کترول زنیکی تحمل به شوری در گندم با استفاده از تجزیه میانگین و واریانس نسل‌ها

چکیده

نحوه توارث صفات فیزیولوژیکی مرئی با تحمل به شوری شامل مقدار تجمع سدیم، پتاسیم، نسبت پتاسیم به سدیم در برگ‌های جوان گندم و وزن خشک اندام‌های هواپیم در شش نسل پایه (P0) تا نسل اصلی (P5) و نسبت میانگین خاصی آن در دو داده کارچیا و شورواکی نیز نزدیک در شرایط شوری بالا (هدايت کارچیا = 2/2 دسی؛ زیمنس بر متر) مورد مطالعه قرار گرفتند. یک ماده اصلی از اعمال شوری محیطی برگ‌های و در انتهای فصل شرل وزن خشک اندام‌های هواپیم گونه‌ها اندازه‌گیری شدند.

نتایج نشان داد که تفاوت در نسبت معکوس میانگین و نسبت پتاسیم به جر دیگر مقدار پتاسیم در داده کارچیا بین نسل‌ها محسوس است. نسبت پتاسیم به سدیم در نسل‌های شورواکی نیز نزدیک در نسل‌های گونه‌ها با توجه به کارچیا و شورواکی نیز نزدیک در شرایط شوری بالا (هدايت کارچیا = 2/2 دسی؛ زیمنس بر متر) مورد مطالعه قرار گرفتند. یک ماده اصلی از اعمال شوری محیطی برگ‌های و در انتهای فصل شرل وزن خشک اندام‌های هواپیم گونه‌ها اندازه‌گیری شدند.

اسکیپوس دهداری، عبدالمجید رضایی، سید علی محمد میر محمدی‌میدی

واژه‌های کلیدی: آزمون مقیاس مشترک وزنی، تجزیه میانگین و واریانس نسل‌ها، تحمل به شوری، گندم نان، وراثت پذیری

1. استادیار اصلاح نباتات، دانشگاه کشاورزی، دانشگاه یزد
2. به ترتیب استاد و دانشیار اصلاح نباتات، دانشگاه کشاورزی، دانشگاه یزد
مبومه

با وجود اینکه شوری تولید محسولات گیاهی را در اثر نقاط
دنا از طریق تأثیرات سوء یونیتی، ایجاد تنش اسمری و اختلال
در جذب مواد مغذی محصول کرده است، اما مکانیسم واقعی آن
به خوبی مشخص نشد. این تحالب به شوری اغلب باگتی به
آناتومی و فیزیولوژی پیچیده گیاه دارد. این واقعیت از
روش مناسب جهت بهبود تحالب به شوری در گیاهان را
مشکل تر کرده است. در حال حین این امیدواری وجود دارد که
تاحلاء به شوری در گیاهان از طریق انتخاب بروز صفاتی که در
شرایط شوری به شدت تحت تأثیر قرار می‌گیرند افزایش باید
تحفقاتی زیادی در جهت شناسایی مکانیسم و افزایش تحالب
به شوری در گیاهان تا اساس تجميع یافته (۵)، دفع پاژوهش
(۷) و اساسیتی در گزینه‌گران آلی (۲۳)، و پاتومه شناسی
(۲۵) اظهار داشته‌اند که به شکلی پایدار و به مرحله گزینه‌گران
دانسته که شوری به صورت مطلبی از دست صرفه می‌گردد. تا حذف
ایجاد شورد. فلور یو (۷) اظهار داشته‌اند که
صدمات وارد به بیک در گزینه‌گران حساس ممکن است به علت
اثرات مسئول یافته تجربه می‌باشد.

دورک و همکاران (۵) با تلاش گزینه‌گران
Elytrigia pontica
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate
با گندم نان توانستند تحالب به شوری را به گندم
E. elongate

یکی از افراد تنها افرادی که می‌توانند به شوری در گندم مشاهده شده است.

