بررسی تغییرات مکانی خصوصیات خاک و عامل‌کننده گندم در بخشی از اراضی زراعی

سرخنگاله، استان گلستان

چکیده
ارزیابی عملکرد مدیریت زراعی، صنایع تغییرات مکانی خصوصیات خاک و محصول و درک روابط متقابل آنها ضروری است. این تحقیق، در یک مزرعه گندم تحت مدیریت زراعی محلی، در شهر سرخنگاله واقع در شمال شرقی ایران انجام شد. نمونه برداری خاک‌ها در 100 نقطه از روی یک شبکه سیستماتیکی-آشفتهای در پلان به ابعاد 100 در 180 متر از عمق 30 سانتی‌متری خاک انتخاب شد. آنالیز گیری عملکرد گندم به وسیله نمونه‌برداری در پلات‌های به ابعاد یک متر مربع با مرکزیت 100 نقطه نمونه گیری در اواخر خریداری ماه صورت گرفت. نتایج آماری نشان داد تمایل آنالیز تغییر‌ها نشان داد که مکانی‌های پرورشی عامل‌کننده مکانی خصوصیات خاک و محصول در مزرعه گندم مطالعه می‌باشند. میزان تغییرات مکانی آنزیم‌ها و فیزیولوژیکی به‌نوعی وجود دارند که کاهش خاکی را در مزارع مورد مطالعه داشته‌اند. نتایج نشان داد که عملکرد گندمی از آن است که که‌گیوه و وابستگی عنوان می‌دهد. در نتیجه گیری عملکرد و محصول در پلاک‌های محلی مکانی، این مطالعه نشان داد که روابط با وابستگی عنوان می‌دهد.

مقدمه
کشاورزی دیف می‌باشد. در مزارع کشاورزی، تغییر‌پذیری عملکرد تابعی خصوصیات خاک، توزیع‌گرافی مزرعه، اقلیم، تجربه و تحلیل تغییر‌پذیری عملکرد، فاصله مهمی در تحقیقات

واژه‌های کلیدی: تغییرات مکانی، نمونه‌برداری، کریپتیک، کشاورزی دیف، سرخنگاله

1. به ترتیب دانشجوی کارشناسی ارشد و استادیاران خاکشناسی، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
افکارهای پیوستیک و مدیریت می‌باشد. این مشخص شده است که خصوصیات خاک‌یکی از عوامل عمده تغییر‌پذیری تولید در مزار به شمار می‌رود. وجود تغییرات مکانی در خصوصیات خاک و اهمیت آن در تولید محصول امری بسیار مهم بی‌شمار می‌رود. به این حال درک فنی از علل و منابع تغییرات کامل نیست و اگاهی از آن برای توانستن به آوردن و عملکرد کشاورزی پایدار ضروری می‌باشد (19و31).

از انتخاب سطح و سایر عوامل از تجربگری آموزشی آماری به منظور پیاده‌سازی خصوصیات مورد نظر در مکان‌های منومن بهتر استفاده از اطلاعات حاصل از تفکیک منومن برای کارگاه‌ها (9و31). این روش در نهایت به کمک‌برداری باقی مانده در مورد تغییرات مکانی خصوصیات خاک و ارتباط آن با تولید بوده و اگر می‌تواند به عنوان پیمان برای تیمار مزارع بی‌شماری راهزنده در فناوری کشاورزی دقیق به کار گرفته شود (4).

در مزارعی خاک‌ها، به روش مرسم فاقد دقت لازم در کشاورزی دقیق می‌باشد. لذا استفاده از تکنیک‌های تولید غیرت مکانی که در این زمینه مطالعات متعددی در دنیا صورت گرفته است، که از جمله مطالعات جنینس و کولوینز (13)، کاس و همکاران (9)، سامپلسردا و زوراس (17)، شیل و همکاران (6)، ولپرگاندوز و همکاران (18)، کاسک و همکاران (11) است، اشاره کرد.

در کشور می‌توان مطالب حاصل در این زمینه صورت در کشور منفی مطالعات محدودی در این زمینه صورت گرفته است. ممتنی (9) حقیقتی در مورد مدل سازی ساختار مکانی تغییرهای حاصل‌خزی و مواد آلی خاک بعنوان میان‌ای برابر اعمال کشاورزی دقیق در مسترس مدیریت داشته باشد. تاکنون از آن به کمک تعیین‌شده مورد مطالعه دارای دانه‌های همبستگی بزرگ بودن که می‌تواند دلیل باید که کشت دراز مدت روش‌های درمانی خاک‌سفون است. در این‌هیچ‌چه نشان داد که خصوصیات خاک دارای وابستگی مکانی بوده و حدود تغییرات برای هر یک خاصیت خاک تغییر است.

