بررسی امکان فساد سس مایونز در شرایط نگهداری در دما بالا و در بستر های بزرگ پلاستیکی

غلامرضا مصاحی و جلال حمایی

چکیده

سس مایونز محصول مغذی و انرژیزا با مصرف فراوان است. هدف اصلی بهداشت انسان در تولید آن و جلوگیری از فساد فیزیکی، شیمیایی و میکروبی و کاهش کیفیت آن از نظر خواص حیاتی اهمیت بالایی برخوردار است. این مورد شوک که این ماده غذایی در بستر های بزرگ پلاستیکی به مدتها زیاد دارد ولی آنها معنوی رشد و عمدگی در محیط نگهداری می شود. برای اجرای این پژوهش ابتدا نمونه‌های لازم از سس مایونز در بستر های بزرگ پلاستیکی و بستر های بزرگ پلاستیکی که در تولید و فواصل زمانی مختلف نگهداری می شود به مدت زمانهای مختلف به منظور بررسی تغییرات خواص فیزیکی، شیمیایی، میکروبی و حیاتی سوسیس‌ها آزمایش شدند. در نهایت نمونه‌های مایونز که از نظر نگهداری در دما بالا و توزیع در بستر های بزرگ پلاستیکی گرفته و در طول مدت ورود نهایی نشان داد که در هر دو نوع نسبت قابل توجهی پرداخته به این نکته که این پژوهش می‌تواند به تغییرات حیاتی سوسیس‌ها در دما بالا و توزیع در بستر های بزرگ پلاستیکی که در تولید و فواصل زمانی مختلف نگهداری می‌شود به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد. در نهایت، این نتایج به‌طور کلی در دست کاری بگیرد.

واژه‌های کلیدی: مایونز، شرایط نگهداری، فساد، بستر های بزرگ پلاستیکی

مقدمه

سس مایونز از سه‌های امولسیونی است که همه چاپ دنیا مصرف فراوانی پیش‌تر که دستا به است. این سنگ کلشنه از طعم مطلوبی که به عنوان یک کانالی در غذاهای مانند انواع سندرجو و سالادها پیش‌تر گذاری که می‌تواند نتایج و اثرات در آن اثرات و اکسیداسیون چربی می‌تواند با کاهش کیفیت گذاری مواجه شود.

بخش مرغ و روغن ترکیبات اصلی آن را تشکیل می‌دهند می‌تواند تنها مورتی را در نامید می‌گذارد و نامرز زایل از اثر برای انسان دانسته باشد.

سس مایونز فراورده ای با قوم نخست به‌وجود و امولسیون آن از نوع روغن در آب است. روغن گیاهی، زره تخم مرغ و
اصلاح مطالب استاندارد ایران، pH در سس مایونز تجاری نایبی
فلزات 4/147 (باشی) (5). به علت و تعداد دو مقدار کندن و از
پایین را بر میکروارگانیسم‌های بیماری زای
موجود در غذا و روغن می‌زند.

با وجود مطالب فوق، هرگز نیازی اصل بهداشت در
تعم مراحل تولید سس مایونز و سرد کردن کافی آن را فراموش
پذیرانه نمود. این وضعیت اصول در محدوده‌های محدود از
اختلال حضور میکروارگانیسم‌های بیماری را در سس مایونز
می‌شود (45). به عبارت دیگر اگر مواردی به‌داشتی در کلیه
مراحل تولید به خوبی رعایت نشود، امکان دارد که تعداد
میکروارگانیسم‌ها بیش از حد بالا رود، در چینی مواردی چنین
به صورت افتاقی و در اثر برخی اشکال در ترکیب، pH به
سلا بالا رود لازم است بر اساس می‌تواند در خانه‌ها
رستریزه و امکان پروری زیستی این دارد (43 و 44). از طرف
دیگر بین‌خصوص استفاده از دستگاه‌های ساده و غیر پیشرفته برای
تولید سس مایونز که احتمال نسبتاً مستقیم کارگران را با
محصول ضمن ضرر به فراهنگ می‌آورد و نیز ورود احتمالی و
افتقای منابع آگاهی به محصولات این مراحل مختلف تولید، با
توجه به عدم وجود فراهنگ حرفه‌ای در سس مایونز باعث شده
که در غلب‌کشورهای اجاق مصرف می‌تواند نگهدارنده‌اند مانند
نکته‌های بیشتری در این فرآوری‌ها داده شود (42 و 43).

