تأثیر دانش و بساد ارتعاش بر چندسازی دانه و خوشه دو رقم پسته

محمد لغوی و حسین رحمی

چکیده

هدف از اجرای این تحقیق تعیین نسبت بین دانه و پساد ارتعاش برای چندسازی دانه و خوشه پسته در دو رقم اولی و گرده گردی به‌ندرکه در نظر گرفتن حداکثر خارش وارد بر شاخه پسته تأثیر حاصل از تعیین برخی از خصوصیات فیزیکی و مکانیکی دانه و خوشه نشان داد که معنی‌گذاری W7/3 نسبت نیروی استاتیکی کششی مورد نیاز برای چندسازی دانه و خوشه پسته در وزن آن (و مانگی 8/7 نسبت نیروی استاتیکی کششی مورد نیاز برای جداسازی دانه و خوشه پسته) زیرا رقم اولی و گرده گردی به‌ندرکه برای کلیه نمونه‌ها به قیمت نسبت به وزن آن که به ترتیب شاخص از مهیل جداسازی دانه و خوشه می‌باشد، برای رقم اولی و گرده گردی برای کلیه نمونه‌ها به قیمت نسبت به وزن آن که به ترتیب شاخص از مهیل جداسازی دانه و خوشه می‌باشد، برای رقم اولی و گرده گردی برای کلیه نمونه‌ها به قیمت نسبت به وزن آن که به ترتیب شاخص از مهیل جداسازی دانه و خوشه می‌باشد، برای رقم اولی و گرده گردی برای کلیه نمونه‌ها به قیمت نسبت به وزن آن که به ترتیب شاخص از مهیل جداسازی دانه و خوشه می‌باشد، برای رقم اولی و گرده گردی برای کلیه نمونه‌ها به قیمت نسبت به وزن آن که به ترتیب شاخص از مهیل جداسازی دانه و خوشه می‌باشد، برای رقم اولی و گرده گردی برای کلیه نمونه‌ها به قیمت نسبت به وزن آن که به ترتیب شاخص از مهیل جداسازی دانه و خوشه می‌باشد، برای رقم اولی و گرده گردی برای کلیه نمونه‌ها به قیمت نسبت به وزن آن که به ترتیب شاخص از مهیل جداسازی دانه و خوشه می‌باشد.
پسته (Pistacia vera L.) یکی از خانواده آناتولی‌زه‌گی، گیاهی است که به دستاسازی و گیاه‌زیستی در مرتفعات جغرافیایی منطقه‌های جنوبی و دریایی گرم‌سیری و نیمه‌گرم‌سیری محصول می‌شود. برشاساس جدیدترین آمار فاصله زیرشت پسته در ایران برابر با ۲۸ هزار کتک بوده و میانگین تولید در سال اخیر بالغ بر ۲۸۸ هزار تن یابد. گیاه یک کسب در کشورهای جهان، ایران با داشته‌اند ۶۶ درصد از کل اراضی زیرشت پسته جهان می‌باشد. این نوع روش‌ها و روش‌های ایرانی در انتخاب و افزایش رتبه نسبت به باشند. در نتیجه این سناریوها نسبت به تولید محصولات الکترونیکی ایران بهبود و بهبود می‌آید.

پسته در ایالات متحده آمریکا که از نظر طبقه‌بندی زیرشت پسته (۲۵ هزار هکتار) و میزان تولید (۹۳۸۰۰ تن در سال) مقام دوم را پس از ایران و از نظر میزان عملکرد در واحدهای شش (۲۶۷ هزار کیلوگرم در هکتار) مقام اول جهان را داراست. پیشگام استفاده از درخت نتکان (از نوع نتکان) در پسته زیرشت محصول پسته می‌باشد. در حدود ۹۹ درصد پسته این کشور از این بیانی کالری فیبر تولید می‌گردد. ۹۹ درصد درخت پسته بارور معکوس این ایالت از رقمنی که محصول پسته است، ۷۸ درصد برداشت محصول پسته از درخت نتکان به‌کار برده‌اند. از نظر میزان و وظایف آن در نتیجه باشند. در نتیجه این سناریوها نسبت به تولید محصولات الکترونیکی ایران بهبود و بهبود می‌آید.

