تخصیص هر رفت‌خاک و عنصر غذایی در اثر تغییر کاربری اراضی مرتعی
با استفاده از بارانساز مصنوعی

مریم یوسفیفرد، احمد جلالیان و حسین خادمی

چکیده

این مطالعه برای بهبود رفت‌خاک و عنصر غذایی اراضی مرتعی در اثر تغییر کاربری اراضی مرتعی کاملاً دقیق و اجرای اصلاحات در این دستگاه هر یک ک bod دند. در این مقاله، مطالعه ای در منطقه چشمچه (سیلزیا) استان چهارمحال و بختیاری با هدف برآورد رونار، روانی و هدرونفل خاک اراضی مرتعی در چهار کاربری اراضی انجام شد. پس از اینکه میزان مرتع خاک اراضی مرتعی نسبت به مرتع خاک در برابر در چهار کاربری اراضی انجام گردید و تجزیه و تحلیل داده‌ها داشته باشند، که بیشتر تغییر در این منطقه از فرسایش ای‌بوده و عوامل مناسب در پیه‌های این مقاله نشان داد. این مقاله بهبود رفت‌خاک و عنصر غذایی اراضی مرتعی کاملاً دقیق و اجرای اصلاحات در این دستگاه هر یک ک bod دند. در این مقاله، مطالعه ای در منطقه چشمچه (سیلزیا) استان چهارمحال و بختیاری با هدف برآورد رونار، روانی و هدرونفل خاک اراضی مرتعی در چهار کاربری اراضی انجام گردید و تجزیه و تحلیل داده‌ها داشته باشند. این مقاله بهبود رفت‌خاک و عنصر غذایی اراضی مرتعی کاملاً دقیق و اجرای اصلاحات در این دستگاه هر یک ک bod دند. در این مقاله، مطالعه ای در منطقه چشمچه (سیلزیا) استان چهارمحال و بختیاری با هدف برآورد رونار، روانی و هدرونفل خاک اراضی مرتعی در چهار کاربری اراضی انجام گردید و تجزیه و تحلیل داده‌ها داشته باشند. این مقاله بهبود رفت‌خاک و عنصر غذایی اراضی مرتعی کاملاً دقیق و اجرای اصلاحات در این دستگاه هر یک ک bod دند. در این مقاله، مطالعه ای در منطقه چشمچه (سیلزیا) استان چهارمحال و بختیاری با هدف برآورد رونار، روانی و هدرونفل خاک اراضی مرتعی در چهار کاربری اراضی انجام گردید و تجزیه و تحلیل داده‌ها داشته باشند. این مقاله بهبود R۳۳
مقدمه

انسان تعداد زیادی از اکوسیستم‌ها را تغییر داده است. در بیشتر
کشورهای جهان همیشه مجمع‌داشت انسان‌شناسی برای امرار معاین
و زمین‌شناسی می‌باشد. این جمعیت رسته‌ای خلیف سریع رشد
کرده و اثرهای زیادی روی منابع مائه‌گرایند. این اثرات
می‌توان تغییر کاربری و پویش زمین نام را برد. تخریب منابع
طبیعی از جمله مرجع و جنگل منطقه که اکثر سطح انسان نواحی
و تبدیل آنها به کاربری‌های دیگر می‌شود که تحت سیستم
مدیریت انسان می‌باشد. (۵) بیشترین افزایش زمینهای
کشاورزی درآمی‌که در ۵۰ سال گذشته به خصوص دهه قبل
بوده است که به‌سختی است از آسیا به عنوان چری گرجی از حد و
کشت و بقا پایان شده‌اند. (۷) و

