بررسی ویژگی‌های کیفی خمیر حاصل از چهار رقم گندم تولیدی منطقه سبزوار

ابوالقاسم عبدالله زاده و محمد شاهدی

چکیده
در کشور ما زیاده و سعی برای بالا گردیدن بذارده تولید گندم صورت گرفته است. اما بررسی‌های دقیق در رابطه با کیفیت گندمهای تولیدی انجام نشده است. یک پژوهش شامل ویژگی‌های کیفی‌چهار رقم گندم امید، کل گلنستان و روش تولیدی منطقه سبزوار و نحوه بکارگیری مناسب برای تولید غلات مناسب می‌باشد. آزمون‌ها برای چهار نوع آزمون اردو از آن محصول گندم تولیدی منطقه سبزوار در دو منطقه گلستان و تولیدی در سبزوار کسب و کیفیت گلتن رقم کل نسبت به سایر محصولات مطابق است. نتایج آزمون تولیدی کیفی نشان داد که خواص تانویلی چهار رقم گندم مورد آزمون با یکدیگر متفاوت می‌باشند. بطوری که بهترین شرایط از نظر مقاومت در گروه مطلوب در کسب کرده و ضریری از نظر محصولات، اندازه و عدد و رنگ‌پوشی مربوط به رقم کل است. این تیمار با در هر چهار رقم گندم از لحاظ خمیر و عدد و رنگ‌پوشی مربوط به رقم کل است و انتخاب سایر تیمارها در حد قابل قبول می‌باشد. این حاصل از هر چهار رقم گندم دارد. یافته‌های این رویداد که تولید غلات مناسب یک بار که نسبت به بهترین محصولات بهتر است که گندم امید روش گندم مورد آزمون شرایط لازم خمیر و ضرایب لازم نمی‌باشد، مدت زمان هیدرالیکی یک بار که ساخته تا به نیم‌روش در یک بار که می‌باشد.

واژه‌های کلیدی: گندم، روش، گلنستان، امید، کل، خواص رنژولزیکی

مقدمه
گندم به علت بازدهی تولید زیاد و نیز امکان کشت آن در اکثر نقاط جهان و همچنین قابلیت پخت و خواص منحصر به فرد تغذیه‌ای و صحتی و کیفیت فولکهای گلتن آن برای تولید نان استفاده شده، هیچ غله‌ای نمی‌تواند به آن رقابت نماید (4).

گندمهای تریکسانوم از خانواده Triticum aestivum و Triticum spelta آن با تریکسانوم از خانواده Triticum aestivum و Triticum spelta

1. عضو هیئت علمی اسکای بهمنی، دانشگاه کشاورزی، دانشگاه آزاد اسلامی واحد سبزوار
2. استاد علمی و صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
وجود کمیت و کیفیت مختلف ترکیبات شیمیایی می‌باشد، پروتئین، جریب و آنزیم‌ها در گندم‌ها باعث سبب گردن تا مراحل مختلف مختلف بیابان از ناحیه گندم شده نمود.

نشانه‌های بیعوان یک منبع انسوزی بیشتری بخش یک دانه کن‌داد.

گندم را تشکیل می‌دهد (۱۶).

به هنگام حرارت دادن مخلوط آب و نشانه‌های تغییرات وسیع‌بودن می‌آید که عامل بروز خواص منحصر به فرد می‌گردد. برخی از این تغییرات مانند ایجاد ویسکوزیت و حالت خاصی به خوبی مشاهده می‌شود، هرچند که به علت فشار نیست.

با دمای زلاته‌شان مخلوط آب و نشانه‌های یکی می‌آورد، با افزایش دمای مخلوط در حد کمی از دما زلاته‌شان مخلوط بیشتری به وجود می‌آید. تغییرات در نشانه‌های دیگر می‌شود که در رهگیری‌های انرژی، در این زمان ویسکوزیت افزایش یافته و شفافیت محلول نیز کاهش می‌یابد. با افزایش دما و یسکوزیت با در ها، افزایش خواهد یافته و در نهایت گرانول‌های نشانه‌های منظم و باره شده و نشانه‌ها در محلول رها می‌شود. تعیین‌کننده که پس از زلننایش شدن نشانه‌های برزوز می‌نماید را می‌نماید (۲۰).