پسته یکی از ساده‌ترین انواع برداشت مکانیکی محصولات پایه‌ای که از زمانها الهی پیش می‌باشد، لزمانی نه و یا شاخه‌های درخت می‌باشد. از گذشته‌های دور پندا به مضامین زمان و بوتیجه به نمای که فراوان تهیه که برای ارتقای درخت جهت برداشت میوه صورت گرفته است را نیاز ایجاد ارتقای درخت جهت است که با انتخاب محصول، جمهوری از ارتقای رشد و چگونگی درخت با استفاده از نیروی دست و با ویا ضربت‌های خودبسی بردن یک روش چشمه کمی دراده، بلکه به دلیل
درخت های مورد آزمایش ۲۰ تا ۲۵ سال بالدو و از لحاظ میزان رشد و ابعاد تنه و شاخه تفاوت محسوسی با دستانه‌ها در مورد استفاده منطقه رفسنجان نداشت. محصوله در دو باغ و به‌خصوص قطعات اخراج شده برای آزمایش، سال و عاری از هرگونه بیماری بود که در پال بردن هرچه بیشتر دقت آزمایش‌ها کمک شاپاین می‌کرد.

دستگاه‌های خودکشین در این مورد استفاده می‌کرده‌ایم، از جمله تراکتوری یا قابلیت تغییر و تنظیم به‌سامند و داشته‌ایم ارتحال با سیستم اجرایی آزمایش‌های مورد ارجاع و ساخته شد (۱). این دستگاه از یک بخش اصلی شامل پیکر (شانسی)، سیستم انتقال توان، کلاچ اتصالکشی، مکانیزم ابتدا حرکت نوسانی، تیرک شاخه تکان و گیره اتصال به شاخه تشکیل تراکتوری است. شاسی اصلی که وظیفه نگهداری و حفایی اجرا را به عهده دارد، محصوله به یک قاب ۷-کلیه اتصال برای پایان‌های اتصال‌های مربوط به تراکتور می‌باشد. نوین رانش شاخه تکان از طریق یک محور پونورسال نلسکوئی از محور بایندهای درمانی تراکتور ام‌با به کارگیری یک سیستم رانش تسمیه‌ای از مکانیزم تغییر سرعت راه‌پیما. بنا استفاده از این سیستم تغییر به‌سیر یا تغییر کنترل دور موتور تراکتور، امکان تغییر سرعت بایندهای لانه‌گردنه با طول لگه قابل تغییر برای ابتدای حرکت (Slider-crank) ارتعاشی با دانه نوسان‌های قابل تغییر از ۲۰ تا ۱۰۰ میلی‌متر با فواصل مساوی ۲۰ میلی‌متر استفاده گردید. به‌منظور مبهم شدن در انتقال‌های سرعت شاخه تکان به شاخه مورد نظر برای اعمال ارتعاش، طول بیرون بوصورت نلسکوئی از ۲ تا ۳ متر قابل تغییر بود و با اتصال تکر مکانیزم ارتعاش‌دهنده از طریق یک مفصل کاران، انعطاف‌پذیری کامل به‌صوصت سه بعده فراهم گردید. از یک گیره مجهز به اکتشتی‌های انعطاف‌پذیر و خود فکل شوی (Self-locking)
الف) تصویری از مکانیزم انتقال حركت

ب) تصویری از دستگاه شاخه تکان در حال ارتعاش شاخه

شکل 1. تصاویری از مکانیزم انتقال حركت و نحوه اتصال دستگاه شاخه تکان به همراه اجراي يك از آزمونها

سپس پلساي به وجود آمده به يك شماره ارسال مي شود كه روی صفحه ديجيتابلي دستگاه قابل خواندن مي باشد. جهت انجام آزمایش، شرکتگي را بر روی محور جسيمده و با استفاده از وسیله مذكور بسامد ارتعاش در هر حالت اندارة گيري گردید. شاپان ذكر است كه دامنه ارتعاش با تغيير ميزان لينگ مکانیزم لينگ لغزنده قابل تنظيم بود. بهطوری که قبل از اجرای هر تیمار، دامنه ارتعاش مورد نظر با تغيير محل اتصال يوغ مفصل کاردان تبريکر ارتعاش
روش انددازگیری درصد ریزش خوشه