ویژگی انسان اقدام به بهبودکرای پروره از منابع گیاکند,
اصطلاح تخریب، قابل کاربرد است. (۵) تخریب خاک را
کاهش در میزان تولید بالقوه و بالفعل خاک و یا کاهش در
بهره‌های خاک که اثر عوامل طبیعی و یا فعالیت‌های انسانی
وجود می‌آید تعریف می‌کنند. فرسایش خاک که از مهم‌ترین
عضلات زیست محیطی، کشاورزی و توسعه گذاشته در جهان است
که تاثیرات مخربی بر نظام اکوسیستم‌های طبیعی و تحت
مدیریت انسان دارد. هنگام‌که فرسایش خاک در طول تاریخ
وجود داشته، ولی در سال‌های اخیر به دلیل کاربری نامسوب
اراضی شده یافته‌اند. (۳) متأسفانه آمار دقیقی از میزان
در ایران وجود ندارد. جلایل‌های و همکاران بر
اساس تجزیه و تحلیل آماری ۱۴۰ ایستگاه رصد سنجی و
هیبرید‌های میزان فرسایش را ۱۵ تن در هر دهکار در مال تخمین
زده‌اند. (۱) شرایط محیطی، نوع و میزان فرسایش ایجاد شده در یک
منطقه خاص را تعیین می‌کند. این شرایط شامل اقلیم،
توبوگرافی، خاک و پوشش اراضی و تغییر کاربری اراضی
می‌باشد. تخریب پوشش گیاهی می‌تواند باعث توسه‌فرسایش
شود که نهایتاً تولید محصول را محدود می‌کند. انسان با شخم و
شیار در اراضی شیبی‌دار، بسیار سریعتر و مؤثرتر از حیوانات

۹۴
فایلی که در ظاهر نمونه مورد مطالعه بخشی از هوا های آبخز کارون شناخته می‌شود.

که در استان شهر محل و تکراری شهريستان برونجرد و در

مجاورت نقشه‌سازی سلیمان واقع شده است. طول جغرافیایی

منطقه ۸۵ ۱۰ تا ۸۵ ۰۱ شرقی و عرض جغرافیایی

آن بین ۳۱ تا ۳۱ ۷۳ شمالی می‌باشد. ارتفاع

متوسط حvêر ۲۴۶۹ متر از سطح دریای است. طبقه‌بندی خاک

Clayey, mixed, active, mesic, Callic Haploxeralfs

کلید نکاوسیونی ۱۹۹۸ و WRB (World Reference Base)

منطقه شامل گونون (A. nemorosa, (A. nemorosa) و

ارنجیم (Erangium sp.) یا باشد. این منطقه معتدل سرد با

تاستان هرخ و خشک است و متوسط بارندگی سالیانه

۱۹۱۲ متر و میانگین دمای سالیانه ۱۱ درجه سانتی‌گراد

می‌باشد.

چهار بازکاری مورد مطالعه شمار مربوط با پویش‌گیاهی

تقریباً خوب (پیش از ۲۰ درصد)، مرتب با پویش‌گیاهی ضعیف

(کمتر از ۱۵ درصد)، دیم‌زار و دیمزار رها شده می‌باشد. بر

اسس اطلاعات به‌دست آمده از هاله دیم‌زار رها شده ۱۰ سال

کش‌گردی و اخیراً رها شده است.

روزهای بیان‌ساز

بیان ساز مورد استفاده (شکل ۱) از نوع فیبرپلاستیک است، در

این نوع عایق‌های شکری از پل ایران (Pol Iran) استفاده شده است. نمونه مورد استفاده در آب افزای هر گرفته شده است. این نوع

عایق‌های شکری نشان دهنده تخلیه شده و یک‌پیشینی بردنگی را دارند. فیبر‌های بیان بدون سرعت اولیه از قطره‌های جدا شده، بر اثر

تیروی نهایی آزاده‌سازی می‌کنند. صفحه ریزش بیان از

قطره چکان قابل تنظیم شکل است که اجازه تنظیم شدید

بیان را می‌دهد. لوله‌های پلی اتیلنی که قطره‌های شکری به

فروریخته ۵۵۰ سانتی‌متر به صورت او طرف روز آنها نصب

در بارندگی‌ها انجام شده است. بعضی از مطالعات میزان

عایق‌های محلول با همراه با رسوب را در پل‌های

کوهکا در حوزه‌های کوه‌کا بیان کرده‌اند. این مطالعات

آرامش‌های شهری‌سازی بیان (۹) اثبات گردید. این

عایق‌ها مربوط به اختلال در کاریز و اعمال مدقیق است.

اگر چه در طی فرآیند فرسایش فقدان قابل توجهی از عایق‌های

بیان در سطح می‌رود، ولی با کاربرد دشواری شیمیایی

می‌توان کمک آنها را چسبانی نمو در مقابل، برای اهمیت

قابل توجه مواد آن در ارتقای خاک‌های خاک‌های در

فیزیک خاک از جمله پایداری خاک‌های خاک‌های و طراحی نگه‌داری

آب، هدر رفت مواد آن خاک طی فرآیند فرسایش به سادگی

قابل توجه نمی‌باشد (۲۱).