شکل گرانول‌های نشانه‌گذار کوری و عدسی شکل، اندکی گرانول‌ها ۲۵-۳۰ نانومتر و دما زلننایش شدن حدود ۶۴ درجه سانتی‌گراد است.

پروتئین گندم یکی دیگر از اجزای مهم دانه گندم است.

مقدار پروتئین گندم بین ۹ تا ۱۲ درصد می‌باشد. گرچه اکثر ارقام دارای ۸ تا ۱۲ درصد پروتئین می‌باشند. سیال می‌کند که بر پروتئین غل مولکول شماره سیال زنیک و سیال می‌بخش مانند مقدار از موجود در خاک، خشکسالی یا سرمایه‌گذاری و بخشی بیماری‌هاست.

مدیر پروتئین در غلات از دو نظر هسته‌ها: از نظر تغذیه و از نظر تکنولوژی. پروتئین گندم دارای فعالیت آنتی‌بیوتیک است.
بررسی و یپگرهای کیفی خصوصی حاصل از چهار رقم گندم تولیدی منطقه سیسوار

مقابله با نوع آلفا نسبت به حفاظت حساسیت می‌باشد (8).

خواص زلوئوزیکی خمیر نقش کلیدی در کنترل وزن و شکل کشت خمیر در مرحله پخت و کیفیت نان دارد (10). امکان اعمال گردئی خواص زلوئوزیکی خمیر گندم به طور عمدی تحت تأثیر پروتئین‌ها ناشته و اپر قرار می‌گیرد. همه نقش گلوتن‌داری اهمیت خاصی است (10). فقرنو گرافیک یکی از پرکاربردترین ارزیابی خواص زلوئوزیکی خمیر در جهان است. اطلاعات مناسبی از ویژگی‌های خمیر مانند درصد جذب آب، مقاومت خمیر در مقابل مخلوط شهد، زمان اختلاف خمیر و فرم مرطوب کننده، و عدد والوریمتری خمیر در آرا می‌دهد (10).

تغییرات زلوئوزیکی خمیر در حین تخمیر به‌طور مبناه (Break down) خواسی رولوزیکی خمیر بی‌کیفیت می‌کند. در اثر پراکنیده‌روش تولید شده توسط مخمر سیلیاتی خمیر کم یا کمیت بیش از حدی است. امکان‌ها این کاهش آب و درجه استخراج آب کیفیت به گردند. خمیر به‌طور می‌یابد که دلیل آن وجود سپس و جوانه در آرد است (17). بافت خمیر به‌دست آمده از آرد 29 درصد استخراج حالت بُراکتش پذیری کمی و همگام بهن کردن کلیه زود نازک و غیرپتی‌نواخت می‌شود و نان آن زود نیمه کرد. خمیر آرد با استخراج 72/36 درصد براکتش پذیری رایدیا شکسته‌شده و جوش بهن نمی‌شود و بافت نان یا پنکنافت نیست. ام‌حاوس نان‌نوازی خمیر و کیفیت نان 72/38 درصد استخراج مناسب است (17).

مواد و روش‌ها

تهیه گونه‌های گندم و روش آزمایش مورد نیزه آنها

سه رقم گندم کل، امید و کلاتسی از منطقه شستمده سیسوار و رقم گندم روست از منطقه جوین سیسوار تهیه شد. این ارقام بعد از سه‌ماه ابزاران مورد استفاده قرار گرفت. کل همان رقم‌روست این در منطقه شستمده سیسوار به گندم کل معروف است. سپس گندم‌ها به طور جداگانه با آسیاب سنگی

ب) چربی‌های موجود در قسمت‌های دیگر: این نوع چربی‌ها به دسته‌ی چربی‌های آزاد و اتصال‌های تصلیفی می‌شوند. این چربی‌ها در گانزله‌ها تنشات وجود ندارند و بیشتر در قسمت‌های پوسته و جرم وجود دارد.

چربی‌های قطبی بخصوص کلیولیپیدها کیفیت نان را بهبود می‌دهند. میزان چربی‌های آب را دارای تاثیری داشته باشد که تحت تأثیر شرایط آب و هوا و شرایط محیطی مختلف قرار می‌گیرد (17).

از موضع‌گیری می‌دهد این است که گندم دارای فعالیت آنزیماتیکی می‌باشد. دانه گندم برای ادامه حیات خود جوانه وند. رسیدن و فرآیندهای متغیریکی نیاز به آنزیم دارد. آنزیم‌ها در غلظت در سلول‌های آزمایش و جوانه متمایز می‌شوند و فعالیت آنزیم‌های گانزله در سطح پاتی پارازاد از جمله آنزیم‌های موجود در غلات می‌توان به گانزله‌ها، پروتئازها، لیپاز و لیپولیزیک زنانه اشاره نمود. گانزله‌ها به و گروه α- آمالاز و β- آمالاز ترتیب می‌شوند به شوری که α- آمالاز به‌صورت شکست پویانده (10) 2 در داخل مولکول نشانه شده‌است می‌گردید قندی‌های ایکنتراله مثل گل‌گر، مانند و همچنین آلفا- دکسترین وجود آید. اما- آمالاز برخلاف α- آمالاز کمتر یا به سختی قادر است قوار با ویسکوزیتزا کا هم‌نه دهد. بلکه این آنزیم موجب می‌گردد که فند به وجود آید. فعالیت آلفا آمالاز در آرد به توجه به سیروون مصرف فردای همیث زیادی است زیرا خواص زلوئوزیکی خمیر و خصوصیات مخصوص شیری‌ها را تحت تأثیر قرار می‌دهد. علاوه بر آن فعالیت آمالاز و قابلیت تخمیر خمرهایی که به روش پیلوشیکی عمل اوری می‌شوند از وجود دارند (4).

β- آمالاز و آلتی آمالاز نشانه‌ای در سیر ترک و کامل

ارزه به یک به تنهایی می‌شوند. هر بار که آلفا-آمالاز در نشانه‌ای از آن است یک مولکول جدید با انعکاس غیراکی تولید می‌شود که مانند منبع β- آمالاز می‌باشد. فعالیت آلتی آمالاز حدود 1/5 است. این شاخص در مورد β- آمالاز کمی بیشتر می‌باشد. همچنین β- آمالاز در
آزمون‌های شیمیایی

آزمون‌های شیمیایی برای چهار نوع آرد مورد تحقیق به روشهای AACC و به ترتیب با روش‌های استاندارد رطوبت pH، حاکمیت ۱۵-۲۴، pH‌های ۵۰-۹۰، pH، حاکمیت ۱۲۶-۳۲، pH آماده‌سازی انجام شد. همچنین آزمون‌های ساکوروز، مالئوز و نشانه‌ها (به روش پلاپارامتری) به کمک روش‌های AOAC انجام‌گیری شد (۱۱ و ۱۲)。

آزمون‌های رولوژیکی خمیر

آزمون‌های رولوژیکی خمیر با استفاده از دستگاه‌های فاینرگراف، اکستنسیونگراف و امپلیگراف انجام شد. این آزمون‌ها برای گروه‌ها مختلف خمیر را در درایوز نیروهای بسته و کشتن نشان می‌دهند و خواص تکنولوژیکی خمیر را روشن می‌سازد. بطوری که به کمک دستگاه‌های فاینرگراف، میزان جذب آب (در) زمان مخلوط کردن، ثابت مقاومت خمیر در برابر عمل مخلوط کردن، عده و ریمیتری، توسط دستگاه اکستنسیونگراف، میزان قابلیت کشش خمیر و مقاومت خمیر در برابر کشیده شدن به کمک دستگاه امپلیگراف دامی زلایی‌شدن و عده ویژگی‌های مشخص ویژه‌تر. آزمون رولوژیکی خمیر براساس روش‌های AACC و به شماره‌های ۵۰-۳۲ و ۶۳-۱۷ انجام شد (۱۱). این آزمون برای آرد‌های مختلف و چلغی مخلوط آرد نگهداری کل و کلیت‌شناخت صورت گرفت و به‌همین اختلاف آردها از نظر خصوصیات رولوژیکی مناسب تولید نمان توانست ارائه گردد.

نتایج و بحث

تجلیل نتایج آزمون‌های شیمیایی

نتایج آزمون‌های شیمیایی آرد ۸۰ کلک شد و بیدن تریپت (plate mill) آرد و با کک مش ۱۲۵ کلک شد و بیدن تریپت (plate mill)

آردی با درصد استخراج ۸۵-۸۰ درصد به دست آمد.