از عده‌ای ترین عوامل میکروبی بیماری زا که امکان حضور
آن در سس مایونز وجود دارد به انتقال باکتری سالمندیا می‌توان
استدلال کرد. این میکروب به دلیل مصرف اندازه‌ای بی‌پاسوری
نشده احتمال انتقال به سرسالمندی و ایجاد میکروبیت
سالمندی (Salmonellosis) در صورتی که را دارد. محدود
سس مایونز (خانگی) در بروز میکروبیت سالمندیا در مقایسه
با اسایر موارد غذایی علت 9 درصد ذکر می‌شود. در میانه که

امید است که با استفاده از ترکیبات آن را تشکیل
می‌دهند، گامگیری از این مایونز اتومیت هوا تحمیل می‌نم. موارد
شیرین کندن ابزارک‌ها، امواج摩托ر در عطر و چربسی، موارد
تکه‌کردن و موارد ثابت کندن (Emulsifiers) (thickeners).

برخلاف اسیر از غذاها، فساد در سس مایونز نشان به فساد
حاصل از فعالیت‌های میکروبی محدود می‌شود. بنابراین با توجه
به ساختار و ترکیبات آن، می‌توان سه نوع فساد فیزیکی,
شیمیایی و میکروبی را برای آن تعیین کرد (46).

فاسد فیزیکی سس مایونز

از آنجا که ساختار سس مایونز امپلپینی است لذا شکسته
شد این ساختار و هم بر روی حس این دو کتاب روان در اثر خارج
شدن این ساختار و هم بر روی سطح مایونز را
می‌توان نوع فساد فیزیکی به حساب آورد که بخصوص
بازار بسته و پذیرفته محصولات غیر منفی دارد (46). به کار
بردن مواد ضرری (Gums) و هیدروکلوریدها
به عنوان مواد ثابت کندن و قوام دهنده در سس‌‌های مایونز از
جمله راه‌های حفظ ساختار امولپینی آنها در طول زمان
نگهداری است (13 و 17).

فاسد شیمیایی سس مایونز

این نوع فاساد قطعاً شامل آگونی‌سیستمی و هیدروکسی‌پنیا و
روغن‌های موجود در ترکیب سس مایونز است (46). که با
افراشی ترکیبات مانند پراکسیدهای سس مایونز همراه است.
البته تغییرات تاخیر و pH اسیدیت در اثر فعالیت‌های
میکروبی با واکنش‌های شیمیایی را نیز با حدودی می‌توان جزء
این فاساد به حساب آورد.

فاسد میکروبی سس مایونز

پایین در سس‌های مایونز به عنوان یک عامل جلوگیری
کندن از فعالیت اغلب میکروارگانیسم‌ها می‌ عمل می‌کند و برجای
جدول ۱. حداکثر pH لام رای شرود برخی از میکروگانیسم‌های بیماری‌زای موجود در غذا (Foodborne Pathogens) و pH در محیط آزمایشگاه با استفاده از مواد اسیدی قابلیت صورت‌گیری است.

<table>
<thead>
<tr>
<th>نوع میکروگانیسم بیماری‌زای</th>
<th>حداکثر pH</th>
<th>pH متعادل کننده</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella paratyphi</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Salmonella schottmueller</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Escherichia coli 0157:H7</td>
<td>2/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>2/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>2/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>2/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>2/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>2/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>2/0</td>
<td>2/0</td>
</tr>
</tbody>
</table>

جدول ۲. جلوگیری کننده از رشد (Lethal pH) و ناپدید کننده (Inhibitory pH) میکروب‌های بیماری‌زای موجود در غذا که توسط امید استیک در محیط آزمایشگاه ایجاد شده است.

<table>
<thead>
<tr>
<th>نوع میکروگانیسم بیماری‌زای</th>
<th>ناپدید کننده</th>
<th>جلوگیری کننده از رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella aerytyke</td>
<td>5/7</td>
<td>2/0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>4/9</td>
<td>2/0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>3/0</td>
<td>2/0</td>
</tr>
<tr>
<td>Escherichia coli 0157:H7</td>
<td>3/5-5/5</td>
<td>2/0</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>3/0</td>
<td>2/0</td>
</tr>
</tbody>
</table>

راکورب و هم‌کاران در سال ۱۹۹۴ پس از آن‌ها کردن نوع سس مایونز و نوعی سس سالاد به انواع ی پنکسی کلیه فرم مشاهده کردن که زندگی مانند میکروگانیسم‌های مذکور در سال ۱ رابرتون تا از مایونز نگهداری شده در درمای ۲/۵ درجه سانتی گراد طولانی آب‌رسی که کننده از رشد در دمای ۲/۵ درجه سانتی گراد است. این محصول هم چنین یکی از کننده‌های گردیده مورد سس مایونز مورد بررسی گردید.