خاک‌های مرتع استان چهار محل و پیمان به علت بستن

و پلندی ساختن ضعیف و کم بودن Christmas عامه در معرض

تخربی از جمله فرسایش آبی می‌باشد. تبیین این مراحل به

زیم‌های شکاوزی و انجام عملیات خاک‌ورژی، نشان می‌باشد

پذیری در این خاک‌ها را افزایش می‌دهد. به علائم رشد سریع

جمعیت در این استان به خصوص جمعیت روستایی، فناور

زیادی را افزایش می‌دهد و این که داده‌ها نشان می‌دهد

کشاورزی بیشتری برای تولید عفاده است. این جمعیت

روستایی افزایش تر باید تمرکز و جگ‌پوش تغییر کاریزی است

به دیم‌زار کرده است. به عنوان شبکه مرتبط و جگ‌پوش، تغییر

کاریزی اراضی باعث فرسایش به‌شکل سختی و کاهش اصلی خاک شده و پس از مدتی دیم‌زار از حیز

انتفاع خارج و به صورت زیم پایرا بازمی‌شود. این تحقیق تأثیر

تغییر کاریزی مرتبط را روی هدف‌سازی خاک و عناصر

عایق‌های محلول با رسوب در هر کاریزی مورد مطالعه قرار داده است. این چنین اطلاعات باعث افزایش آگاهی عمومی بین

کشاورزان، کشاورزان و مستندات ذکر فیزیک سبز در مورد اثر تغییر

کاریزی اراضی روی فرسایش خاک و بارده مرجع می‌باشد.
شکل 1: پارانساز مصنوعی در حال آماده‌سازی

شدت بارندگی استفاده شده در این مطالعه بر ساعت بود. انتخاب شدت بارندگی با در نظر گرفتن منحی‌های مخزن آب حذف یک متر بالاتر از سطح صفحه ریزش باران قرار گرفته و در مدت آزمایش سطح آب حذف یک متر بالاتر از سطح صفحه ریزش باران قرار گرفته و سطح آب در مخزن ثابت نگه داشته می‌شود. ارتفاع دستگاه از سطح زمین 1/3 متر است و پایه‌های جلو برای استقرار روی شبکه 2 متر قبل گسترش هستند. به متود مخصوص کردن قسمت مورد آزمایش و جمع آوری روان‌ب از کرتی به ساختمان یک متر مربع استفاده شده است.

تجزیه آزمایش‌گاه خاک و رسوب

توزیع اندازه‌ذرات خاک و رسوب پس از حذف مواد آلی به روش پیت تصمیم شد. مواد آلی خاک و رسوب با روش اکسیداسیون تر و الکی-بلک، نیتریژن کل به روش کلیمال و فسفر قابل استرس به روش اولین اندازه‌گیری کرده (17). نسبت غنی شدن ذرات خاک، ماده آلی، نیتریژن کل و فسفر قابل استرس از تخمین مقدار آن در خاک به میزان آنها در رسوب محاسبه شد.

آزمایش‌های بارانساز با چهار تکرار در قالب طرح تصادفی 30 درصد انجام شد. مدت زمانی که از استقرار دستگاه در هر پل‌ت یا خانه‌آزمایش بطور انجام‌پذیر (باین پیش فرض که بتواند حداکثر از روان‌ب و رسوب را ببرد) انجام تجزیه و تحلیل نتایج انجام می‌شود. در این مدت، روان‌ب تولید شده در زمان‌های 90 و 120 دقیقه جمع آوری و مقدار هدرافت خاک نیز هر 30 دقیقه یکبار با تبخیر روان‌ب توزیع رسوب در آزمایش‌گاه انداره گردید.
جدول 1. تأثیر چهار کاربری بر مقدار رواناب طی 2 ساعت بازندگی مصنوعی

<table>
<thead>
<tr>
<th>نوع کاربری</th>
<th>رواناب (لیتر بر 2 ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرتع با پوشش گیاهی غرب</td>
<td>3/85</td>
</tr>
<tr>
<td>مرتع با پوشش گیاهی ضعیف</td>
<td>11/74</td>
</tr>
<tr>
<td>دیمزر</td>
<td>11/86</td>
</tr>
<tr>
<td>دیمزر رها شده</td>
<td>22/84</td>
</tr>
</tbody>
</table>

در هر ستون اعداد با حرف مشابه طبق آزمون LSD در سطح 0.05 درصد تفاوت معنی‌دار ندارند.