فرودی مشهد و دانشگاه آزاد سبزوار در سه تکرار انجام شد.

نتایج و بحث

نتایج آزمون‌های شیمیایی

نتایج آزمون‌های شیمیایی آرد ۸۰ کلک شد و بیدن تریپت (plate mill) آرد و با کک مش ۱۲۵ کلک شد و بیدن تریپت (plate mill)
جدول 1. تأثیر آزمون‌های شبیه‌ای آرد گندم‌های مورد ارزیابی

<table>
<thead>
<tr>
<th>نوع آرد</th>
<th>ساکاروز (میلی‌گرم در هر گرم آرد)</th>
<th>مالتوز (میلی‌گرم در هر گرم آرد)</th>
<th>پروتئین</th>
<th>غلظت مربوط</th>
<th>رطوبت</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>امید</td>
<td>58</td>
<td>65</td>
<td>38</td>
<td>26</td>
<td>52</td>
<td>6/1</td>
</tr>
<tr>
<td>روش‌های اجرایی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>61</td>
<td>86</td>
<td>32</td>
<td>22</td>
<td>58</td>
<td>6/2</td>
</tr>
<tr>
<td>7/6</td>
<td>61</td>
<td>86</td>
<td>32</td>
<td>22</td>
<td>58</td>
<td>6/2</td>
</tr>
<tr>
<td>7/8</td>
<td>61</td>
<td>86</td>
<td>32</td>
<td>22</td>
<td>58</td>
<td>6/2</td>
</tr>
</tbody>
</table>

(1) تمام مقایسه‌های میانگین‌ها درصد چسب آپ (A) زمان گسترش خمیر (B) زمان رسیدن منحنی به خط 500 برای بند (C) و ثبات مقاومت خمیر بر حسب دقتی (CD) در آزمون فارینوگرافی ارقام استفاده شده است.

جدول 2. مقایسه میانگین‌ها درصد چسب آپ (A) زمان گسترش خمیر (B) (زمان رسیدن منحنی به نقطه 500 برای بند (C) و ثبات مقاومت خمیر بر حسب دقتی (CD)) در آزمون فارینوگرافی ارقام استفاده شده است.

<table>
<thead>
<tr>
<th>رقم</th>
<th>MIANGLIN HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.33a</td>
</tr>
<tr>
<td>4</td>
<td>3.33b</td>
</tr>
<tr>
<td>4a</td>
<td>3.66b</td>
</tr>
<tr>
<td>3/8a</td>
<td>3.66b</td>
</tr>
<tr>
<td>3/25b</td>
<td>2.2b</td>
</tr>
<tr>
<td>3/25b</td>
<td>2.2b</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه میانگین ضریب تحمیل به مخلوط کربن (T3) و درجه نرمی خمیر (S12) در آزمون فارینوگرافی ارقام آرد گندم‌های مورد ارزیابی

<table>
<thead>
<tr>
<th>رقم آرد</th>
<th>MIANGLIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>امید</td>
<td>110c</td>
</tr>
<tr>
<td>روش‌های اجرایی</td>
<td></td>
</tr>
<tr>
<td>140a</td>
<td></td>
</tr>
<tr>
<td>54c</td>
<td></td>
</tr>
<tr>
<td>9433c</td>
<td></td>
</tr>
<tr>
<td>143d</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲ مقایسه میانگین نقطه شکست خمیر (FQN) و عدد والریتری (V) در آزمون فارینوگرافی ارقام مورد آزمون

<table>
<thead>
<tr>
<th>میانگین</th>
<th>رقم آرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>FQN</td>
</tr>
<tr>
<td>۴۸ c</td>
<td>۴۸ d</td>
</tr>
<tr>
<td>۴۰ d</td>
<td>۴۰ c</td>
</tr>
<tr>
<td>۵۰ a</td>
<td>۵۰ c</td>
</tr>
<tr>
<td>۶۰ a</td>
<td>۶۰ c</td>
</tr>
<tr>
<td>۷۲ c</td>
<td>۷۲ d</td>
</tr>
<tr>
<td>۵۰ b</td>
<td>۵۰ b</td>
</tr>
</tbody>
</table>

میانگین های دارای حروف غیر مشترک دارای اختلاف معنی‌دار هستند (p < ۰/۰۵)