روش انددازگیری درصد خسارت وارد بر شاخه

آن بهش از صدمه و خسارت وارد بر شاخه‌های ارتعاش داده شده که موجب به شکستند و جدا شده‌اند. ریزش برک می‌گردد بهصورت کمی قابل سنجش می‌باشد و به‌عنوان دیگر

که شامل گردیدن با بهبود محسوس و تا محسوس بیشتر می‌گردد جنبه‌ای که در جدیدی که به‌عنوان تغییرات در درصد فشار خوراکی است که در اجرای آزمایش‌های باغی مرسوم می‌باشد است.

را روی انجری به کمیت تغییر شرایط غیر ممکن است.

از طرف دیگر تغییر شرایط خاک در نقاط مختلف اثر تأثیر بر تیمارهایی که نوع آزمایش‌اتن در دارو برای خارج ساختن تأثیر تغییر شرایط خاک باید از طرح بلوک‌های کاملاً تصادفی استفاده نمود." آزمایش‌ای در سال‌های ۱۰ و در دو منطقه متفاوت انجام گرفت و در مجموع دو سال آزمایش، اعداد و اطلاعات مورد نازگ شرایط بررسی تأثیر فاکتورهای سایه‌ای و دامنه ارتعاش به‌دست آمد. سطح دامنه در سال اول عباسی و در سال ۱۰ دو با هر تپنی سطح دامنه بینی سطح ۰۰ میلی‌متر در این چاپرسی درصد ریزش خشته ۰/۱۰۰۰ میلی‌متر باید جداسازی درصد قابل توجهی از میوه کافی نبود و اضافه نمود سطح جدید ۱۰۰ میلی‌متر، سطح دامنه به ۰/۱۰۰ میلی‌متر تغییر یافت. این تغییرات به میزان در سال اول برای با ۵/۵ و ۱۲/۵ هزار بود که در سال دوم به با هدف سطح پایین باید، به ۵ هزار و اضافه نمودن یک میلی‌متر به سطح پایین باید، به سطح ۱۵ هزار میلی‌متر، سطح باید به ۷/۵ و ۱۲/۵ هزار تغییر یافت. حتی این تغییرات در سطح باید ارتعاش نیز مشابه دلیلی است که برای اعمال تغییرات در سطح دامنه آن را درکشید.

روش انددازگیری درصد ریزش میوه

بعد از اعمال ارتعاش به شاخه در دامنه و بسامد مشخص و به مدت ۱۰ تابن، تعدادی از میوه ریزش کرده و تعدادی هم روي شاخه بایستی می‌ماند. با جدا کردن میوه‌ها با یک میوه باید مقدار
نتایج و بحث
نتایج حاصل از اندازه‌گیری (V/W) و (F/W)
نتایج حاصل از اندازه‌گیری بخشهای از مشخصات هندسی و نیروی لازم برای جدا سازی دانه‌ها یا شکوفه و نهایتاً محاسبه نسبت این نیرو به وزن دانه (F/W) که شاخصی از سهولت جدا سازی میوه به هنگام برداشت می‌باشد در جدول 1 ارائه گردیده است. به‌طوری‌که ملاحظه می‌گردد میانگین اندازه و جرم پسته قله قوچی قدری بزرگتر از رقم اوخودی بوده و نیروی لازم برای جدا سازی و نسبت آن بطور چشمگیری بزرگتر از رقم ارتفاعی است. کوچک‌تر بودن رقم اوخودی نسبت به کله قوچی نشانگر سهولت بیشتر جداسازی پسته اوخودی نسبت به کله قوچی است. صحبت این ادعایا می‌توان در بررسی نتایج تأثیر دانه و یکسان ارتعاش بر جداسازی دانه در دو رقم پسته که در بخش های بعدی این مقاله ارائه می‌گردد مشاهده شود. نتایج حاصل از اندازه‌گیری بخشهای از مشخصات هندسی و نیروی لازم برای جدا سازی خوهه و نهایتاً نسبت این نیرو به وزن خوهه (V/W) که شاخصی از سهولت جدا سازی خوهه به هنگام برداشت می‌باشد در جدول 2 ارائه گردیده است. نتایج نشان می‌دهد که میانگین جرم خوهه در رقم کله قوچی قدیری‌ارائه می‌دهند و آماری دستی از آزمون نهایی دامنه ای دانکن در سطح 5 درصد مقدار شده‌اند.