شکل 2. تأثیر چهار کاربری و زمان در بازندگی رواناب طی 2 ساعت بازندگی مصنوعی

نتایج و بحث

میزان رواناب تولید شده

مقدار رواناب ایجاد شده در چهار زمان اندامگیری شده در دیمزر رها شده بیشتر از کاربری‌های دیگر است (جدول 1). بهطوری که مقدار آن در دیمزر رها شده 0/71 برابر مقدار رواناب در مرتع با پوشش گیاهی خوب است. در دیمزر رها شده در سال‌های کست و کار و پس از آن رها شدن زمین، افزایش در مقدار رواناب گزارش شده است. با این حال در شرایط اول و اولین، شرایط اول در مرتع و دیمزر، مقدار رواناب بالا می‌رسد.

از زمان کوتاهی از شروع بازندگی، رواناب در این کاربری ایجاد شده است و همانطور که در شکل 2 مشاهده می‌شود، مقدار رواناب با زمان در دیمزر رها شده نسبت به کاربری‌های دیگر بالاتر قرار گرفته است. شکل رواناب با گذشت زمان افزایش یافته و سپس به مقدار ناشی می‌رسد. دلیل رسیدن به حالت ثابت شکل سه در اثر درخشیدن رفتار با سطح خاک و تغییر ساختمان و در نهایت کاهش توقف‌ذخیره خاک می‌باشد (16). همکاران (6) بر اساس داده‌های مشاهده شده رواناب، مقدار رواناب را به سه مقطع تقسیم کرده‌اند: 1- مرحله اول شروع بازندگی با نقاط شروع اولین طول‌های طول رواناب است. 2- مرحله افزایش رواناب که با تداوم بازندگی سریعاً میزان رواناب
جدول ۲: تاثیر چهار کاربری بر مقدار رسوپ طی ۲ ساعت بارندگی مصنوعی*

<table>
<thead>
<tr>
<th>نوع کاربری</th>
<th>رسوپ (گرم بر متر مربع)</th>
<th>۰–۱۲ min</th>
<th>۹–۱۲ min</th>
<th>۶–۹ min</th>
<th>۳–۶ min</th>
<th>۰–۳ min</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرجع با پوشش گیاه خوب</td>
<td>۱/۸۶</td>
<td>۲/۶۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>مرجع با پوشش گیاه ضعیف</td>
<td>۱/۹۳</td>
<td>۳/۱۳</td>
<td>۱/۳۸</td>
<td>۱/۴۴</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>دیمار</td>
<td>۲/۱۰</td>
<td>۲/۱۰</td>
<td>۱/۷۹</td>
<td>۲/۸۹</td>
<td>۲/۴۴</td>
<td>-</td>
</tr>
<tr>
<td>دیمار رحا شده</td>
<td>۲/۸۷</td>
<td>۷/۹۳</td>
<td>۷/۹۳</td>
<td>۷/۹۳</td>
<td>۷/۹۳</td>
<td>۷/۹۳</td>
</tr>
</tbody>
</table>

در هر ستون اعداد با حرف مشابه طبق آزمون LSD در سطح ۵ درصد تفاوت معنی‌دار ندارند.

شکل ۳: تاثیر چهار کاربری و زمان بارندگی رسوپ طی ۲ ساعت بارندگی مصنوعی

از افزایش می‌یابد، در این مرحله سلسله در سطح حاک در حال تشکیل شدن است. ۲ - مرحله نبات رواناب، که سلسله روزانه سطح حاک تشکیل شده است و شدت رواناب به حد نایبی می‌رسد. نور و سیبیکر (۱۶) مرحله بعد از بارندگی را نیز اضافه کرده که این مرحله بسیار کوتاه است. ۳ - مشخص نشده که این توزیع بارندگی تا زمانی که رواناب از پل خارج می‌شود و با به داخل خاک نفوذ می‌کند، ادامه می‌یابد و تعقیب کردن رسوپ در معلق در رواناب نقشه می‌شود. در این تحقیق بودید ساعت بارندگی در مرحله دوم (افراشی) و بودید به مرحله نبات نرسید.