![نمودار ۱: مقایسه میانگین جذب آب در آرد گندم‌های مورد بررسی](image1)

![نمودار ۲: فارینوگراف آرد امید](image2)

![نمودار ۳: فارینوگراف آرد روشن](image3)
شکل 1. مقایسه اثر زمان بر نسبت مقاومت به کشش در اکستنگواف برای آرد گلستانی

شکل 2. مقایسه اثر نسبت مقاومت و فاکتور کشش در 25 دقیقه

است و بالاترین عدد ضریب تجمیع مربوط به آرد روشین است و بین اکستنگواف از نظر تجربه شکست خمیر (FQN) تعادل معنی‌دار وجود دارد و بالاترین عدد اثر کل به خود اختصاص داده است و تیمار روشین کمترین امتیاز را کسب نموده است. نتایج حاصل در جدول ۱ نشان می‌دهد که کمترین عدد و رابینی مربوط به تیمار روشین بوده و بالاترین عدد را اثر کل کسب نموده است و سپس بالاترین عدد را تیمار کل + روشین + تیمار امید و تیمار گلستانی اختلاف معنی‌دار وجود ندارد (P<0.05). بنابراین نتایج نشان می‌دهد که امید روشین به عنوان بالاترین و رابینی در بین تیمارهای تیمار کل و کو + روشین جهت تولید نان تائیدی، مناسب است، سیار تیمارهای اکستنگواف کیفیت متوسط می‌باشد. نتایج به دست آمده تا حدی به تحقیقات ملکی هم‌گنی‌داری (3).

نتایج ایمنی‌گرافی

نتایج تجزیه واریانس ۵ نوع آرد مورد آزمون نشان می‌دهد که اثر رقم روی صفات مورد بررسی در ایمنی‌گرافی در سطح یک درصد معنی‌دار بوده است. جدول ۵ مقایسه میانگین درجه حرارت زلایی‌شندن و عدد و رابینی در بین تیمارهای مورد آزمون نشان می‌دهد. با توجه به نتایج می‌توان مشخص کرد که کلیه تیمارها از دوای زلایی‌شندن اکستند و

باید با فرآورده‌های آزمایش مانند مالت، عصاره مالت با آرد گندم جوانه زده تنظیم شود.

نتایج اکستنگوافی

نتایج تجزیه واریانس مربوط به به تیمار سبز آزمون نشان می‌دهد که اثر رقم، اثر زمان و اثر رقم در زمان بر روی صفات اکستنگواف در سطح یک درصد معنی‌دار بوده است.
جدول ۵ مقایسه میانگین درجه زلزله شدن (بر حسب ساتیک خرداد) آردم آزمون مورد آزمون

<table>
<thead>
<tr>
<th>میانگین درجه زلزله شدن (ساتیک خرداد)</th>
<th>رقم آرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>امید</td>
<td>۷۴/۵۶</td>
</tr>
<tr>
<td>روشن</td>
<td>۷۴/۵۳</td>
</tr>
<tr>
<td>کل</td>
<td>۷۴/۱۳</td>
</tr>
<tr>
<td>کل روشن</td>
<td>۷۴/۳۴</td>
</tr>
<tr>
<td>میانگین‌های دارای جوهر غیر مشترک دارای اختلاف معنی‌دار هستند (۵<).</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶ مقایسه میانگین ضربین نسبی در سه زمان تخمیر ۲۵ دقیقه، ۹۰ دقیقه و ۱۳۵ دقیقه در آزمون اکستنسیونگرافی آردم آزمون

<table>
<thead>
<tr>
<th>میانگین</th>
<th>رقم آرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۵ دقیقه</td>
<td>۲/۵۷</td>
</tr>
<tr>
<td>۹۰ دقیقه</td>
<td>۱/۵۵</td>
</tr>
<tr>
<td>۴۵ دقیقه</td>
<td>۱/۳۵</td>
</tr>
<tr>
<td>۰ دقیقه</td>
<td>۱/۸۴</td>
</tr>
<tr>
<td>کل روشن</td>
<td>۱/۸۴</td>
</tr>
<tr>
<td>کل امید</td>
<td>۱/۷۴</td>
</tr>
<tr>
<td>کل کل</td>
<td>۱/۸۴</td>
</tr>
<tr>
<td>میانگین‌های دارای جوهر غیر مشترک دارای اختلاف معنی‌دار هستند (۵<).</td>
<td></td>
</tr>
</tbody>
</table>

نتیجه جدول ۶ و شکل ۴ نشان می‌دهد که ضربین نسبی
(نسبت مقاومت خمیر به قابلیت کشش خمیر) که هم‌مرجع
ویژگی آزمون اکستنسیونگرافی است، برای آرد امید در مدت
زمان ۹۰ دقیقه بالاتری، عدد را به خود اختصاص داده است و
کمترین ضربین مربوط به تیمار کلو روشن (به نسبت ۰/۹۰)
و آرد روشن می‌باشد که بین دو تیمار اختلاف معنی‌داری وجود
ندارد (۵<). (P)

دریگ ویژگی‌های مورد بررسی اکستنسیونگراف عبارت است
از مقاومت به کشش خمیر پس از بیプロین، نتیجه بدست
آمده در جدول ۷ نشان می‌دهد که از نظر میزان انرژی و
مقاومت به کشش خمیر در بین کلیه تیمارها اختلاف معنی‌داری

۲۸۴
جدول ۷. مقایسه میانگین ویژگی‌های اکستنسیون‌گرافی ارقام مورد آزمون

<table>
<thead>
<tr>
<th>میانگین</th>
<th>ضریب نسبی (مقادیر به کشش به کشش پذیری)، %</th>
<th>مقادیر به کشش</th>
<th>سطح زیرمنجی</th>
<th>قابلیت کشش</th>
<th>رقم آرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>امید</td>
<td>متوسط ۲/۱۶۲</td>
<td>۵/۵۷</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
<td>۶/۱۸/۱۱</td>
</tr>
<tr>
<td>روشن</td>
<td>متوسط ۱/۱۵۸</td>
<td>۵/۸۵</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
<td>۶/۱۸/۱۱</td>
</tr>
<tr>
<td>کل</td>
<td>متوسط ۱/۳۴۳</td>
<td>۵/۸۵</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
<td>۶/۱۸/۱۱</td>
</tr>
<tr>
<td>کل روشن</td>
<td>متوسط ۱/۳۴۳</td>
<td>۵/۸۵</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
<td>۶/۱۸/۱۱</td>
</tr>
</tbody>
</table>

جدول ۸. مقایسه میانگین اثر عامل زمان در ویژگی‌های آزمون اکستنسیون‌گرافی

<table>
<thead>
<tr>
<th>ضریب نسبی</th>
<th>مقادیر به کشش خمیر ۵ cm یا زیر</th>
<th>میزان اثری</th>
<th>قابلیت کشش خمیر</th>
<th>زمان دقیقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>امید</td>
<td>متوسط ۲/۱۶۲</td>
<td>۵/۵۷</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
</tr>
<tr>
<td>روشن</td>
<td>متوسط ۱/۱۵۸</td>
<td>۵/۸۵</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
</tr>
<tr>
<td>کل</td>
<td>متوسط ۱/۳۴۳</td>
<td>۵/۸۵</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
</tr>
<tr>
<td>کل روشن</td>
<td>متوسط ۱/۳۴۳</td>
<td>۵/۸۵</td>
<td>۵۰/۸۸</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

با توجه به بررسی‌ها و آزمون‌های انجام شده در این پژوهش می‌توان اعلام کرد که کلیه گندم‌های مورد آزمون از نظر میزان پروتئین، گلوتن مرتبط و عده زنی در حد مناسبی قرار می‌گیرند. نتایج نشان می‌دهد که آرد گندم + روشن در صورتی که از نظر آزمینه‌های آنالیز کنترل شوند جهت تولید نان مطلوب، بهتر از سایر تیمارها می‌باشد. مدت زمان تخمیر لازم برای تهی خمیر جهت تولید نان مناسب برای کلیه تیمارها امید، گلستانی، روشن، کل و کل روشن بین ۱۵ دقیقه تا ۹۰ دقیقه می‌باشد. نتایج آزمون‌های فیزیولوژیکی امید که کلیه گندم‌های مورد آزمون از نظر میزان آنالیز آسیب به حد مناسبی قرار ندارند در مقایسه با سایر تیمارها بهتر می‌باشد.