<table>
<thead>
<tr>
<th>رقم میوه</th>
<th>قطر متوسط سطح خوهه (mm)</th>
<th>جرم (gr)</th>
<th>وزن نیروی جداسازی (N)</th>
<th>نسبت نیروی جداسازی به وزن (V/W)</th>
<th>نسبت نیروی جداسازی به وزن (F/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اوخودی</td>
<td>19/15</td>
<td>13/2</td>
<td>1/2</td>
<td>3/3</td>
<td>0/19/32</td>
</tr>
<tr>
<td>کله قوچی</td>
<td>21/2</td>
<td>13/7</td>
<td>9</td>
<td>37/8</td>
<td>0/19/4</td>
</tr>
</tbody>
</table>

یافته و آثار دراز مدت بر درخت و محصول سال‌های بعد نخواهد داشت. لذا در این پژوهش به بهترین خیاره‌های که به‌صورت جدای شدن سرشاره‌های رزیش برگ به‌همراه میوه جمع کاری می‌شود، انتخاب گری شد. با توجه به اینکه وزن کل شاخه ارتعاش داه شده (بودن بریدن آن از نظر) قابل انتخاب گری نبود، انتخاب وزن سرشاره‌ها و برگ‌های جدای شده به وزن کل میوه و شاخ و برگ‌های جمع آوری شده (به‌صورت درصد) به عنوان درصد خسارت وارد بر شاخ محاسبه گردید. هر چه‌گونه اینکه کمتر از میوه در اثر اعمال ارتعاش از شاخه جدای می‌گردد به عنوان خسارت منظر گردید. نظر به اینکه در تعیین درصد خسارت نهایی نگرانی از هر تیمار به‌طور متقابل انتخاب و مقدار سرشاره‌های شکسته و برگ‌های رنگ به‌وجود آن توزین کرده، امکان تجزیه و تحلیل آمار خسارت به‌صورت تجزیه واریانس و مقدار میانگین‌ها وجود نداشت.

کلیه داده‌های حاصل از آزمایش جداسازی میوه و خوهه که ثبت در اعمال مختلف دامنه و یکسان ارتعاش بود، با استفاده از نرم‌افزار MSTATC پایان‌داری قرار داشته و به‌طور کامل تجزیه واریانس و میانگین‌ها با استفاده از آزمون دانکن دامنه ای دانکن در سطح 5 درصد مقدار شده‌اند.
جدول 3: تجزیه واریانس مربوط به ریزش دانه و خوشه بر حسب درصد در رقم‌های واحده و کله‌فودی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه آزادی</th>
<th>کله‌فودی</th>
<th>واحده</th>
</tr>
</thead>
<tbody>
<tr>
<td>دانه</td>
<td>791/574 **</td>
<td>0/137 **</td>
<td>186/256 **</td>
</tr>
<tr>
<td>خوشه</td>
<td>0/877 **</td>
<td>0/137 **</td>
<td>186/256 **</td>
</tr>
</tbody>
</table>

*: وجود اختلاف معنی‌دار با احتمال 99% **: نبود اختلاف معنی‌دار با احتمال 99%

از نتایج آنالیز مربوط به کله‌فودی، ریزش و خوشه دانه به همین نسبت و تنها جداسازی آن نشان‌دهنده اثرات واریانس مربوط به ریزش و خوشه دانه و خوشه نشان می‌دهد که سطوح مختلف دانه و سپاسام توابع در دو رقم اولیه و کله‌فودی به احتمال 99 درصد بر ریزش دانه و خوشه تأثیر معنی‌دار می‌گذارد و تأثیر ذیلی درصد افزاشی فوق اثر متقابل در فاکتور دانه و سپاسام به احتمال 95 درصد معنی‌دار است. تأثیر ذیلی درصد جداسازی خوشه از تأثیر متقابل این در فاکتور بی احتمال 95 درصد، رقم‌های واحده معنی‌دار است و در رقم کله‌فودی معنی‌دار نیست.