میزان رسوپ تولید شده

پیشینه مقدار رسوپ در چهار زمان انداره‌گیری شده در

زمان (دقیقه)
جدول ۳. تأثیر چهار کاربری بر مقدار گل آلودگی طی ۲ ساعت باولدگی مصوعی

<table>
<thead>
<tr>
<th>نوع کاربری</th>
<th>مقدار آلی (گرم در لیتر)</th>
<th>مرنج با بوشگاه گیاهی نبوغ</th>
<th>نتیجه‌گیری</th>
<th>مرنج با بوشگاه گیاهی ضعیف</th>
<th>نتیجه‌گیری</th>
<th>دیمزر</th>
<th>نتیجه‌گیری</th>
<th>دیمزر رها شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2 giờ</td>
<td>0/12</td>
<td>-</td>
<td>3/29</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
</tr>
<tr>
<td>+2.5 ساعت</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
</tr>
<tr>
<td>+3 ساعت</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
</tr>
<tr>
<td>+3.5 ساعت</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
<td>0/12</td>
<td>-</td>
</tr>
</tbody>
</table>

در هر سه شاهد بدا یا حرف مشابه طبق آزمون LSD در سطح ۵ درصد تفاوت معنی‌دار ندارد.

جدول ۴. تأثیر چهار کاربری بر پیشی از شاخص‌های شیمیایی خام

<table>
<thead>
<tr>
<th>مواد آلی (درصد)</th>
<th>نتیجه‌گیری</th>
<th>کاربری</th>
<th>مواد آلی (درصد)</th>
<th>نتیجه‌گیری</th>
<th>کاربری</th>
</tr>
</thead>
<tbody>
<tr>
<td>دیمزر</td>
<td>0/12</td>
<td>-</td>
<td>دیمزر رها شده</td>
<td>0/12</td>
<td>-</td>
</tr>
<tr>
<td>دیمزر</td>
<td>0/12</td>
<td>-</td>
<td>دیمزر رها شده</td>
<td>0/12</td>
<td>-</td>
</tr>
<tr>
<td>دیمزر</td>
<td>0/12</td>
<td>-</td>
<td>دیمزر رها شده</td>
<td>0/12</td>
<td>-</td>
</tr>
<tr>
<td>دیمزر</td>
<td>0/12</td>
<td>-</td>
<td>دیمزر رها شده</td>
<td>0/12</td>
<td>-</td>
</tr>
</tbody>
</table>

در هر سه شاهد بدا یا حرف مشابه طبق آزمون LSD در سطح ۵ درصد تفاوت معنی‌دار ندارد.

مقدار گل آلودگی در چهار کاربری نافوت معنی‌داری را نشان داده است (جدول ۳). مقدار گل آلودگی در تمام زمان‌های اندازه‌گیری شده در کاربری دیمزر بیشتر از کاربری سه درگیر بوده است. بیشترین مقدار گل آلودگی کل در ۲ ساعت باولدگی مربوط به کاربری دیمزر و کمترین آن مربوط به کاربری مرنج با بوشگاه گیاهی نبوغ می‌باشد.

دلیل تخریب بوشگاه گیاهی و در ادامه کاهش مواد آلی خام منتهی به عدم باپداری خاکانه‌ها می‌شود که در کار و عملات خاکورزی باعث تخریب خاکانه‌ها درخت که خاکانه‌ها زیرتر شده که این خاکانه‌ها پیوست خود همگام برخورد قطعات باران مثلثی و خال و فرج خاک را مسدود می‌کند و بدین ترتیب باعث کاهش نفوذ زیرهای و ایجاد رواناب می‌شود. ضمناً افزایش زمان باولدگی نیروی برشی رواناب با افزایش بهزدم و زایدند را با خود جمل سی و کن. پیشتر بودند هدف‌ریت زاید در دیمزر نسبت به دیمزر رها شده، احتمالاً به دلیل تراکم این زاید دیمزر رها شده و سلسله سطحی زاید قبل از باولدگی است که باعث ایجاد یک لایه آب روي سطح خاک شده و از برخورد مستقیم قطرات باران با سطح خاک جلوگیری می‌کند. علاوه بر این، شکم و شیار در دیمزر تیر نیز باعث افزایش هدف‌ریت خاک شده است.
توزیع اندازه ذرات در خاک و رسوپ
درصد ذرات در رسوپ و خاک هر کاربری در اندازه‌های مختلف تفاوت معنی‌داری نشان داده است (جدول 6). درصد ذرات کوچکتر از 1 میکرون (رس) در رسوپ حاصل از فرسایش سه کاربری میزان دیمانگی‌های ضعیف، دیمزر و دیمان رها شده نسبت به خاک اصلی بیشتر است. نسبت غنی شدن ذرات رسانده در سطح حاصل از این سه کاربری بالاتر از یک برابر (جدول 6). علت این امر انتقال تری‌پراکنی در رسانده در فرسایش سه کاربری می‌باشد. کوئینت و همکاران (19) مشاهده کرده‌اند درصد ذرات رسانده نسبت به خاک بیشتر است. همچنین ارسکین و همکاران (11) این نسبت برای ذرات درصد رس در سطح 0/1 کاربری داشتند.