ژن‌های کنترل کننده این صفت به صورت نسبتی با
سیدم نمود پیدا می‌کنند روی کروموزوم ۴۰ گندم قرار
دارند. (۵)

اتحاد روش اصلاحی مناسب است که به الگوی توارث،
تعداد ژن‌های برگ اثر و ماهیت عمل زن دارد. اطلاع از نحوه
توارث تحالب به شوری در گونه‌های مختلف می‌تواند تبعیض
کندن شکت انتخاب و تعداد دوره‌های انتخاب باشد. (۸)

مواد و روش‌ها

در سال ۱۳۷۹ در گندم رقم خارجی کارچیا و شوراواکی
دریافتی از مکانی بین الملل حقوقات گندم و درخت (سیبیت) با

۱۸۰
تجزیه و تحلیل آماری

بتدریج به کمک آزمون 1 تفاوت بین میانگین تلاقویه‌های مستقیم و معکوس مورد آزمون قرار گرفت، و مسی با توجه به روش کارایی (نقطه از 19 پایان‌های) بر اساس آزمون مقیاس مشترک ون (Joint scaling test) شدند، سپس مقایس مورد انتخاب میانگین نسل‌ها محاسبه و مقایسه آزمون‌های مقیاسی C، A، B با آزمون 1 |بررسی شد. این آزمون با صورت زیر محاسبه شد.

\[
\begin{align*}
\text{A} & = \frac{\sum x}{n} \\
\text{B} & = \frac{\sum y}{n} \\
\text{C} & = \frac{\sum z}{n}
\end{align*}
\]

در صورت عدم کلیه مدل سه پارامتری، مدل‌های مختلف از جمله مدل شش پارامتری (جینکس و جوزنر) به روش وزنی 111.1 برای داده شدند و پارامترهای مربوط به معنی دارد که بر ترتیب میان میانگین، ارث‌های افراشی، افراشی ابتنا، افراشی ابتنا، افراشی غاتی، افراشی غاتی غاتی، غاتی مال بشپاشد بر اورود و کلیه مدل را کمک آزمونی می‌دهد. مدل بودن آمار 1 تعداد شد از آرایشی‌های سه سلسال برای تخمین واریانس محاسبه F1، F2 و F3

(پیش‌بینی کردن) از آزمون‌های بازالت (نقطه از 17) و یا (نقطه از 17) برای پی برد به نجاس واریانس‌ها استفاده شد. این آزمون‌ها میزان احتمال حاصل از تقسیم برگ‌کنترین واریانس به گوناگون کنترین واریانس سه نسل بدون تکیه به عدد شش ضرب و دو صورت معنی‌دار

شرح زیر از اداره کرده‌شده:

پهلوک برق‌گرهای برداشت شده با آب مقتطف شسته شدند و دو روز در مدت 70 درجه سانتی‌گراد کامل خشک گردیدند. سپس میزان آب تزریق ویژه از عصاره‌گیری به وسیله یک دستگاه قلم نور (Flame photometry) مدل 410 می‌دان

181
جدول 1. میانگین و واریانس های مشاهده شده برای وادها و نسل های مختلف حاصل از تلاقی آنها برای سدیم و پتاسیم (میکرو مول بر گرم وزن خشک). نسبت پتاسیم به سدیم و وزن خشک بونه (گرم)

<table>
<thead>
<tr>
<th>تلاقی</th>
<th>سدیم</th>
<th>پتاسیم</th>
<th>نسل</th>
</tr>
</thead>
<tbody>
<tr>
<td>تلاقی 1</td>
<td>12/22</td>
<td>1/50</td>
<td>1/50</td>
</tr>
<tr>
<td>تلاقی 2</td>
<td>14/55</td>
<td>2/75</td>
<td>2/75</td>
</tr>
<tr>
<td>تلاقی 3</td>
<td>15/35</td>
<td>3/20</td>
<td>3/20</td>
</tr>
<tr>
<td>تلاقی 4</td>
<td>16/50</td>
<td>4/25</td>
<td>4/25</td>
</tr>
</tbody>
</table>

نتایج:
نتایج حاصل از آزمون 1 حاکی از عدم تفاوت معنی‌دار بین تلاقی‌های مستقیم و معکوس در تمامی نسل‌ها برای کلیه صفات بزرگ برای پتاسیم در تلاقی برگشته بین F1 و نیک نژاد، کاریکیا و نیک نژاد کاریکیا (P<0.05) و بود (داده‌ها نشان داده‌ند). بنابراین به منظور تخمین بهتر پارامترها، بزرگ برای پتاسیم در تلاقی فوق الذکر که فقط از داده‌های تلاقی مستقیم استفاده شد. مشاهدات مربوط به تلاقی‌های مستقیم و معکوس به صورت تومار در نظر گرفته شدند.