در سال ۱۹۹۵ پس از آن‌ها کردن نوع سس مایونز به انواع ی پنکسی کلیه فرم مشاهده کردن که زندگی مانند میکروگانیسم‌های مذکور در سال ۱ رابرتون تا از مایونز نگهداری شده در درمای ۲/۵ درجه سانتی گراد طولانی آب‌رسی که کننده از رشد در دمای ۲/۵ درجه سانتی گراد است. این محصول هم چنین یکی از کننده‌های گردیده مورد سس مایونز مورد بررسی گردید.
مایلیک > لاتیکی > ستیتریک > استیک = ماندلیک

در سال 1947 می‌توانستهای با ثابت شدن حلال‌سازی. pH زرنگی و سیتریک استیک را بر غیر فعال کردن Salmonella typhimurium مورد مطالعه قرار دادند. این تحقیقات در دمای ۱۵ تا ۲۵ درجه سانتی‌گراد pH ۳/۰ تا ۴/۵ صورت گرفت. نتایج نشان داد که بالاترین دمای مورد آزمایش (۳۵ درجه) و کمترین pH (۴/۵) دارای بیشترین اثر غیر فعال کردن بر میکروگانیسم مذکور بوده است.

در سال ۱۹۹۸ اتنان و همکاران اعلام کردند که تأثیر ضدبakterی مصرفی با افزایش دما فوتنی می‌یابد (۱۵). این امید برای تحقیقات انجام شده سال ۲۰۰۰ در بررسی تأثیر نسبی روی سنسیتیویت و تغییرات رنگ سنس مایونیز کم کاری مورد بررسی قرار گرفت. نتایج نشان داد که رنگ سنس مایونیز تحت تأثیر شرایط مختلف نگهداری است و برای اکسپرسیون کننده موجود در سنس مایونیز در برای نور مدار به‌طور بالاترین میزان رنگ می‌دهد.

در تحقیقاتی که توسط مصاحبه و همکاران در سال ۲۰۰۴ انجام شد، ضمن بررسی امکان جانشین سازی کنترل در سنس مایونیز بجای مواد قوام‌دهنده و پایدار کننده واراکی، خصوصیات ویزیکی، شیمیایی و مکروری سنس مایونیز محضی کنترل با سنس تجربی در طول زمان نگهداری آنها در دماهای مختلف مواد مقاوم گرفت و نتیجه گیری بود که سنس محضی کنترل در شرایط ذکری خواص مشابه سنس تجربی را نشان می‌دهد (۱).
اهداف پژوهش
در سال‌های اخیر در ایران پیشرفت‌هایی در فن‌های پزشکی استفاده می‌شود، از طرف دیگر مشارکت می‌شود که اغلب عده‌ای، برخی از مطالعات مکرر و در حدود بود برای این سبب قرار می‌گیرند و کمتر از صرف سازمان‌های نظامی ممنوعتی در این مورد صورت می‌گیرد.

ستونی که مطروح است آن است که آیا سنس مایونز تولید داخل خاصیت شناسی بیشتر در فن‌های پزشکی، وظیفه که به مدت طولانی بود ولی در مناطق جنوبی و گرمسیر ایران در دو میلیون متر مربع. خصوصیات کیفی آن از جنگ‌های مختلف حفظ می‌شود و آیا محصول در شارکی دچار تغییرات زیستی و مکروپی به حدی که کیفیت اصلی قابل قبول خود را از دست بدهد می‌شود یا خیر. بررسی این موضوع سبب ایجاد شناسایی بیشتر در مورد شرایط نگهداری و بسته‌بندی سنس مایونز می‌شود و اطلاعات مفیدی را در اختیار سازمان‌های نظامی و بهداشت مواد غذایی و همچنین تولیدکنندگان قرار می‌دهد.

مواد و روش‌ها

مراحل پژوهش
خلاصه مراحل اجراه شده در پژوهش به صورت زیر است:
الف) ابتدا از یکی از کارخانه‌های معتبر داخلی نمونه‌های سنس مایونز تولیدی آن شاپ مایونز در پسته‌بندی باریکه پلاستیکی (کلیو) و سنس مایونز در پسته بندی‌های تجهیزاتی معموله (200 کرومی) با فرمولاپویکنیون تهیه گردیده است.
ب) ترکیبات شکل‌دهنده سنس‌ها از نظر مشخصات کلی شامل مقدار برونت، درصد نسبی مقدار نتیجه و درصد ماده تهیه‌اند تغییر شد.

روش تولید سنس مایونز در کارخانه
بر اساس روش معیار تولید در کارخانه ابتدا تخم مرغ‌های مصرفی به مدت حدود یکساعت در محلول آب کلرید با گله 5 قرار داده شد تا سطح آنها ضدعفونی شود. سپس از آب کلرید خارج و با آب معموله بهداشتی شستشو گردید. سپس طوری شکسته شدند که دچار آلودگی نشوند. آن گاه‌ها سایر مواد مصرفی در تهیه سنس مایونز تغییر در فرمولاپویکنیون جدول 3 آماده شدند.

برای تولید سنس مایونز برخی مواد مانند نمک، خردل، شکر، زانزان، بنزوات در آب مصرفی در فرمولاپویکنیون جلو شده. از طرف دیگر تخم مرغ‌های مصرفی در نظر گرفته و کنترل بر دستگاه مخلوط کن مجهز به همراه پن در با سرعت گردد 200 دور در دقیقه. اینجا مخلوط کن دو جدای بوده و ضمن عمل مخلوط کردن به همگام تولید سنس با جریان دان آب سرد بین دو جداره، مما در حدود 15 دقیقه سانتی‌گراد ۵۰ درجه می‌شود. قبل از استفاده از مواد مصرفی سعی
جدول ۳: مواد مصرفی در تهیه سس مایونز

<table>
<thead>
<tr>
<th>درصد در فرمولاسیون</th>
<th>۰/۱۰</th>
<th>۱/۵۰</th>
<th>۱/۲۵</th>
<th>۱/۱۰</th>
<th>۳/۱۵</th>
<th>۳/۸۵</th>
<th>۷/۸۰</th>
</tr>
</thead>
</table>

کامل از سن ۱، در پلاستیکی از جنس پلی اتیلن با دانسیته بالا در بندي مشد.

شده بود که اغلب آنها برای مدتی در شرایط خنک یخبندان گهگداری شوند تا به کنترل دما این ها که کمک شود.

ابتدا نختم درون مخزن گاز اکسیژن به دست و همودن با سرعت زیاد در مورد آن در حدی اعمال شده تا گردا آن روش شدن، سپس مخزن آب و مواد پودری به درون مخزن وارد شده و حداکثر به مدت ۱۵ دقیقه محتوان مخزن به هم را در مرحیت در بعد روح به همراه سرکه از طریق دو لوله محور جای هموار مداوم و به صورت ترددی به مدت حدود هفت دقیقه به محتوان مخزن اضافه گردید. در همین ضمین، مخزن رونگ و کربوکسی میل سلولز نیز اضافه شده. در تهیه نیز حدود یک دقیقه دیگر کل محتوان مخزن به هم زده شده تا سن ماپوز به‌خیصوص از نظر امولسیون ساختار و بافت مناسب را به‌دست آورد. در مرحیت بعد سس‌ها توسط دستگاه پرکن لپوستن در بسته‌های پلاستیکی و شیشه‌ای ذکر شده بسته بندی گردید.

بسته‌های پلاستیکی که برای سن ماپوز استفاده شده و قسمت بود و شال کپسیل پلاستیکی از جنس پلی اتیلن با دانسیته بالا (High Density Polyethylene (HDPE)) که درون قسمت دوم عینی ظروف پلاستیکی از جنس پلی اتیلن با دانسیته بالا گرفته شدند. سن ماپوز درون کپسیل پلاستیکی وارد شده و آن گاه درب کپسیل توسعه رسته‌های کوچک سیم بستنی، گره زدند. مخزن در نهایت درب پلاستیکی ظروف نیز برای آن پیچ می‌شد. این ظروف حدود ۴۰۰۰ گرم سن ماپوز در خود جای می‌گرفت. بسته‌های شیشه‌ای شامل ظروف شیشه‌ای با کنگاژی ۲۷۰ گرم بود که پس از پیچ شدن

آزمایش‌های فیزیکی و شیمیایی

الف) آزمون پیاداری امولسیون

این آزمون در شرایط وزنی و قبل از نگهداری تولید شده‌ها روي آنها انجام گرفت و مشخص شد که آن‌ها از پیاداری مناسب امولسیون برخوردار هستند. چرا خیر به دوین مانند تولید قابلیت سرسأ سس ماپوز به مدت ۵۵ دقیقه در دمای ۵۵ درجه سانتی‌گراد (اینکوپیتر) قرار داده شدند. سپس به‌طور وضعیت ظاهری سس‌ها از نظر جدا‌شناسی امولسیون و ظهور با عدم ظهور رونگ در سطح نمونه‌ها، وضعیت پیاداری امولسیون آن‌ها مورد ارزیابی قرار گرفت (۱۱).
بررسی امکان فساد سس مایونز در شرایط نگهداری در دمای بالا و...

ابلسکی، درنة و شوری) صورت گرفت (13) و تعداد 22 نفر آزمون کننده انتخاب شدند. از آنها برای ارزیابی حس نمونه‌ها از نظر رنگ و بنابراین استفاده شد. ارزیابی حس نمونه‌ها سس براساس آزمون سه تایی با مثلثی (Triangle Test) پلاستیکی کوچک به هر کدام از آزمون کننده‌گان سه نمونه سس مایونز (هر نمونه حدود 15 گرم) داده شد و نمونه‌ها مانند شماره یک نمونه شاهد (مس سس مایونز مربوط به طرف طبقه‌بندی نگه‌داری شده در دمای 5 درجه سانتی‌گراد) و دو نمونه از سس مورد بررسی بود. سپس از آزمون کننده‌گان خواسته شد که نمونه متفاوت را از نظر عطر و طعم مشخص سازند. در مورد ارزیابی رنگ و دقت نمونه‌ها نیز به همان روش اقدام شد (23).

بررسی آماری نتایج

به مزارع تجربه و تحلیل نتایج از طرح آماری اسپلیت پلات استفاده شد و برای مشخص کردن اختلاف بین مانگین نمونه‌ها آزمون نانک در کاربرد و مقایسه‌ی در سطح 5 درصد انجام شد. برنامه کامپیوتری مورد استفاده نیز (MSTATC) بود. برای بررسی آماری نتایج آزمون‌هایی ارزیابی حس نمونه‌های سس مایونز از جدول آماری (Roesser et al., 1973) که برای آزمون‌هایی (Total Count) و تعداد کیک و مخمر مورد ارزیابی قرار گرفتند. برای شمارش کلی میکروب از محیط میکروب (Plate Count Agar) کشت پیلی که آگار (Potato Dextrose Agar) یک مخمر و مخمر از محیط کشت پیلوتوکسکرتراوز آگار (5) و (26) تست‌های آزمون‌های میکروبی در دو تاکرار انجام شد.

نتایج و بحث

آزمون پایداری امیلولسی

این آزمون نیز در شرایط آزمایشی و قبل از نگهداری نمونه‌های سس مایونز روی آنها انجام شد. نتایج نشان داد که در همه بیک از نمونه‌ها از این آزمون نشان داد که پیک از طرف طبقه‌بندی نگه‌داری شده فاقد و به سطح آمیت رخگان مشاهده نشد. این آزمون نشان داد که فرمولاسیون و نحوه تولید سس مایونز در کارخانه مذکور پایداری امیلولسیون را در حد کمی بالا در سس‌های مایونز تولیدی به وجود آورد. است و سس‌های مایونز در شرایط آزمایشی و قبل از نگهداری از این جنبه و ضعیفی مناسبی داشته‌اند.

آزمون‌های ارزیابی حسی

برای ارزیابی حسی نمونه‌های سس مایونز از نظر عطرمنگین ابتدا آزمون مقدماتی برای انتخاب آزمون کننده از جنبه مناسب بودن آستانه چشمان آنها در مورد طعم‌های اصلی (شیرینی،...
متن طبیعی در زبان فارسی

متن طبیعی در زبان فارسی

متن طبیعی در زبان فارسی
جدول 2. تغییرات رطوبت، اسیدیت و پراکسید سرما در دماهای مختلف در طول زمان نگهداری

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>زمان (میلی آی و الان در 1000 گرم سس) (درصد اسید استیک)</th>
<th>پراکسید (درصد)</th>
<th>اسیدیت</th>
<th>رطوبت (درصد)</th>
<th>ظرف شیمیایی پلاستیکی</th>
<th>ظرف شیمیایی</th>
<th>ظرف شیمیایی</th>
<th>ظرف شیمیایی پلاستیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.86</td>
<td>1/17 a</td>
<td>0/92</td>
<td>0/92</td>
<td>26/18 a</td>
<td>6/05 a</td>
<td>36/03</td>
<td>26/03</td>
</tr>
<tr>
<td>5.5</td>
<td>0.96</td>
<td>9/95 c</td>
<td>0/99</td>
<td>0/99</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>6.5</td>
<td>1.02</td>
<td>10/10 d</td>
<td>0/97</td>
<td>0/97</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>7.5</td>
<td>1.05</td>
<td>8/16 c</td>
<td>0/99</td>
<td>0/99</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>8.5</td>
<td>1.11</td>
<td>11/11 c</td>
<td>0/96</td>
<td>0/96</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>9.5</td>
<td>1.14</td>
<td>9/94 d</td>
<td>0/99</td>
<td>0/99</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>10.5</td>
<td>1.18</td>
<td>7/90 c</td>
<td>0/97</td>
<td>0/97</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>11.5</td>
<td>1.21</td>
<td>5/70 d</td>
<td>0/95</td>
<td>0/95</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>12.5</td>
<td>1.26</td>
<td>3/50 d</td>
<td>0/97</td>
<td>0/97</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>13.5</td>
<td>1.31</td>
<td>1/30 d</td>
<td>0/99</td>
<td>0/99</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
<tr>
<td>14.5</td>
<td>1.37</td>
<td>0/10 c</td>
<td>0/99</td>
<td>0/99</td>
<td>22/16 a</td>
<td>6/05 a</td>
<td>32/03</td>
<td>26/03</td>
</tr>
</tbody>
</table>

درصد خود را نشان داده است. افزایش اسیدیت در دمای

جدول 4 نمایانگر این تغییرات است. افزایش اسیدیت

سنگ در این دمای هوای بیشتری وضعیت در طول زمان

وجود زمان که اینهای موییه در طول زمان

روند افزایش معنی دار به‌ویژه در طول زمان

ظرف شیمیایی این افزایش به صورت معنی دار در سطح 0.05
تغییرات پراکسید سنس‌ها حین نگهداری در محیط دو مختلف
الف) تغییرات پراکسید سنس‌های نگهداری شده در دمای 5 درجه سانتی‌گراد
در جدول ۴ چگونگی این تغییرات مشخص شده است.
روند این تغییرات در هر دو نوع نسبت بهندی در طول زمان در
سطح ۴ درصد در اغلب موارد معنی دار بوده است، مقدار این
افرازیش از حدود ۱ میلی اک و بالاتر در ۱۰۰۰ گرم سنس مایونز
در ابتدا نگهداری تا حدود ۹ تا ۱۰ میلی اک و بالاتر در
۱۰۰۰ گرم می‌باشد.
قاب ذکر این است که پراکسید در مورد روان‌ها
تا حدود ۱۰ میلی اک و بالاتر در ۱۰۰۰ گرم قابل قبول شمرده
می‌شود (۱۲). چنانچه در جدول ۴ مشاهده می‌شود تغییرات و
افرازیش فاکتور مذکور در اینجا در بستر پلاستیکی بیشتر
بوده است، این مسئله می‌تواند میزان این مسئله که بعده
اکسیژن حلال و در حد اندکی به صورت کم‌یکفی داردی
شده ظرف مذکور سوت رفته، از طرف دیگر ماده بسته
بندی پلی اتیلن با دانه‌بندی بالا (HDPE) گردیده در برابر این
روطیف مداوم خورا داره، اما مقاومت آن در برابر توربی
اکسیژن چنند قوی تیست. چه چینی بیشتر از بسته بندی‌ها
نیز در این امر موثر بوده است. کاهش عده پراکسید در سه ماه
آخر احتمالاً می‌تواند به دلیل تجزیه پراکسید باشد.
ب) تغییرات پراکسید سنس‌های نگهداری شده در دمای ۲۵ درجه سانتی‌گراد
در جدول ۴ تغییرات خلاصه شده است. چنانچه
ملاحظه می‌شود، در درد نوع نسبت بهندی حد اکسیژنی
سنس مایونز در طول زمان با افزایش معنی دار در سطح ۴ درصد
سنجش می‌باشد، اما این افزایش در بستر پلاستیکی نشان دهنده
بوده است و در مسیر امکان‌پذیر نگهداری سنس در بستر
پلاستیکی به علت از ۱۶ میلی اک و بالاتر در ۱۰۰۰ گرم ربوده
که حد بالایی می‌باشد و بیش از حدی است که در مورد
روغن‌ها قابل قبول می‌باشد (۱۲).
ج) تغییرات پراکسید سنس‌های نگهداری شده در دمای ۴۰ درجه سانتی‌گراد
نتایج این بخش از پژوهش در جدول ۶ آمده است، در این
دمای نیز روند صعودی در میزان پراکسید نمونه‌های سنس مشاهده

می‌شود که اغلب در سطح ۵ درصد معنی دار می‌باشد. در این
مورد نیز روند افزایش در بستر پلاستیکی بیشتر از
بسته‌های مشابه بوده است و در مراحل پایانی نگهداری مقدار
پراکسید به بیش از ۱۶ میلی اک و بالاتر در ۱۰۰۰ گرم رشد که
از حدی که برای روان‌ها مجاز شمرده می‌شود بیان است.
مقایسه نتایج مدرک در جدول مذکور نشان می‌دهد که افزایش
دمای نگهداری سنس مایونز عامل مهمی در بروز اکسیداسیون
تغییرات و پیوند افزایش دمای نگهداری را عامل عمده
در این بیان دادن و لیکرون و لنگرت به این نتیجه رسیدند
که استفاده از بسته‌بندی هایی که عبور نور را ممکن می‌کنند
سبب تشکیل اکسیداسیون چربی‌ها در سنس مایونز است.
وضعیت میکروبی‌سنس‌ها در طول زمان نگهداری
نتایج آزمون میکروبی‌سنس‌های نگهداری شده در سه‌ماهه
مختلف در طول زمان در جدول ۵ خلاصه شده است. نتایج این
جدول نشان می‌دهد که در شروع آزمایش‌ها تا حدودی آلودگی
میکروبی در نمونه‌های سنس مایونز به‌طور کلی در مقایسه با
جد استاندارد در حد قابل قبول بوده است (۵)، از طرف دیگر
باوجود آنکه مصرف‌های مایونز موجود در طریق مختلف
یکسان بوده اما در شروع آزمایش‌ها (زمان صفر) تفاوت کمی
بین انواع ایجاد به‌طور کمی از نظر شمارش کلی میکروب‌های
می‌شود و بسته‌های پلاستیکی حد بالاتری را نشان می‌دهند.
شاید دلیل این امر با یادی به نتایج تفاوت در نتایج نسبت به
ثبت دیده شده و دخالت بیشتر در بسته که در بسته پلاستیکی
سنس مایونز نسبت به بسته‌های مشابه افزایش داد.
هم می‌توان گفت که می‌تواند به فاصله بسته بندی سنس مایونز
فاقد آلودگی میکروبی باشد، اما امکان وجود آلودگی اویلی در
برهم از بسته‌ها امکان‌پذیر است. الیت برسی نتایج تحقیقات
دبیر محققین در این زمینه می‌تواند این مطالعه امکان که خوشبختانه

درجه ساتی گرد اغلب میکروگانیسم‌ها موجود در سس مایونز در فاز تأخیر (Lag Phase) باقی مانده و وارد فاز تکثیر (Log Phase) نمی‌شوند. در جنین حالتی میکروگانیسم‌ها در برای عوامل بایدارنده رشد مانند محیط‌سازی مقاوم‌ترین (۱۲). گردچه در مورد نمونه‌های سس مایونز با بسته پلاستیکی نگهداری شده در دنده ۴۰ ساعت گراد تداوم آلودگی در این اندازه از نظر شمارش کلی میکروبی تا ماه دوم نیز وجود داشت. اما در این نمونه‌ها تنها از ماه دوم به بعد آلودگی مشاهده گردید.

پی به هر حال در مجموعه از نظر میکروپی جنین در شرایط نگهداری در دمای بالا و ظروف پلاستیکی وزگ، در سس‌های مایونز مورد آزمایش تغییراتی که نشان دهنده کسترش قابل ملاحظه فساد میکروبی بوده، مشاهده نشد.

آزمون‌های ارتباطی حسی سه‌سا

در این آزمون‌ها سس مایونز در ظروف شیشه‌ای نگهداری دامای (C)\n
<table>
<thead>
<tr>
<th>شمارش کلی میکروب (cfu/gr)</th>
<th>زمان نگهداری (ماه)</th>
<th>تعداد (cfu/gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/5/10</td>
<td>۴/۰۰</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td>۴/۰۰</td>
<td>۲/۰۰</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td>۲/۰۰</td>
<td>۲/۰۰</td>
<td>۲/۰۰</td>
</tr>
<tr>
<td>۰/۵/۱۰</td>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
</tr>
<tr>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
</tr>
</tbody>
</table>

* درجه یک از نمونه‌ها، ناپیوسته از حداستاندار بالاتر نیست (۵).*
بیشتر تغییرات خصوصی در نمونه‌های سس‌ماتورز در ظروف شیشا و پلاستیکی
نتایج این بررسی که در جدول ۶ و ۷ خلاصه شده، نشان می‌دهد که سنسیتی دریایی نگهداری در دمای ۴۰ درجه سانتی‌گراد هم در پلاستیکی شیشا و هم در پلاستیکی پلاستیکی بزرگ در همان موارد نگهداری از نظر عطر و طعم، رنگ و بافت دیچار تغییرات شدید شده‌اند، به طوری که افزوده آبزون کننده در سنس‌های مذکور در مقایسه با نمونه‌های شاهد تغییرات معنی‌دار از نظر عطر و طعم، رنگ و بافت تشخیص داده‌اند. تغییرات مذکور بخصوص در رنگ و عطر و طعم مشهدتر بوده است. این سنس‌ها آثار شکستگی امولپسیون و نتوانستن چربی در سطح سنس برین همانند نگهداری در دمای ۴۰ درجه سانتی‌گراد ملاحظه شده، در حالی که همان طور که بیان شد قبل از مرحله نگهداری، سنس‌ها آبزون پایداری امولپسیون را بدون بروز مشکلی پشت سر گذشتند. تنها دیگر آنها این احتمال وجود دارد که تغییر در امولپسیون در چگونگی احساس محصول وقته در درمان فاصله می‌گیرد و طعم آن اثر کاذب‌شکنی باید.

۳۱۰
جدول 6. تغییرات خصوصی میوپنی در ظروف شیرهای نگهداری شده در دماهای مختلف در طول زمان نگهداری

<table>
<thead>
<tr>
<th>دما نگهداری (سانتی‌گراد)</th>
<th>تعداد</th>
<th>عطر و طعم</th>
<th>رنگ</th>
<th>پشت‌چشمه</th>
<th>حداکثر جواب صحیح</th>
<th>وضعیت معنی‌دار بودن اختلاف</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

فقط رنگ و رنگ و طعم معنی‌دار بود.

- عطر و طعم معنی‌دار بود

- عطر و طعم معنی‌دار بود

* به دلیل معنی‌دار بودن اختلاف، ادامه آزمایش‌ها در ماههای بعد لازم نبود.
جدول 7. تغییرات خصوصی‌های مایونز در ظروف پلاستیکی نگهداری شده در مامایی مختلف در طول زمان نگهداری

<table>
<thead>
<tr>
<th>وضعیت معنی در بودن اختلاف</th>
<th>پیش از پیش آمادگی</th>
<th>پیش از پیش آمادگی</th>
<th>پیش از پیش آمادگی</th>
<th>پیش از پیش آمادگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>معنی در بودن اختلاف</td>
<td>عکس و طعم</td>
<td>عکس و طعم</td>
<td>عکس و طعم</td>
<td>عکس و طعم</td>
</tr>
<tr>
<td>معنی دار نبود</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>معنی دار نبود</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>معنی دار نبود</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>فقط رنگ معنی دار بود. عکس و طعم و بافت معنی دار بود *</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>عکس و طعم و بافت معنی دار بود *</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>عکس و طعم و بافت معنی دار بود *</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

بنا به نتایج یافته تحقیق می‌توان یک کره که نگهداری در دمای بالا و استفاده از بسته‌های بزرگ پلاستیکی از جنوب میکووی روند ساختار میکروی در سنس مایونز تأثیر چندانی ندارد و غالباً به دلیل محیط اسیدی این محصول با گذشت زمان کاهش میزان میکروگانیسم موجود در محصول مشاهده می‌شود. اما بهتر است که در استفاده از بسته‌های بزرگ پلاستیکی طوری عمل گردد که دخالت دست کارگران در عملیات بسته بندی کمتر باشد تا احتمال افزایش آلوگی واکنش محصول کاهش یابد.

تغییرات در رطوبت و اسیديت نمونه‌ها در حجم کم در دمای بالا وجود داشت. از طرف دیگر نتایج نشان داد که نگهداری در دمای بالا (40 درجه سانتی‌گراد) هم در بسته‌های پلاستیکی و
عکس های سنس مایونز از جنبه‌هایی که در این مقاله به آنها اشاره شده‌اند، فاکتور عمده‌ای با یک سلسله مشابهی نشان‌دهنده اما بهتر است که بخصوص برای کاهش حادثه یکدیگر های مضر مانند اکسیداسیون قبیلی‌ها از انواع پلاستیک مقاوم به عبور اکسیژن مانند پلی اتیلن ترکنده (Polyethylene Terephthalate) (PET) استفاده کرده است. اعمال روشن‌های گلیگنی گزارش‌های بیش از مانند از در قسمت بالایی طرف و همچنین استفاده از استفاده مقاوم به عبور نور تازه در این مورد می‌تواند خواهد بود از طرف دیگر بهتر است که باید در نظر گرفت که در برای نوبت نموده از استفاده نمود، تا در بردار

مراجع استفاده

1. مصباحی، غ.، ج. جمیلی و ح. قلی‌کاری. 1383. استفاده از کلر در سنس مایونز به کاهش مواد پایدار کندنده و قوی‌گرایی وارداتی. علوم و فناوری کشاورزی و منابع طبیعی 8 (۲): 190-205.
2. مؤسسه استاندارد و تحقیقات صنعتی ایران. 1359. آزمون‌های شیمیایی سنس مایونز. استاندارد شماره 2564. جاپان. دوم.
3. مؤسسه استاندارد و تحقیقات صنعتی ایران. 1373. اندازه‌گیری اسید بروزتیک در میوه‌ها و سبزی‌ها و فراورده‌های آن‌ها. استاندارد شماره 3640. جاپان. اول.
4. مؤسسه استاندارد و تحقیقات صنعتی ایران. 1375. نمونه برداری و روش‌های آزمون روغن‌ها و چربی‌ها. شماره 3642. جاپان. دوم.
5. مؤسسه استاندارد و تحقیقات صنعتی ایران. 1373. نمونه برداری و روش‌های آزمون روغن‌ها و چربی‌ها. شماره 3642. جاپان. دوم.