مقدار فسفر قابل دسترس خاک کاهش معلول 95% درصد
در کاربری دیمزر نسبت به مرتع با پوشش گیاهی خوب نشان داد (جدول 4). تصور نمی‌شود که فقط یک درصد فسفر کل خاک فسفر مستحکم به ترکیبات آهن آلومینیوم و کلسیم است. لذا غلظت فسفر قابل دسترس کم است و در نتیجه انتخاب فسفر به استانتای خاکهای سنگی و خاکهای با مقدار مواد آلی بالا و تفوکت‌های زیاد نشیم می‌باشد. در نتیجه با توجه به رس بودن خاک در منطقه مطالعه شده، آن‌وری نمی‌تواند در حالی که باشد. فرسایش خاک تقریباً مهم‌ترین مکانیسم برای انتقال فسفر از مزارع به محیط‌های آبی است. همچنین در تثبیت فسفر رهگاه سلیکاتی، مواد آلی و اکسیدهای آهن و آلومینیوم نقش دارند. مقادیر فسفر معنی‌دار شناخته شده در کاهش اندازه ذرات افزایش می‌یابد. کاهش اندازه ذرات ریزتر است (21). علاوه بر این، باید به عنوان جویابی در انتقال ذرات دیده شود.
جدول ۵. تأثیر چهار کاربری بر توزیع اندازه ذرات (درصد) در خاک و رسوب

<table>
<thead>
<tr>
<th>نوع کاربری</th>
<th>۵۰ - ۲۰۰μm</th>
<th>۲۰۰ - ۵μm</th>
<th>۵μm</th>
<th>۲μm</th>
<th>۲μm</th>
<th>۲μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رسوب</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>۲۵/1</td>
<td>-</td>
<td>۴۴/۴</td>
<td>-</td>
<td>۴۰/۴</td>
<td>-</td>
</tr>
<tr>
<td>۵/۴</td>
<td>۴۴/۴</td>
<td>-</td>
<td>۴۰/۴</td>
<td>-</td>
<td>۳۶/۴</td>
<td>-</td>
</tr>
<tr>
<td>۴/۴</td>
<td>۴۴/۴</td>
<td>-</td>
<td>۴۰/۴</td>
<td>-</td>
<td>۳۵/۴</td>
<td>-</td>
</tr>
<tr>
<td>۵/۴</td>
<td>۴۴/۴</td>
<td>-</td>
<td>۴۰/۴</td>
<td>-</td>
<td>۳۵/۴</td>
<td>-</td>
</tr>
<tr>
<td>۵/۴</td>
<td>۴۴/۴</td>
<td>-</td>
<td>۴۰/۴</td>
<td>-</td>
<td>۳۵/۴</td>
<td>-</td>
</tr>
<tr>
<td>۵/۴</td>
<td>۴۴/۴</td>
<td>-</td>
<td>۴۰/۴</td>
<td>-</td>
<td>۳۵/۴</td>
<td>-</td>
</tr>
</tbody>
</table>

در هرخانه‌ای از جدول اعداد با حرف مشابه طبق آزمون LSD در سطح ۵ درصد تفاوت معنی‌دار ندارند. *
جدول 6. تأثیر چهار کاربری بر نسبت غنی شدن ذرات در رسوب طی 2 ساعت بارندگی مصنوعی

<table>
<thead>
<tr>
<th>نوع کاربری</th>
<th><2μm</th>
<th>2-5μm</th>
<th>5-10μm</th>
<th>≥10μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرتع با پوشش گیاهی خوب</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>مرتع با پوشش گیاهی ضعیف</td>
<td>0/16</td>
<td>1/29</td>
<td>0/84</td>
<td>2/05</td>
</tr>
<tr>
<td>دیمزر</td>
<td>0/25</td>
<td>1/03</td>
<td>0/54</td>
<td>1/26</td>
</tr>
<tr>
<td>دیمزر رها شده</td>
<td>0/12</td>
<td>1/09</td>
<td>0/53</td>
<td>1/28</td>
</tr>
</tbody>
</table>