الف) تلاقی کاریکیا x نیک نژاد
جدول 1 میانگین و واریانس مشاهده شده برای صفات مختلف را نشان می‌دهد. همان گونه که ملاحظه می‌شود نسل F1 و والد کاریکیا به ترتیب بالاترین و کمترین میانگین ها برای سدیم داشتند. کمترین میانگین ها برای سدیم پتاسیم و وزن خشک بونه (گرم)

\[R = k \sqrt{\frac{V_{F1} \cdot h_n}{F_{2}}} \]

که با فرض پنجم درصد انتخاب معادله 2/04 در نظر گرفته شد (6).
جدول ۲. پارامترهای مختلف در بررسی مدل سه پارامتری برای صفات مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>χ²</th>
<th>[h]</th>
<th>[d]</th>
<th>m</th>
<th>تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۸</td>
<td>۳۹/۶۸±۲۳/۱۲</td>
<td>۲۰/۰۶±۲/۰۵</td>
<td>۱۱/۸۰±۷/۵۱</td>
<td>سلیم</td>
</tr>
<tr>
<td>۴۴/۹۵</td>
<td>۱۵۹/۹۹±۲۳/۱۲</td>
<td>۱۴۰/۷۶±۷/۱۲</td>
<td>۱۱۱/۰۷±۷/۳۳</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>۳۷/۵۶</td>
<td>۸/۰۷±۲/۴۱</td>
<td>۲۲۵/۱±۳/۳۴</td>
<td>۱۵۳/۲۶±۳/۲۴</td>
<td>پتاسیم به سلیم</td>
</tr>
<tr>
<td>۲/۰۶</td>
<td>۱/۰۲±۰/۲۳</td>
<td>۱/۰۲±۰/۱۳</td>
<td>۱/۰۲±۰/۱۳</td>
<td>وزن خشک</td>
</tr>
<tr>
<td>۶/۳۰</td>
<td>۳۶/۹۸±۶/۸۰</td>
<td>۳۷/۸۸±۶/۸۰</td>
<td>۳۷/۸۸±۶/۸۰</td>
<td></td>
</tr>
</tbody>
</table>

: به ترتیب معنی دارد در سطح احتمال ۵٪ و ۱٪.

جدول ۳. آزمون‌های مقیاس C و B برای صفات مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۶/۵۹±۱۸/۸۷</td>
<td>۱۶/۵۹±۱۸/۸۷</td>
<td>۱۶/۵۹±۱۸/۸۷</td>
<td>سلیم</td>
</tr>
<tr>
<td>۵۲/۸۹±۱۸/۸۷</td>
<td>۵۲/۸۹±۱۸/۸۷</td>
<td>۵۲/۸۹±۱۸/۸۷</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>۶/۹۸±۲/۷۷</td>
<td>۶/۹۸±۲/۷۷</td>
<td>۶/۹۸±۲/۷۷</td>
<td>پتاسیم به سلیم</td>
</tr>
<tr>
<td>۲/۰۶</td>
<td>۲/۰۶</td>
<td>۲/۰۶</td>
<td>وزن خشک</td>
</tr>
<tr>
<td>۸/۳۰</td>
<td>۸/۳۰±۶/۸۲</td>
<td>۸/۳۰±۶/۸۲</td>
<td></td>
</tr>
</tbody>
</table>

: به ترتیب معنی دارد در سطح احتمال ۵٪ و ۱٪.

میزان پتاسیم و وزن خشک در پارامتر B [h] برای تمامی صفات به‌صورت ممکن مورد مطالعه قرار گرفت. با توجه به نتایج دو میانگین ملایم‌شده که مدل سه پارامتری برای مقدار سلیم و وزن خشک کفایت می‌کند و این نتیجه به وسیله آزمون‌های مقیاس A، B و C که تجربه شدند. اما برای سایر صفات این کاپی کاهشی در روند به سلیم نشان داد. اما برای سایر صفات این صفت‌های C و B به‌طور یکسان با C و B بدون تأثیر (جدول ۳). اما برای سایر صفات این کاپی کاهشی از C و B به‌طور یکسان با C و B بدون تأثیر (جدول ۳).