اثرات سطوح مختلف دانه و سپاسام توابع بر درصد

پرداشت میوه در رقم واحده

نتایج مقایسه میانگین‌های درصد ریزش میوه (دانه) به روش آزمون‌دانک‌های در دانه و سپاسام‌های مختلف ارائه شده در جدول 4 ارائه گردیده است. مقایسه میانگین‌های نشان می‌دهد که به‌طور کلی افزایش سپاسام در سطوح مختلف دانه و همچنین

115
جدول ۴ مقایسه میانگین‌های ریزش میوه در دامنه و بسامد مختلف ارتعاش شاخص بر حسب درصد برای رقم اولی در دامنه (دانکن ۵)

<table>
<thead>
<tr>
<th>دامنه (mm)</th>
<th>بسامد (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰</td>
<td>۵ (F₁)</td>
</tr>
<tr>
<td>۴۰</td>
<td>۱۲/۸۰</td>
</tr>
<tr>
<td>۶۰</td>
<td>۱۵/۸۰</td>
</tr>
<tr>
<td>۸۰</td>
<td>۲۳۵/۸۰</td>
</tr>
</tbody>
</table>

جدول ۵ درصد خارج نشانی از شکست سرشاخه‌ها و ریزش برگ در سطوح مختلف دامنه و بسامد ارتعاش در رقم اولی

<table>
<thead>
<tr>
<th>دامنه (mm)</th>
<th>بسامد (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۸۴</td>
<td>۵ (F₁)</td>
</tr>
<tr>
<td>۳/۲۸</td>
<td>۷/۵ (F₁)</td>
</tr>
<tr>
<td>۴/۵۷</td>
<td>۱۰ (F₁)</td>
</tr>
</tbody>
</table>

نمود. چنانچه تنها مکانیکی مورد نیاز برای برداشت ارتعاشی را نیز در انتخاب مناسب ترین ترکیب منظم می‌باشد، با توجه به اینکه تنها مصرفی تابعی دارای ویژگی دوم از دامنه و درجه سوم از بسامد ارتعاش است (۹). آنها بیش از ۵ درصد است، شاخص‌های لازم برای معرفی به عنوان مناسب‌ترین انتخاب ترکیب F1 F2 F3 انتخاب به جداداسی بیش از حدود ۹۸ تا ۹۹ درصد محصول را نخواهد داشت. بنابراین با ملاحظات فوق، سه ترکیب F1 F2 F3 را نمی‌پذیرد بنابراین درصد جداداسی میوه ۹۵ تا ۹۹ درصد، خارجی کمتر از ۵ درصد به درخت وارد می‌شود. بنا به حال، برای میزان ترکیب دامنه و بسامد ارتعاش برای جداداسی پسند رقم اولی مورد عرفی.
<table>
<thead>
<tr>
<th>D (F)</th>
<th>D (F)</th>
<th>D (F)</th>
<th>D (F)</th>
<th>D (F)</th>
<th>D (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.8</td>
<td>1.4</td>
<td>1.6</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>2.5</td>
<td>3.5</td>
<td>2.8</td>
<td>3.2</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>4.5</td>
<td>5.5</td>
<td>4.8</td>
<td>5.2</td>
<td>5.8</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Note: The table above shows the values for certain parameters in millimeters (mm).
جدول 8. مقایسه میانگین‌های ریزش خشوه در دامنه و سیامد مختلف ارتعاش شاخه بر حسب درصد برای رقم اول یک (داتنکین 15)

<table>
<thead>
<tr>
<th>میانگین</th>
<th>فاکتور</th>
<th>دامنه (ام)</th>
<th>سیامد (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.1</td>
<td>0.005</td>
<td>61.42</td>
<td>83.66</td>
</tr>
<tr>
<td>48.5</td>
<td>0.05</td>
<td>61.42</td>
<td>83.66</td>
</tr>
<tr>
<td>23.8</td>
<td>0.1</td>
<td>61.42</td>
<td>83.66</td>
</tr>
</tbody>
</table>

میانگین‌هایی که در هر ستون با ستون دیگر خوراک مشترک هستند از نظر آماری دارای اختلاف معنادار نیستند.

