اثر میزان و زمان مصرف کود نیتروژن بر تجمع و کارایی انتقال مجدد نیتروژن

عدالت بحرانی و زین العابدین طهماسبی سروستانی

چکیده
دری فیزیولوژیکی انتقال مجدد نیتروژن توسط گیاه به منظور دستیابی به ارگام با کلیه پیشرفت از اهمیت ویژه‌ای در فیزیولوژی گیاهی پرورود است. در این راستا از یک رقم گندم تان و یک رقم گندم دوروم با درصد‌های مختلف پروتئین تحت سطوح مختلف مقدار و زمان مصرف نیتروژن با استفاده از طرح آماری اندازه‌گیری طرح پایه‌گذاری گیاه مورد مطالعه قرار گرفت. مقداری از ۱۲۰۰ و ۱۴۰۰ کیلوگرم نیتروژن در گل‌دهی و زمان مصرف نیتروژن افزایش می‌یابد. انتقال و کارایی انتقال مجدد نیتروژن از گرگ پرچم به سمت دانه درصد پروتئین دانه و عوامل مورد انتقال بیشتر نیتروژن و کارایی پروتئین بودن در این انتقال، درصد پروتئین دانه بالاتری را به‌عنوان که‌ایت درصد نیتروژن بر اغلب خصوصیات مورد نظر هدایت به‌عنوان که‌ایت دانه که باعث افزایش قدرت تربیت مقدار و زمان مصرف نیتروژن و نیتروژن به کاهش زایش انتقال و کارایی انتقال مجدد نیتروژن می‌باشد. به‌طور کلی به نظر می‌رسد کارایی انتقال مجدد نیتروژن عامل مهمی در افزایش پروتئین دانه در گندم ساخته. همبین بالا رفت مقدار موردکرد دانه موجب کاهش درصد پروتئین دانه می‌گردد.

واژه‌های کلیدی: کنند، کارایی انتقال مجدد نیتروژن، پروتئین دانه، ب رگ پرچم

مقدمه
جبهه‌های نیتروژن در گیاه خصوصاً در مرحله‌ای از رشد و نمو گیاه‌ها که جذب نیتروژن از سطح جهانی می‌گردد، یکی از

۱. دانشجوی سابق کارشناسی ارشد زراعت، دانشگاه آزاد اسلامی واحد اردکان
۲. استادیار زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

۱۱۷
نیتروژن که در داخل یک با هور روشی تجمیع یافت است
مورد انتقال قرار می گیرد و بر حسب رقم در گندن آمی
گزارش شد که ۵۰ درصد از نیتروژن به کمپا
زایی در سبب ذخیره می شود از این بخش تأمین می کرده
(۲۵) . نیتروژن مکانیزم ورود نیاز است که گیاه باید کمک
آن بتواند نیتروژن جذب شده را بین اندازها توزیع نموده و پس
از یک دوره ذخیره شدن. آنها را به دانه اندازه دهد . سیستم
مطاوی که طی آن گیاهی این مجموعه فرایند را به تحویل کنار
و به لحاظ نوزارت تأثیر حاکمیت را به اجرا بکار خواهد
哼ه گونه و ارقام و جوی ندارد.

اسباب آزمایشات مربوط به (۱) میزان از دراغلب
خاک‌های کشاورزی ممکن است بدق در کافی موجود باشد تا
بزرگ تأثیر نیاز کو شرکت‌های فنی هستند خاص در گیاه
جلغیزی کند . لیکن. در طول دوره سپس گیاه کاشته
میزان جذب به همراه تفنگی زیاد دانه به بار از می تواند
سبب نقصان از دراغلب و کاهش فنی هستند شد . در
گروه و همکاران (۱۲) گزارش کردند که اساس تجربه‌ها
آزمایشگاهی با غلات و سایر گیاهان زراعی، چنین نقصان از
برگ ها ممکن است در هر مرحله از نحوه گیاه پر اثر کاهش
ناگهانی میزان موجود در محیط کشت، به سرعت بروز کند.
بنابراین، همبستگیی به دست آمده بین اثر بزرگ و فنی هستند
مکان است شناسایی و راستی فنی هستند به مقدار انتقال از
برگ پا به بن میزان از دراغلب به تهیه . طور (۱۸) و یپر و
همکاران (۱۲) گزارش کردند که مقدار ببر از دانه ممکن
است با انتحاب زنبوری‌های یک درصد بالاتر از نیتروژن را از
ادامه ارتباط به دانه اندازه می‌دهد. به بهبود یابد . لطفاً آینه
و راد همه (۴) در یک بررسی در بیرون رون اندازه یقان زنبوری‌های
گردند دور و مانند نظر انداز مقدار نیتروژن با پنج میزان مصرف
نیتروژن مورد مطالعه یقان دانه و در بیان که به مقداری
نیتروژن و زنبوری‌ها از لحاظ جذب نیتروژن در محله
گرده افشای می‌یافتان انتقال مجدد و جذب نیتروژن در محله
رسیدگی کامل ، تفاوت معنی داری وجود دارد . پاتریک و
مواد و روش‌ها
این پژوهش در سال زراعی 1387-88 در مزرعه دانشگاه دامپزشکی شیراز واقع در طول جغرافیایی 35 درجه و 6 دقیقه و عرض جغرافیایی 29 درجه و 33 دقیقه از تابستان ماه تیر 1388 متر از سطح دریا در اراضی کلی بارندگی سالانه در محل مورد آزمایش 6.5 میلی متر بود. برای تعیین خصوصیات خاک، قبل از اجرای آزمایش اقدام به جمع آوری 15 نمونه از عمق 0-0.30 متری خاک گردد و بعد از خشک کردن در هوا و در دو میلی متری بررسی از خصوصیات اضطراب و شیمیایی آن انجام شد. خاک مزرعه آزمایشی در اسفنج ریس سیلیکا، واکنش قیاسی (pH = 0/30) و هدایت الکتریکی عصاره اشباع خاک 4 و 5 میلی متر گردید. خاک مزرعه کل و فسفر قالب جذب خاک نیز به‌ترتیب 100 و 40 میلی کرم در کیلوگرم بود. طرح آماری اثر میزان زمان مصرف کود ویژه‌های به‌طور طرح انجام شد. ترکیب هر گونه ترکیب تغذیه خاصیت بیانگر کمک مصرف کود از آزمایش به روش کلیدال (kejeldhal proceeder). غلظت

\[
\text{میزان نیتروژن برق} = \frac{\text{میزان دهی}}{\text{میزان دهی}}
\]

\[
\text{پرچم در مصرف کود گرم} = \frac{\text{میزان نیتروژن برق}}{\text{میزان ریسیدیک}}
\]

از سال 1354 که مصرف کودهای اوله و پزوهشی به‌طور طرح انجام شد. ترکیب هر گونه ترکیب تغذیه خاصیت بیانگر کمک مصرف کود از آزمایش به روش کلیدال (kejeldhal proceeder). غلظت

\[
\text{میزان نیتروژن برق} = \frac{\text{میزان دهی}}{\text{میزان دهی}}
\]

\[
\text{پرچم در مصرف کود گرم} = \frac{\text{میزان نیتروژن برق}}{\text{میزان ریسیدیک}}
\]

مورد استفاده است. \text{میزان نیتروژن برق} و \text{میزان دهی} تغذیه خاصیت بیانگر کمک مصرف کود از آزمایش به روش کلیدال (kejeldhal proceeder). غلظت

\[
\text{میزان نیتروژن برق} = \frac{\text{میزان دهی}}{\text{میزان دهی}}
\]

\[
\text{پرچم در مصرف کود گرم} = \frac{\text{میزان نیتروژن برق}}{\text{میزان ریسیدیک}}
\]

مورد استفاده است. \text{میزان نیتروژن برق} و \text{میزان دهی} تغذیه خاصیت بیانگر کمک مصرف کود از آزمایش به روش کلیدال (kejeldhal proceeder). غلظت

\[
\text{میزان نیتروژن برق} = \frac{\text{میزان دهی}}{\text{میزان دهی}}
\]

\[
\text{پرچم در مصرف کود گرم} = \frac{\text{میزان نیتروژن برق}}{\text{میزان ریسیدیک}}
\]

مورد استفاده است. \text{میزان نیتروژن برق} و \text{میزان دهی} تغذیه خاصیت بیانگر کمک مصرف کود از آزمایش به روش کلیدال (kejeldhal proceeder). غلظت

\[
\text{میزان نیتروژن برق} = \frac{\text{میزان دهی}}{\text{میزان دهی}}
\]

\[
\text{پرچم در مصرف کود گرم} = \frac{\text{میزان نیتروژن برق}}{\text{میزان ریسیدیک}}
\]

مورد استفاده است. \text{میزان نیتروژن برق} و \text{میزان دهی} تغذیه خاصیت بیانگر کمک مصرف کود از آزمایش به روش کلیدال (kejeldhal proceeder). غلظت

\[
\text{میزان نیتروژن برق} = \frac{\text{میزان دهی}}{\text{میزان دهی}}
\]

\[
\text{پرچم در مصرف کود گرم} = \frac{\text{میزان نیتروژن برق}}{\text{میزان ریسیدیک}}
\]
جدول ۱ اثر رقم، مقدار مصرف و زمان مصرف نیتراتورون بر میانگین غلظت نیتراتورون بر گ ترچ در مرحله گذشته افتخالی و رسیدگی، انتقال مجدد نیتراتورون. کارایی انتقال مجدد نیتراتورون درصد پرورش دهنده و عمکردی دانه.

<table>
<thead>
<tr>
<th>رقم</th>
<th>مقدار مصرف نیتراتورون (kg ha⁻¹)</th>
<th>زمان مصرف نیتراتورون*</th>
<th>نتایج و بحث</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>کارایی انتقال مجدد نیتراتورون (mg g⁻¹)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(درصد غلظت نیتراتورون بر گ ترچ در مرحله گذشته افتخالی و رسیدگی)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*این اعداد نشان داده که در بین دو رقم گفته مورد استفاده اختلاف معنی‌داری از نظر انتقال مجدد نیتراتورون کارا نبود.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>آن می‌تواند بایستی از مرحله رسیدگی در برگ پرچم، درصد پرورش دهنده و همچنین عمکردی دانه وجود دارد.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>بررسی میانگین‌ها (جدول ۱) مشاهده می‌گردد که بین دو رقم این مقدار نیتراتورون بر گ ترچ در مرحله گذشته افتخالی اختلاف معنی‌داری وجود ندارد.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>این مقدار در مرحله رسیدگی اختلاف معنی‌داری ایجاد کرده بطوری که رقم یا پوران می‌گردد، کمتری نیتراتورون با برگ پرچم خود نسبت به فلاته نگاه داشته که در نهایت با انتقال مجدد بیشتر</td>
</tr>
</tbody>
</table>

* تمام زمان کاسته= T1/5 زمان کاسته= T2/3 مرحله ساقه رفن= T2 و 2/3 ظهور ساقه و 1/3 مرحله ساقه رفن= T3/5 زمان کاسته= T3

نتایج و بحث

نتایج به‌دست آمده نشان داد که در بین دو رقم گفته مورد استفاده مطالعه اختلاف معنی‌داری از نظر انتقال مجدد نیتراتورون کارا نبود. آن می‌تواند بایستی از مرحله رسیدگی در برگ پرچم، درصد پرورش دهنده و همچنین عمکردی دانه وجود دارد. بررسی میانگین‌ها (جدول ۱) مشاهده می‌گردد که بین دو رقم این مقدار نیتراتورون بر گ ترچ در مرحله گذشته افتخالی اختلاف معنی‌داری وجود ندارد. این مقدار در مرحله رسیدگی اختلاف معنی‌داری ایجاد کرده بطوری که رقم یا پوران می‌گردد، کمتری نیتراتورون با برگ پرچم خود نسبت به فلاته نگاه داشته که در نهایت با انتقال مجدد بیشتر
در این رقم به بالا رفتن درصد پروتئین دانه در رقم پایین‌الرقبه منجر گردیده است. رسمی و چرایی (3) نیز در بررسی 6 رقم گندم به درصد پروتئین‌های کم متوسط و زیاد گزارش کرده‌اند که کارایی انقلاب مجدد نیتروژن عامل افزایش درصد پروتئین‌های افزایش درصد پروتئین‌های دانه در ارتفاع برخوردار بوده است. دلیل دیگر باین برای پیدایه‌بندی درصد پروتئین‌های در رقم فلات نیز به عمل بیان شده. گزارش‌های عمومیکده دانه در این رقم با پیوسته (جدول 1) هم‌اندازه که محققین زیادی رابطه می‌گویند بین افزایش عملکرد دانه و درصد پروتئین‌های گزارش‌کرده‌اند (13، 15 و 16). به نظر می‌رسد افتاده‌های کیفی بین رقم نیز عامل دیگری در انقلاب مجدد نیتروژن از اندازه‌های میانی به دانه و داشته. چنان که بسیاری از محققین نیز برای مطلب تأکید داشته‌اند.

(7) افزایش در مقدار مصرف نیتروژن به کلیه خصوصیات فوق به جر متوالی انقلاب مجدد نیتروژن، تأثیر معنی‌داری داشت (جدول 1). با مشاهده میانگین‌ها در دو مقدار مختلف نیتروژن ملاحظه می‌گردد که با افزایش مقدار نیتروژن متوسط نیتروژن بر پیم در مرحله رشدیک‌ها تا بیش از نیتروژن در مرحله شرایط عدم تنش کود نیتروژن بوده، که این مسئله همان‌طور است که کارایی انقلاب مجدد نیتروژن بیشتر و بالا رفته و این امر به دلیل جذب بیشتر تنش نیتروژن به عمل فراوانی آن در مرحله‌های افزایشی و رسیدگی بالا از برهمکشی رقم و مقدار مصرف نیتروژن بر کارایی فعال انقلاب مجدد نیتروژن (شکل 1) چنین در نظر می‌رسد که که رقم بیاوروس نسبت به رقم فلات دارای کارایی انقلاب مجدد نیتروژن بیشتری در مقدار پایین مصرف نیتروژن است. لطفاً در پایین گزارش 4 (7) نیز گزارش کرده که بین نتایج‌های کنند دور و مقادیر مصرفی نیتروژن اختلاف معنی‌داری در کارایی انقلاب مجدد نیتروژن وجود دارد. 

بر همکاری رقم و مقدار مصرف نیتروژن در مورد انقلاب مجدد نیتروژن نشان داد (شکل 2) که در رقم بیاوروس با اضافه شدن مقدار مصرف نیتروژن انقلاب مجدد نسبت به رقم فلات بیشتر است.

بر همکاری رقم و مقدار مصرف نیتروژن در کارایی انقلاب مجدد نیتروژن نشان داد که رقم بیاوروس کارایی انقلاب مجدد
شکل ۱. اثرات مقیاسی نیتروژن بر کارایی انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال ۵٪

شکل ۲. اثرات مقیاسی نیتروژن بر کارایی انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال ۵٪

شکل ۳. اثرات مقیاسی نیتروژن بر کارایی انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال ۵٪

شکل ۴. اثرات مقیاسی نیتروژن بر کارایی انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال ۵٪

به طور کلي با توجه به نتایج این آزمایش می‌توان

نتیجه‌گیری نمود که کارایی انتقال مجدد نیتروژن از بی‌ارگ‌‌های تولید نیتروژن به دانه

می‌باشد. در رزم‌پارک نیتروژن در مقابل نیتروژن با کنار در سطح دهنده ۵٪ همچنین، کارایی بیشتر

برهگشته نسبت به رقم فلات با کاهش تقسیم‌بندی نیتروژن دارد و

در پایینی مقیاس نیتروژن در خاک، سطح احتمال انتقال مجدد نیتروژن در رقم بی‌ارگ‌کارانت (شکل ۶) ۳/۵٪ تیپ نیتروژن

در مورد انتقال مجدد نیتروژن نیز نشان داد که این فاکتور در هر

dو رقم هرگاه با تقسیم‌بندی نیتروژن فلات با این رقم بی‌ارگ‌کارانت

و انتقال انتقال مجدد نیتروژن داشته (شکل ۶).
انرژی و زمان مصرف کود نیتروژن بر تجربه و کارایی انتقال مجدد نیتروژن در...

شکل 5: اثرات مقادیر مصرف نیتروژن بر کارایی انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال 5%

شکل 6: اثرات مقادیر مقدر و زمان مصرف نیتروژن بر انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال 5%

شکل 7: اثرات مقادیر رقم، مقدر و زمان مصرف نیتروژن بر کارایی انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال 5%

بودن انتقال مجدد نیتروژن در این رقم، بالاتر بودن عملکرد دانه در این رقم نسبت به رقم باواروس باشد. تکرار تحقیقات مشابه همراه با مطالعه ارقام بیشتر بارای درک بهتر توزیع و انتقال مجدد نیتروژن خصوصاً در شرایط تنها، توصیه می‌گردد.

انتقال مجدد عامل مهمی در افزایش درصد پروتئین دانه باشد.

رقم باواروس نیز با افزایش در مقدر و تقویت نیتروژن کارایی انتقال مجدد بیشتری داشته. همچنین به نظر می‌رسد عامل مهم دیگر در کاهش درصد پروتئین دانه در رقم اولیه علاوه بر پایین

مباحث مورد استفاده

1. آرامی، ق. و. ن. ت. نژاد. 1373. مقایسهٔ یک گیاهان زراعی (ترجمه). انتشارات دانشگاه شیراز.
2. پوستینی، ک. و. م. یوسفی، راد. 1378. اثر نش شوری روی جذب و توزیع ازت در دو رقم کنارم. مجله علوم کشاورزی ایران 30 (2): 253-261.
4. لطفعلی‌آباد، آ. و. م. رامهر. 1379. تیوژنیپهای گندم بررسی از نظر انتقال مجدد نیتروژن و خواص کمی و کیفی آنها در...