در تلاقی کاری و نیک نژاد (منحل) نیمه معنی دارد. اما برای سایر صفات، پارامتر[d] برای
ب) ثالثی شوراوارکی

در ثالثی شوراوارکی و نیک نازاد، برگه‌های شوراوارکی کمترین و برگه‌های ثالثی کمترین 2 (ثالثی برگشته بآ نیک نازاد) بیشترین میزان سدیم را از خود خود کردن دارد (جدول 1).

نیک نازاد کمترین مقادیر سدیم را از خود اختصاص داد. ثالثی برگشته 1 (ثالثی برگشته بآ شوراوارکی)، نسل اول و نسل دوم به ترتیب بالاترین میانگین‌ها را برای مقادیر پتاسیم، نسبت پتاسیم به سدیم و وزن خشک داشتند. بالاترین میزان واریانس باری مقادیر سدیم و وزن خشک مربوط به نسل دوم و برای پتاسیم و نسبت پتاسیم به سدیم مربوط به ثالثی برگشته 1 بود. نتایج حاصل از مدل پارامتری (جدول 2) نشان داد که همانند

علامت و فون کشاورزی و منابع طبیعی / سال بزده / شماره چهل و یک (الف) / تابستان 1386

شش پارامتری بود. طبق نتایج حاصل از مدل شش پارامتری، برای کل صفات معنی‌دار بود (جدول 4). همان‌گونه که ملاحظه می‌شود، پارامتری [d] فقط برای پتاسیم معنی‌دار بود و برای دو صفت دریغ معنی‌دار نشده. اثر ویژگی‌های افزایشی [i] برای پتاسیم و نسبت پتاسیم به سدیم، اثر افزایشی افزایشی و بالاتری [i] برای هیچ کدام از صفات تثبیت نمی‌گردید.

نتایج آزمون لون بارتلت (ترل از 17) نشان داد که معیار از میانگین واریانس دلیل به نسل اول برای تعیین واریانس محیطی تا قدم معیار معنی‌دار شد.

بکار گیری ضرب یک برای این واریانس در تمامی نسل‌ها می‌باشد. (17).

بر اثرهای بارز واریانس به روش ویژه و به طور مرحله‌ای (19) در جدول 6 ارائه شده است. واریانس محیطی در تمامی مدل‌ها و بار برای صفات معنی‌دار بود. نتایج آزمون مربع کای برای برآوری مدل معنی‌دار نشان داده و نشان دهنده عدم کفايت مدل بود. بنابراین مدل‌های دیگر (یا پارامترهای زبانی آزمون مدل به نهایت مدل به مربع کای حداکثر به عنوان مدل مناسب انتخاب شد. مناسب‌ترین مدل برای سدیم شامل سه پارامتر (محیطی، افزایشی و غلیبی) بود (18/7) که در آن واریانس محیطی و غلیبی از نظر آماری معنی‌دار بودند.

مدل پارامتری برای میزان پتاسیم، نسبت پتاسیم به سدیم و وزن خشک نسبت مناسب‌ترین مدل تشخیص داده شد. برای مقدار پتاسیم افزایش واریانس محیطی و غلیبی، برای نسبت پتاسیم به سدیم واریانس محیطی و افزایشی و نسبت پتاسیم به سدیم واریانس محیطی، افزایشی و غلیبی معنی‌دار بودند.

از واریانس محیطی مدل‌های فوق برای میزان تنوع زننگی در نسل‌ها در حال تعداد استفاده شد. مقادیر F

حاصل از نسبت واریانس هر نسل وارد پارامتر محیطی در هر سه نسل در حال تکیه برای مقادیر سدیم و پتاسیم معنی‌دار بودند.

گردد. برای نسبت پتاسیم به سدیم مقدار F فوق برای BC و
جدول 4. پارامترهای مختلف در برآورد مدل شش پارامتری برای صفات مورد مطالعه در دو تلاقی گنگم

<table>
<thead>
<tr>
<th>[l]</th>
<th>[j]</th>
<th>[i]</th>
<th>[h]</th>
<th>[d]</th>
<th>m</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (57^\circ27^\prime49^\prime)</td>
<td>16(57^\circ27^\prime49^\prime)</td>
<td>16(57^\circ27^\prime49^\prime)</td>
<td>16(57^\circ27^\prime49^\prime)</td>
<td>16(57^\circ27^\prime49^\prime)</td>
<td>16(57^\circ27^\prime49^\prime)</td>
<td>16(57^\circ27^\prime49^\prime)</td>
</tr>
<tr>
<td>كارچیا</td>
<td>پتاسیم</td>
<td>×</td>
<td>پتاسیم به سدیم</td>
<td>شورواکی</td>
<td>×</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
</tbody>
</table>

** و **\(**\): به ترتیب معنی دار در سطوح احتمال پنج و یک درصد

جدول 5. پارامترهای مختلف در برآورد مدل پنج پارامتری برای صفات مورد مطالعه در دو تلاقی گنگم

<table>
<thead>
<tr>
<th>(\chi^2)</th>
<th>[l]</th>
<th>[i]</th>
<th>[h]</th>
<th>[m]</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td>652/9(57^\circ27^\prime49^\prime)</td>
<td>84/16</td>
<td>182/0/4</td>
<td>16/7/9</td>
<td>1/6/23</td>
</tr>
<tr>
<td>کارچیا</td>
<td>پتاسیم</td>
<td>×</td>
<td>پتاسیم به سدیم</td>
<td>شورواکی</td>
<td>×</td>
</tr>
<tr>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
</tbody>
</table>

** و **\(**\): به ترتیب معنی دار در سطوح احتمال پنج و یک درصد
جدول ۶ بررسی مدل‌های مختلف و پراورده‌پارامترهای واریانس به روش وزنی هیمن (11) برای صفات مورد مطالعه در تیلیک کارچا و نیک‌تزار

<table>
<thead>
<tr>
<th>صفت</th>
<th>واریانس پارامتر مدل</th>
<th>(E) واریانس محیطی</th>
<th>(D) واریانس افزایشی</th>
<th>(H) واریانس غلیط</th>
<th>کوروریانس</th>
<th>مربع کای</th>
<th>کوروریانس غلیط</th>
</tr>
</thead>
<tbody>
<tr>
<td>31/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/98</td>
<td>9962 ± 142/9/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/84</td>
<td>2772 ± 280/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/33</td>
<td>8649 ± 2914</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/92</td>
<td>8699 ± 149/8/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/05</td>
<td>9969 ± 214/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/91</td>
<td>9968 ± 214/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **: به ترتیب معنی‌دار در سطوح احتمال پنج و یک درصد
جدول 7. بررسی مدل های مختلف و برآورد پارامترهای واریانس به روش ویژه هیمن (1) برای صفات مورد مطالعه در تلاقی شلوارکی و نیکنزاد

<table>
<thead>
<tr>
<th>صفت</th>
<th>(H)</th>
<th>(D)</th>
<th>(E)</th>
<th>کورواریانس</th>
<th>واریانس غلیط</th>
<th>واریانس افزایشی</th>
<th>واریانس محیطی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(112)</td>
<td>111111/4</td>
<td>112777/4</td>
<td>112777/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(122)</td>
<td>222222/4</td>
<td>222222/4</td>
<td>222222/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(1222)</td>
<td>222222/4</td>
<td>222222/4</td>
<td>222222/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(1332)</td>
<td>333333/4</td>
<td>333333/4</td>
<td>333333/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(13432)</td>
<td>444444/4</td>
<td>444444/4</td>
<td>444444/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(1432)</td>
<td>555555/4</td>
<td>555555/4</td>
<td>555555/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(14532)</td>
<td>666666/4</td>
<td>666666/4</td>
<td>666666/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(15432)</td>
<td>777777/4</td>
<td>777777/4</td>
<td>777777/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
<tr>
<td>(164532)</td>
<td>888888/4</td>
<td>888888/4</td>
<td>888888/4</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
<td>محیطی</td>
</tr>
</tbody>
</table>

**ه: به ترتیب مقدار در سطح احتمال پنج و یک درصد. مدل انتخابی برای نسبت پنجم به سدیم به صورت 0/110 ± 0/057 می‌باشد. **
جدول 8. درجه غالیت و روابط پذیری عمومی و خصوصی و پیشمرت زنگیکی برای صفات مورد مطالعه در دو تالای گندم نان