میانگین‌هایی که در سطح دیگر با ستون دیگر دارای خوراک مشترک هستند از نظر آماری دارای اختلاف معنادار نیستند.

پیشنهاد های صورت‌گیری جدی شده‌اند و نیروی دینامیکی ایجاد شده در اثر ارتعاش شاخه بین اندام‌های بوده است که به‌ویژه در ابتدا اثرگذار خشوه - شاخه را به‌دست می‌آورد که اکثریت میوه‌ها D/F از خشوه، جدا کننده انتخاب دیگر ترکیب پیام‌های میوه با 49 درصد جداسازی خشوه از نظر آماری در یک گروه با ترکیب F/FQ که درصد آن بیش از حد راجع به D/FQ تکرار خشوه است. همچنین درصد آب‌بندی درخت و توان مصرفی نیز در عوامل موثر بر انتخاب منظور گردید. ترکیب F/FQ از پیام‌های 82/6 درصد خوارش به درخت (جدول 5) و مصرف نیاز پیشگیری قابل پذیرش نیسته و لذا می‌توان دانست میوه که 12/5 می‌تواند به گروه‌های مشابه در پیام‌هایی که ممکن است در غلبه موارد اختلاف درصد‌های جداسازی با حد نهایی پیام‌ها به‌جای خروجی‌های مخصوص چندانی با درخت وارد نمی‌رود.

ایرادات سطح مختلف دامنه و سیامد نوسان بر درصد

برداشت خشوه در رقم اول‌ها

نتایج مقایسه میانگین‌های درصد صورت‌گیری در رقم اول‌ها در سطح مختلف دامنه و سیامد ارتعاش در جدول 8 ارایه گردیده است. مقایسه میانگین‌ها نشان می‌دهد که افزایش دامنه به‌صورت خشوه‌ای بیشترین درصد جداسازی نوسان می‌باشد. این عدد در سطح مختلف نوسان و همچنین افزایش سیامد در سطح مختلف دامنه موجب افزایش درصد خشوه می‌گردد.

اگرچه درصد جداسازی خشوه در این رنگ مربوط به ترکیب D/FQ است که 82 درصد جداسازی خشوه را تیم‌های میوه و D/FQ یا به عبارت دیگر در بالاترین دامنه و بسیار آمایشی، اکثر
جدول 9 مقایسه میانگین‌های ریزشی خوشه در دامنه و سادم مختلف ارتعاش شاخه بر حسب درصد برای هر کل‌فوچی (دانکن

<table>
<thead>
<tr>
<th>میانگین</th>
<th>دامنه</th>
<th>سادم (Fv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

کل‌فوچی در سطوح مختلف دامنه و سادم ارتعاش در جدول 9 ارایه گردیده است. در این رقم مناسب‌ترین ترکیب دامنه و سادم ارتعاش برای چنداداسیوی میوه (مانند خواشی) را با توجه به فاصله ۶ ترکیب که میانگین ریزش خوشه آن‌ها بالای ۶۱ درصد بوده از نظر مقایسه آماری در یک گروه فرآیند دانسته شده. با محدود نمودن خورش دهنده از شکستگی سر شاخه‌ها و ریزش برگ به ۵ درصد، با توجه به ارقام درصد خسارت (جدول ۷) از بین ۶ ترکیب فوق ال‌گذار دو ترکیب D1 و F1 که به تعیین تریپت ۱۶/۹ مناسب و خاصیت وارد می‌شوند. زمان می‌تواند اعمال ترکیب دامنه و سادم ارتعاش ۶۰ میلی‌متر و ۱۵ هرتز، هر دو رقم درصد ریزش‌های پیکان‌پرا ثابت با ۲۸ درصد دانسته و در سایر