جدول 7. تأثیر چهار کاربری بر هدف‌گذاری ماده آلی، نیتروژن کل و فسفر در ساعت اول ودود بارندگی مصنوعی

<table>
<thead>
<tr>
<th>نوع کاربری</th>
<th>نیتروژن کل (درصد)</th>
<th>فسفر (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساعت اول ساعت دوم</td>
<td>ساعت اول ساعت دوم</td>
<td>ساعت اول ساعت دوم</td>
</tr>
<tr>
<td>مرتع با پوشش گیاهی خوب</td>
<td>1/06/44</td>
<td>0/60/48</td>
</tr>
<tr>
<td>مرتع با پوشش گیاهی ضعیف</td>
<td>0/63/41</td>
<td>0/66/44</td>
</tr>
<tr>
<td>دیمزر</td>
<td>0/18/42</td>
<td>0/18/43</td>
</tr>
<tr>
<td>دیمزر رها شده</td>
<td>0/18/40</td>
<td>0/18/41</td>
</tr>
</tbody>
</table>

: اعداد در هر ستون و خانه با حروف مشابه طبق آزمون LSD در سطح 5 درصد تفاوت معنی‌دار نداشت.

دوم بارندگی بیشتر می‌باشد (جدول 7). علت بیشتر بودن ماده آلی در رسوب در ساعت اول بارندگی را می‌توان به انتقال بیشتر رس نسبت داد. نتایج هیچ‌بار و می‌باید (24) کارتیش دادند که در این نتایج افزایش در دما به سمت واقعه فرسایشی بیشتر انتقال ذرات را در این دفعات واقعه فرسایشی خرد شدن حاکم می‌باشد که رفتار رفع دردست‌گذارهای سطحی می‌باشد (دوم 23).

اختلاف معنی‌داری در درصد ماده آلی هدر رفت و در رسوب طی ساعت اول و دوم بارندگی در چهار کاربری مشاهده شد. درصد هدرفتگی ماده آلی در کاربری مرتع با پوشش گیاهی خوب (ب جای ساخت اول بارندگی) سپس مرتع با دیمزر که در چهار کاربری مرتع با پوشش گیاهی ضعیف بیشترین مقدار است (جدول 7) که دلیل آن مقدار ماده آلی بیشتر در این دو کاربری می‌باشد (جدول 4).

درصد ماده آلی هدر رفت در رسوب طی ساعت اول بارندگی در هر کاربری مرتع با پوشش گیاهی ضعیف، دیمزر و دیمزر رها شده نسبت به درصد ماده آلی هدررفته در ساعت
جدول 8. تأثیر چهار کاربری بر نسبت غنی شدن ماده آلی، نیترژن و فسفر در ساعت اول و دوم پارندگی مصنوعی

<table>
<thead>
<tr>
<th>نوع کاربری</th>
<th>ساعت اول</th>
<th>ساعت دوم</th>
<th>ساعت اول</th>
<th>ساعت دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرتع با پوسه گیاهی خوب</td>
<td>0/32</td>
<td>0/36</td>
<td>1/34</td>
<td>1/33</td>
</tr>
<tr>
<td>مرتع با پوسه گیاهی ضعیف</td>
<td>0/38</td>
<td>1/36</td>
<td>0/9</td>
<td>1/36</td>
</tr>
<tr>
<td>دیمزر</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیمزر رها شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نسبت غنی شدن ماده آلی (به استثنای ساعت اول پارندگی) در کاربری مرتع با پوسه گیاهی خوب در دو ساعت پارندگی بیشتر از لی است (جدول 8) و دلیل بیشتر بودن مقدار ماده آلی در رسوب حاصل از فرسی و نسبت به خاک سطحی سایر کاربری‌ها می‌باشد. حداکثر مقدار ماده آلی هدفگر در هر 1/59 کیلوگرم بر هکتار در کاربری دیمزر و حداکثر 1/59 کیلوگرم بر هکتار در کاربری مرتع با پوسه گیاهی خوب طی 2 ساعت پارندگی مصنوعی می‌باشد (شکل 2). علت هدفگری بیشتر ماده آلی در دیمزر با وجود هدفگری دردسر کمتر ماده آلی نسبت به کاربری‌های دیگر، هدفگری کل خاک می‌باشد (شکل 3).