سر هر انتخاب (R)	خصوصی (h²)	عمومی (F²)	تالایی	دم‌های غالب
222/40	46/10	90/35	1/38	سدیم
88/55	32/2	68/24	1/49	پن‌سیس
2/09	42/89	60/36	0/91	تیپسیس به سدیم
120	30/8	60/24	1/39	وزن خشک
237/5	87/8	53/07	3/20	سدیم
4/1	0/93	57/53	1/59	پن‌سیس
0/22	11/25	26/79	1/66	تیپسیس به سدیم
1/14	0/5	50/24	0/65	وزن خشک

\[
R = k \sqrt{\bar{V}_n h_n} \quad h_n = \frac{D}{D + H + E} \quad h_n' = \frac{D + H}{D + H + E} \quad \bar{A} = \sqrt{H / D}
\]

نتایج به آزمون لون با بارنرتس (نقطه از 17) در نتایج نشان داد که جز برای مقادیر پن‌سیس شوروایی (R) نیک نازان داشت که جز برای نسبت پن‌سیس به سدیم برای سه اسول صفت می‌توان از میانگین واریانس‌های والدین و نسل اول برای تخمین واریانس محیطی استفاده کرد. برآوردهای اجزای واریانس به روش وزنی و به صورت مخلوطی (جدول 7) نشان داد که همانند تالایی کاریگری نیک نازان واریانس محیطی در تمامی مدل‌ها و برای همه صفات معنی‌دار بود. برای مدل‌های دیگر با پارامترهای زیادتر نشان داد که مناسب‌ترین مدل برای مقادیر سدیم مدل‌های دیگر و چهار پارامتری به کار در آن‌ها واریانس‌های غالب و محیطی معنی‌دار بودند. برای مقادیر پن‌سیس و وزن خشک مناسب ترین مدل سه پارامتری بود که برای مقدار پن‌سیس واریانس‌های محیطی و غالبیت و برای وزن خشک واریانس‌های محیطی و افزایشی معنی‌دار بودند.

بحث

نتایج نشان داد که مدل‌های برازش داده شده برای مقدار صفات سدیم، پن‌سیس و وزن خشک در شیرهای شور و بیشتر به نوع والدین نسبت و تقریباً روئید یکسانی داشتند. اما برای نسبت تیپسیس به سدیم کمترین آن را با فرض 5 درصد انتخاب نشان دادند.

188
کنتل زئیکی تحمل به شوری در گندم با استفاده از تجزیه میانگین و...
نتیجه‌گیری
بر اساس نتایج حاصل برای طراحی یک برنامه برای تحقیق به شوری در مرحله اولیه و اکثریت قبلا انجام‌شده که از نظر صفات مهم مربوط به تحقیق تفاوت‌هایی داشته باشند. این امر باعث ایجاد تنویع زیادی در سل های در حال تفکیک می‌شود. بنابراین پیشنهاد می‌شود که این آزمایش با انجام آزمایشات شرودی و الکترودی مطابق آن با ازار حساسات دنبال شود (مثلاً روشی به عنوان یکی از فعالیت‌های این آزمایش انجام می‌شود). با توجه به نتایج حاصل از این آزمایش انجام روش اصلاحی است. همان‌گونه که ملاحظه شد برای برخی صفات مثل مقادیر سدیم و نیتروژ اثرات و واریانس‌های محرک تنش عمدی را داشته‌اند. علاوه بر این وجود ایسپانزا مصرف‌های در کنترل برخی صفات را نیاز باید در نظر گرفت. این نوع به شرح مقاله مشکلی در جهت تحقیق صمام مطلوب به‌وجود آمده (18). این مقادیر افزایشی ایجاد نمی‌کند که برای مقادیر سدیم و نیتروژ تناسبی به سدیم در تالا به‌عنوان وفای جزو ژنیکی مطلوب تغییر می‌باشد. بنابراین می‌توان به‌نوازید برای تحقیق به شوری انجام دوره‌ای و به‌دنبال آن روش‌های جدید با تاکید در والدی یا برای روشتان انجام‌برای تحقیق در نظر گرفت. وجود ایسپانزا آن‌ها به‌نوازید و در این ژن‌ها بیانگر لزوم انجام یک تحقیق به شوری در سل‌های پیشرفته بعنوان تا زمان تثبیت این اثرات می‌باشد.

منابع مورد استفاده