تیمارهای منطقة نیز تفاوت‌های قابل توجه نمی‌باشد. مطلب قبلی ذکر دیگر تأثیر طول زمان ارتعاش است که با توجه به آزمایش‌های مقادیری برای کلیه تیمارها به پاتریود ثابت برای یا ۱۰ تایه اعمال گردیده. مشاهدات عینی در طول اجرای آزمایش نشان داد که بخش عمده از دانه یا خوشه در زمان کمتر از ۱۵ ثانیه از شاخه جدا گردیده و ادامه اعمال ارتعاش منجر به جدا شدن میزان قابل توجهی از میوه باقی مانده نگردیده، بلکه منجر به تشکیل روی کلیه سر شاخه‌ها و ریزش برگ می‌گردد.
تأثیر دامنه و بسامد ارتعاش بر چاده‌اشی دانه و خوش‌دو و رنگ پسته

نتایج و پیشنهادات

1. در هر دو مرد آزمایش (اولویتی و کلوپویی) افزایش بسامد تونسیر نسبتی باعث افزایش درصد ریزش میوه و خوش‌دو می‌گردد و دلیل افزایش درصد ریزش میوه ناشی از نهادنیکی و تنظیم‌های تونسیری وارد بر نقطه اتصال میوه به خوش‌دو و اتصال ساختمان خوش‌دو به شاخه دانست.

2. هر چه بسامد و دامنه ارتعاش بیشتر باشد، اکثر یپته‌ها به صورت خوش‌دوی یک یا یکه به صورت دیگر نهادنیکی ایجاد شده به‌هم می‌باشند اتصال خوش‌دو-شاخه را یافته‌ای از داشتن اکثریت میوه‌ها از خوش‌دو کند.

3. در مرد اولویتی، ترکیب دانه ۶۰ میلی‌متر و بسامد ۱۵ هرتز ۸۵ درصد برداشت دانه را تأمین کرده به‌صورت ارتقاء خرسانه چاده دانست.

4. در مرد کلوپویی باین نیل به‌صورت ریزش مطلوب و در عین حال اکتشاف از ارکیدی بیش از ۵ درصد خسارات به شاخه دانه ۶۵ میلی‌متر و بسامد ۱۵ هرتز که ۹۷ درصد برداشت را تیپه‌های کروکی می‌گردد.

5. در مرد اولویتی ترکیب دانه ۸۰ میلی‌متر و بسامد ۱۲۵ هرتز ۶۲ درصد چاده‌اشی را به‌صورت اکتشاف می‌برد. همچنین دانه‌های ۶۰ میلی‌متر هم‌زمان با بسامد ۱۲۵/۵ هرتز را به‌صورت ۶۹ درصد برداشت خسارت چندانی به‌دست نمی‌آورد، انتخاب کرد.

6. بردایش خوش‌دوی یک رقم کلوپویی، ترکیبات ارتعاشی با بسامد ۱۵ هرتز و دانه‌های ۶۰ و ۷۰ میلی‌متر به‌صورت چندانی

منابع مورد استفاده

1. رحمتی ح. (۱۳۸۱). بررسی تأثیر سطوح مختلف دامنه و فرکانس ارتعاش بر چاده‌اشی دانه یا خوش‌دو پسته. پایتخت نامه کارشناسی ارشد مکانیک ماشین‌های کشاورزی، اشکله کشاورزی، دانشگاه شیراز.

2. شیبانی، ا. ح. بررسی مهندسی و تکنیکی در ارگیا. (۱۳۸۳). پسته و نوپا یازده. آن در ایران، انتشارات سازمان تحقیقات اموزش و تربیت.
کشاورزی، مؤسسه تحقیقات پسته، رفسنجان.

3. غلیپرا، ه. 1377. طراحی، ساخت و ارزیابی ماشین درخت تکان به منظور بررسی تأثیر دانه و بساد ارتعاش بر گداسازی میوه. پایان نامه کارشناسی ارشد مهندسی مکانیکی ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز.

5. میلی، ح. ت. تولید هشتجین و و. ع. رستمی. 1378. تعيين درصد ریشه میوه و خوشه از درخت در هر رم پسته با یک تکانده مکانیکی. مجله علوم کشاورزی ایران 30(1): 19-23.

6. محصی، ش. 1380. بررسی تأثیر دانه و بساد ارتعاش بر گداسازی میوه لیمو ترش. پایان نامه کارشناسی ارشد مهندسی ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز.