>12</td>
<td>7</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>فقط رنگ و بلافاصله معنی‌دار نبود</td>
<td>12</td>
<td>18</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>عطر و طعم معنی‌دار نبود*</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>معنی‌دار نبود</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ابتدا</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>عطر و طعم، رنگ و بلافاصله معنی‌دار نبود*</td>
<td>12</td>
<td>16</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

* به دلیل معنی‌دار نبودن اختلاف، ادامه آزمایش‌ها در ماه‌های بعد لازم نبود.
جدول 7. تغییرات خواص حسی مایوژن در ظروف پلاستیکی نگهداری شده در ماهای مختلف در طول زمان نگهداری

<table>
<thead>
<tr>
<th>زمان نگهداری (سانتی‌گراد)</th>
<th>تعداد عطر و طعم رنگ</th>
<th>تعداد حاوی عطر معمول</th>
<th>تعداد حاوی عطر نمایندگی</th>
<th>تعداد حاوی عطر منفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

* به دلیل معمولی به وجود آمدن اختلاف، ادامه آزمایش‌ها در ماه‌های بعد لازم بود.

نتیجه‌گیری

با توجه به نتایج این تحقیق می‌توان یبان بنده که نگهداری در دمای بالا و استفاده از بسته‌های گریزکاپو پلاستیکی از جنبه میکروبی در افزایش روند فاسدی میکروبی در سنس مایوژن تأثیر می‌کند و باعث انسداد این محفظه با گذشت زمان کاهش می‌یابد. برای نگهداری مناسب و صحیح باید به در نظر گرفتن عوامل موجود در مواد باید توجه شود. این بسته‌های گریزکاپو طوری عمل گردد که دخالت دست کارگران در عملیات بسته بنده کمتر باشد. تا احتمال افزایش آلودگی اولیه محفظه کاهش یابد.

تغییرات در رطوبت و اسیدیت بی‌نمونه‌ها در حد کم در دمای بالا وجود داشت. از طرف دیگر نتایج نشان داد که نگهداری در دمای بالا (40 درجه سانتی‌گراد) نه در پسته‌های پلاستیکی و
مباحث گروهی

همزماناً، امکانات لازم برای انجام این پژوهش از طرف مستندین محترم دانشگاه شیراز فراهم شده نداشته ایستادن و از کلیه کارکنان محترم بخش علم و صنایع غذایی بخش خصوصی آقای حسین اسفندیاری و خانم پروره محسوس و اعظم کشتن‌کاران که در اجرای این تحقیق همکاری صحیمانه داشته‌اند، کمال تشکر و قدردانی را دارند.

عبور هوا مقاومت بیشتری داشته باشد.

منابع مورد استفاده

1. مصباحی، غ. ج. جمالی‌نژاد و ج. گل‌کاری. 1383. استفاده از کیتو در سس ماپونز به چای مواد پایدار کننده و فیلامنت جهانی.

2. مسوولیت استاندارد و تحقیقات صنعتی ایران. 1369. آمون‌های شیمیایی سس ماپونز. استاندارد شماره. 2454. چاپ دوم.

3. مسوولیت استاندارد و تحقیقات صنعتی ایران. 1376. اندام‌های انسدادنی بیولوژیک در میوه‌ها و سبزیجات و فراورده‌های آنها. استاندارد شماره 1376. چاپ دوم.

4. مسوولیت استاندارد و تحقیقات صنعتی ایران. 1378. نمونه برداری و روش‌های آزمون‌های ویژه‌ای و چری‌ها. شماره 1378. چاپ دوم.

5. مسوولیت استاندارد و تحقیقات صنعتی ایران. 1379. ویژگی‌های میکروبی سس ماپونز. استاندارد شماره 1379. چاپ دوم.