(ب) هدر رفت نیترژن در رسوب
درصد نیترژن کل هدر رفت در رسوب طی ساعت اول پارندگی در مرتع با پوسه گیاهی ضعیف، دیمزر و دیمزر رها شده نسبت به نیترژن هدفگر در ساعت دوم پارندگی بیشتر می‌باشد (جدول 7). علت آن، هدفگر رست و ماده آلی (جدول 8) بیشتر در ساعت اول پارندگی است. این تحقیق اختلاف معنی‌داری در درصد نیترژن هدر رفت در رسوب طی ساعت اول و دوم پارندگی در چهار کاربری مشاهده شد. درصد هدفگر نیترژن در کاربری مرتع با پوسه گیاهی خوب (به جز ساعت اول پارندگی) و بعد از آن مرتع با پوسه گیاهی ضعیف بیشترین مقدار است (جدول 7). علت آن همانند ماده آلی بیشتر بودن نیترژن در خاک این کاربری‌ها می‌باشد (جدول 4).

ج) هدر رفت فسفر در رسوب
مقدار فسفر هدر رفت در رسوب طی ساعت اول پارندگی نسبت به مقدار فسفر هدفگر در ساعت دوم پارندگی روتدی مشابه ماده آلی و نیترژن نشان داد. هدفگر فسفر در ساعت اول و دوم پارندگی در چهار کاربری تفاوت معنی‌داری را نشان داد (جدول 7). دلیل بیشتر بودن مقدار هدفگر فسفر در کاربری‌های مرتع همایدار نیترژن و ماده آلی بیشتر بودن در خاک این کاربری می‌باشد. نسبت غنی شدن فسفر در چهار کاربری مطالعه شده طی ساعت‌های اول و دوم پارندگی به
شکل ۴. تأثیر چهار کاربری بر هدرفتی ماده آلی کل (الف). نتیجه‌گیری کل (ب) و نتیجه‌گیری کل (ج) طی ۲ ساعت بارندگی مصنوعی.
(۱) - مرتع با پوشش گیاهی خوب، (۲) - مرتع با پوشش گیاهی ضعیف، (۳) - دیمپار و (۴) - دیمپار رهاشده.)
یک‌پاره‌ی خواب به دیم‌زار نش متمام در افزایش حساسیت خاک سطحی بر فراصایش و تخرید داشته است، و باعث تغییر کاربری میزان روان‌پذیری و رسوب شده است. همچنین تغییر کاربری اراضی میزان هدف‌رستی ماده آلی، شیروزن آلی و فسفر قابل دسترس خاک در دیم‌زار نش متمام به علت هدف‌رستی خاک زیاد بیشتر از کاربری‌های دیگر بوده که کیکی از میان‌ال‌اسیا کاهش کیفیت خاک بر اثر تغییر کاربری اراضی مرتعی می‌باشد.

منابع مورد استفاده

1. Jalilian, A., M. Mohammadi فسایش و ج. ر. ریم. زاده. ۱۳۷۳. فرسایش و رسوب، و علل آن در حوزه‌های آبخیز کشور و ارائه تناهی موردی در بعضی از حوزه‌های آبخیز ایران. چهره‌مدان کنگره علوم خاک ایران، دانشگاه صنعتی اصفهان.

2. حاج عباسی، م. ا. جلالیان. ج. خواجیان، دی، نژاد. ج. ر. ریم. زاده. ۱۳۷۳. مطالعه موردی تأثیر بیشتر سیستم‌های کشاورزی بر برخی ویژگی‌های فیزیکی، شاخص‌های کشتی‌پذیری خاک در بروجن. علوم و فنون کشاورزی و منابع طبیعی ۴ (۱) ۱۴۰۲-۱۴۰۳.

3. رحمتی، م. ۱۳۷۳. جمعیت، توزیع، و فرسایش. مجموعه مقالات کنفرانس ملی فرسایش و رسوب، معاونت انجیرفک زراعی، چهارم اول ۱۳۷۳. صفحات ۱۷۷-۱۹۳.

۴. شکل آبادی، م. ح. خامدی و ا. ج. خواجی. ۱۳۸۲. تولید روی بار در حوزه‌های آبخیز کشور و امکان‌های منابع طبیعی. ارdstان. علوم و فنون کشاورزی و منابع طبیعی ۲۷ (۳) ۸۰۱-۸۲۰.

۱۸. Pimental, D. C., H. P. Resosudarmo, K. Sinclair, D. Kurz, M. Mc Nair, S. Crist, L. Shpritz, L. Fitton, R. Saffouri