فیزیکی، همبستگی و محاسبات (2) تجزیه و تحلیل پراکنش مکانی حاصل‌خزی و عملکرد محصول گندم برای مدیریت زراعی دقیق را مورد بررسی قرار دادند (2). نتایج نشان داد توزیع میانگین تغییر‌ها بیشتر و باعث بهبود جراحی مشاهدات می‌باشد. نتایج آن نشان داد که توزیع مکانی عملکرد کند دارای اگزی مس ایجاد یافته و فاصله فاصله آن از فاصله آن از فاصله است.

روش‌های محاسباتی بر اساس می‌باشد. در روشهای متوالی آموزشی مانند تجزیه و تحلیل واردیت و موقعیت جغرافیایی و مکانی منومن‌های برادشت شد در یک مزارو در نهایت گرفته نشده، به هیچ‌گونه ارتباط ریاضی بین تغییرات مکانی داده‌ها با فاصله آنها از راه‌های برقرار نمی‌شوند (3). زمین، بسیاری
پروری نمایشات مکانی خصوصیات خاک و عملکرد گندم در پختی از...

مزرعه گندم تحت مدیریت زارویی محلی انتخاب شد. در این
مدیریت در پاییز کشت گندم رقم زاگرس در کل مزرعه توسط
زارع انجام گرفت. به این صورت که بعد از انجام عملیات
خاکوزی، کاشت با استفاده سانتریفژ انجام شد. عملیات
دشت شامل آب‌ aspire از قطعه مورد نظر، شبکه بندی به
صورت سیستمیک- آسیانی/ به ابعاد 20 در 10 متر
(40 نقطه)، 10 در 10 متر (40 نقطه) و 5 در 5 متر
(16 نقطه) و در کل 101 نقطه و به‌وسیله درون‌وزن متر انجام شد. شکل 1 نمایی از دشت نمونه برداری را نشان می‌دهد. نمونه برداری
از خاک اندازه بعد از کاشت به وسیله منه‌بند (اوبر) از عمق
30-40 سانتیمتر از روی نقاط مختبره معلوم (جمعاً 100
نقطه) صورت گرفت.

توضیحات آزمایشگاه
نمونه‌ها هوی خشک گردیده و سپس از اک 2 میلی‌متری عبور
دارید شد. در حالی که اشکال و هدایت الکتروی در عصاره
pH مراحل گندم به‌وسیله روش اکسیداسیون سنار (21) و از با
کلی انجام گرفت. در روش میکروکهولدال با هضم ادی اسیدگیری
شد (21). عصاره کلی جذب به روش کالیبراتور (41). آب‌asp
روش تیتراژن- بروش‌تانی (21)، طیف‌بندی تبلیغ کاتیونی با
عصاره کلی به استفاده سدیم سدیم = 8.2 (21) و پاسکین-
گلی گذری (مخلوط مستقیم) با استفاده از دستگاه فلیم
فیلتر در عصاره به دست آمده با استفاده آمونیوم 1 نرمال
(21)، سدیم محلول نیز با استفاده از دستگاه فلیم فیلتر در عصاره
اشباع ادی اسیدگیری شد.

بافت خاک با روش هیدرومتری انجام شده و بعد از آن
جهت تفکیک ذرات شن، سوپرساینسن خاک داخل سیلندر از
خاک پیدا می‌گردد. بنابراین در مطالعه مربوط، قابلیت دسترسي
فسفر از مهم‌ترین جنبه مدیریت دیقق مزرعه به‌شمار
می‌رود. در عین حال آنها پارکند از کل و چگونگی معرفی
شده آلیا در سطح مزرعه نیازمند مطالعه بیشتر می‌باشد. گندم
پیکی از محصولات مهم و استراتژیک استان گلستان
بوده و شناخت خصوصیات خاکی مهم روی عملکرد آن جهت
برنامه‌ریزی و اعمال مدیریت بهینه حائز اهمیت می‌باشد. در
ارتباط با این موضوع اکثر کنون زمین امروز استفاده شده
است. این آن تحقیق با هدف بررسی پارکند مکانی ویژگی‌های
تولید محصول گندم با خصوصیات فیزیکی-شیمیایی خاک به
کمک تکنیک زمین امروز منطقه سرتخت‌گلستان در استان گلستان
انجام شده است.

مواد و روش‌ها
موقف جغرافیایی منطقه
منطقه مورد مطالعه در مناطق شهر سرتخت‌گلستان در حدود
کیلومتری شمال شرق شهرستان گرگان واقع شده (شکل 1) و
از لحاظ موقعیت جغرافیایی در طول جغرافیایی ۴۳°۳۴ از
عرض جغرافیایی ۳۷°۵۴ قرار دارد. متوسط ارتفاع منطقه از
سطح دریا ۱۳۰ متر، متوسط پاشدارگی ۷۰ میلی‌متر می‌باشد.
متوسط هوا و محیط ниزه حرفه‌دار سالانه به ترتیب
۲/۱ درجه سانتی‌گراد است. اقلیم منطقه طبق روش
طبقه‌بندی دو مارکون و کوین مدرنیزه و بر اساس روش
آموزه‌جمعی طبقه‌بندی محسوب می‌شود. در ارتفاع
فیوزیکی جغرافیایی سرتخت‌گلستان، جهت دست‌های دامنی
منشأ، للمی‌باشد. طبق طبقه‌بندی آزمایشگاه، خاک منطقه
Fine, mixed, mesic, Fluventic
مورد مطالعه به صورت
طبقه‌بندی می‌شود (28).

مطالعات صحرایی و نمونه‌برداری
برای انجام تحقیق فلاتهار به ابعاد 100 در 180 متر در یک
چگونگی تغییرات آن را بیان می کند. اگر تغییر نمایه به سقف معنی‌برنده و در نتیجه دانه تأثیر مشخصی داشته باشد، ساختار فضایی و شرایط صدق فرضیه ذاتی می‌تواند وحداتی باشد. با توجه به این که محاسبه تیم تغییر نمایه برای همه جامعه، سطح مطالعه امکان‌پذیر نمی‌باشد، نیاز به تغییر نمایه در یک فاصله تفکیک مشخص به وسیله تابع زیر تخمین زده می‌شود (7):

\[
\gamma(h) = \frac{1}{N(h)} \sum_{i=1}^{N(h)} [Z(x_i + h) - Z(x_i)]^2
\]

(1)

تعداد زوج نمایه‌های به کار رفته در محاسبه تیم تغییر نمایه به ترتیب N(h) نما در فاصله و جهت تفکیک h، به ترتیب Z(x_i+h) و Z(x_i) مقادیر متغیر Z در نقاط x_i و x_i+h می‌باشد. تغییر نمایه برای یک جهت خاص با تسریع مقادیر نمایه تغییر نمایه در مقابل فاصله تفکیک افزایش یافته به صورت ابدال در فاصله مشخصی ثابت می‌شود: پارامترهای تغییر نمایه شامل اثر قطعه‌ای، دامنه با شعاع تأثیر و آستانه با سقف می‌باشند (28).

مدل‌های برای هدف به مقادیر نمایه تغییر نمایه عمده‌ای از مدل‌های کروی (معادله 2) و گوسی (معادله 3) بوده‌اند که در ذیل مختصاً توصیف می‌شوند (7 و 10):
بررسی تغییرات مکانی خصوصیات خاک و عملکرد گندم در بخشی از...

\[
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (Z_i^* - Z_i)^2
\]

در این روابط Z مقدار مشاهده شده Z دقیق تخمین زده شده می‌باشد و
\(n\) تعداد نمونه می‌باشد.

میانیابی بر روی روش کریجینگ بلوکی (بلوک (3x3)) با استفاده
از برنامه رایانه‌ای GEOEAS صورت گرفت. با استفاده از
اطلاعات حاصل از محاسبات تغییرنماها و روش برآورد آماری
کریجینگ معمولی (با فرض عدم معلوم بودن میانگین) اقدام به
به‌پایه بردهای مختلف بهره‌برداری در کسبه‌ها به
ابعاد 5 در 5 متر. در نهایت نقاطی که در این
کسبه‌ها خطا در تخمین توزیع زهم افزایش (12) در
همه کسبه‌ها در پایان توزیع مکانی عملکرد محصول گندم با
تحصیل یک طرح مکانی خصوصیات خاک مورد مقایسه قرار
گرفتند.

به‌منظور تبیین کلاس‌های مختلف وابستگی مکانی
متغیرهای خاک و محصول، از نسیب واریانس اثر فقط برای
به‌منظور کل استفاده شد. در نسیب چهار نسبت همبستگی
نامیده می‌شد و معمولاً به صورت درصد بیان می‌گردد،
واریانس اثر فقط برای صورت درصدی از واریانس کل بیان
شده و بدین سیلی می‌توان مقایسه‌ای در ارتباط با یک مدل
قطعی بین خصوصیات مختلف خاک و محصول انجام داد.

واریانس کل اثر فقط برای = نسبت همبستگی
چنانچه این نسبت کمتر از 0.25 رشد نشان‌دهنده وابستگی
مکانی قوی می‌باشد و اگر این نسبت بین 0.25 و 0.75 قرار گیرد
پیانگ وابستگی مکانی متوسط و چنانچه این نسبت بزرگ تر از
0.75 رشد نشان‌دهنده وابستگی مکانی ضعیف خواهد بود (5).

\[
\gamma(h) = C_0 + C_1 \left[3h/2a - \frac{1}{2} (h/a)^2 \right], \text{h} \leq a
\]

\[
\gamma(h) = C_0 + C_1, \text{h} > a
\]

\[
\gamma(h) = C_0 + C_1 \left[1 - e^{-3(h/a)^2} \right]
\]

\[
C_0 \text{ در مدل‌های موردنامه } a \text{ شعاع تأثیر یا دامنه } h \text{ فاصله فاکتوریک، }
\]

اثر قطعه‌ای و آستانه تغییرنما می‌باشد.

جهت محسوبه و ترسیم تغییر نما از برنامه رایانه‌ای
VARIOWIN 2.2 تغییرنما برآورد شد. در مطالعه حاضر، جهت
تخصیص پارامترهای تغییرنما از روش کریجینگ جک نیاید
استفاده گردید (5). در این روش ابتدا مدل تغییرنما متغیرهای
مورد مطالعه تخمین زده می‌شود. اگر کیفیت حاصل جهت
تخمین به‌کار می‌رود، بسیاری از خطاهای تخمین صحت
الگوی برآشده بررسی می‌گردد.

در این تحقیق با سطح و
خطا مانند ترنگ‌ها تغییرنما متغیرهای مورد مطالعه
تغییر گردید و بعد از تکل اعمال تغییر نما در محاسبه تغییر نما،
داده‌ها با قدر از ادامه توزیع ترکیبی پراشدار باشند و در
غیر این صورت بايد به داده‌ها نرم‌ال کند شود. بعد از
بررسی نوع توزیع داده‌ها، با توجه به همسانگردی بودن آنها با
نماهنه جهت (Omni directional) برای تیم تغییرهای مورد
مطالعه ترسیم گردید.

در مطالعات زمین‌شناسی با استفاده از توزیع ه‌قطره
نمونه‌برداری از داده‌ها به یک ناحیه با استفاده از مقدار نمونه
هم‌سازی (بیرون از نظر گرفش خود آن نمونه) با روش کریجینگ
می‌باشد. بدین منظور بعد از برآشده مدل به تغییر نما و تغییر
پارامترهای مدل، کنترل اعمال تغییر نما (Validation
انوار) GEOEAS (23) با تغییر پارامترهای اولیه تغییرنما، به
نحوی که کسبه فر رسم مدل به نهایی، دارای حداکثر
شناخت اهمیت‌های مناسب خطا (Mean error)
و میانگین مسیری (Mean Square Error) باشد (7):

\[
\text{ME} = \frac{1}{n} \sum_{i=1}^{n} (Z_i^* - Z_i)
\]
جدول 1. پارامترهای آماری ویژگی‌های خاک و عملکرد گندم

<table>
<thead>
<tr>
<th>شاخص</th>
<th>معیار</th>
<th>فاصله</th>
<th>گردشات</th>
<th>جدایی</th>
<th>میانگین</th>
<th>واحد متغیر</th>
<th>متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7/65</td>
<td>7/65</td>
<td>7/64</td>
<td>-</td>
<td>log[H+]</td>
<td>P</td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td>69/84</td>
<td>68/41</td>
<td>69/58</td>
<td>/</td>
<td>°/</td>
<td>/</td>
</tr>
<tr>
<td>dSm²</td>
<td></td>
<td>0/15</td>
<td>0/17</td>
<td>0/17</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>شن کل</td>
<td></td>
<td>0/56</td>
<td>0/51</td>
<td>0/47</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>شن خاک درشت</td>
<td></td>
<td>0/37</td>
<td>0/40</td>
<td>0/39</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>شن درشت</td>
<td></td>
<td>0/30</td>
<td>0/32</td>
<td>0/31</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>شن بزند</td>
<td></td>
<td>0/21</td>
<td>0/25</td>
<td>0/25</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>شن متوسط</td>
<td></td>
<td>0/18</td>
<td>0/14</td>
<td>0/18</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>شن خاک ریز</td>
<td></td>
<td>0/19</td>
<td>0/17</td>
<td>0/16</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>سبیت</td>
<td></td>
<td>0/13</td>
<td>0/11</td>
<td>0/11</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>رس</td>
<td></td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>وزن محصولات طفه</td>
<td></td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>فسفات مطلق استفاده</td>
<td></td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>پتاسیم مطلق استفاده</td>
<td></td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>اهمیت</td>
<td></td>
<td>0/16</td>
<td>0/16</td>
<td>0/16</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>ازت کل</td>
<td></td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>CEC</td>
<td></td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>ESP</td>
<td></td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>عملکرد دانه</td>
<td></td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>عملکرد کل</td>
<td></td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
</tbody>
</table>

نتایج و بحث

توصیف آماری متغیرها

توصیف آماری خصوصیات خاک و عملکرد محصول در جدول 1 خلاصه شده است. به طور کلی در بین مقادیر متغیرهای مورد مطالعه، pH دارای کمترین ضریب تغییرات و 0.59 درصد می‌باشد. عملکرد دانه دارای بیشترین ضریب تغییرات و برای 0.20 درصد می‌باشد. به طور کلی، خصوصیات خاک موردناوردی از مقادیر گزارش شده در میان علمی کشاورزان است که می‌تواند به دلیل استفاده طولانی مدت و مدیریت کنارخوانی اراضی مورد مطالعه باشد.

84
آنالیز همبستگی مکانی

برای تشخیص بدیهه همسانگردی در تحقیق حاضر از تغییر نمای سطحی استفاده شده است. برای تعیین متغییرها، ناهمسانگردی آنها کنترل شد. به توجه به وجود تفاوت تغییرات سطحی، تمامی متغیرها همسانگرد هستند. این واقعیت نمایانگر آن است که تغییراتی این متغیرها در جهات مختلف یکسان است. این موضوع نشان می‌دهد که تغییرات به‌فرامله‌ی هم‌بستگی داشته و باید این چنین نمونه‌ها استفاده گردد و با تغییراتی که همسانگردی در داده‌ها در کل سطح منطقه مطالعه شده پایدار است.
جدول 4 پارامترهای تغییرنا و معیارهای انتخاب مدل و کنترل اعتبار برای متغیرهای خاک و محصول

<table>
<thead>
<tr>
<th>متغیر</th>
<th>صفحه</th>
<th>اثر مدل</th>
<th>واحد مختلف</th>
<th>کلاس همبستگی</th>
<th>دامنه نهایی</th>
<th>MSE (ME)</th>
<th>همبستگی (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>04.0</td>
<td>-log[H]</td>
<td>pH</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>EC</td>
<td>04.0</td>
<td>dSm³</td>
<td>dSm³</td>
<td>0.65/0.88</td>
<td>0.40/0.54</td>
<td>0.50/0.65</td>
<td>24/56</td>
</tr>
<tr>
<td>شن کل</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>شن چلي درشت</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>شن موزوست</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>شن ريز</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>شن خلي ريز</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>سبز</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>رس</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>وزن مخصوص ظاهري</td>
<td>04.0</td>
<td>گویی</td>
<td>جایگزینی کرده</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
<tr>
<td>نسبت همبستگی اثر قطعه‌ی/اروپاس کل</td>
<td>04.0</td>
<td>(متوسط) S</td>
<td>(متوسط)</td>
<td>0.50/0.65</td>
<td>0.23/0.34</td>
<td>0.40/0.56</td>
<td>24/56</td>
</tr>
</tbody>
</table>

1. نسبت همبستگی اثر قطعه‌ی/اروپاس کل
2. کلاس همبستگی: M (متوسط)
بررسی تغییرات مکانی خصوصیات خاک و عملکرد گندم در بخش‌های مختلف کشور.

متن‌های رطوبت اشیان EC، ظرفیت تبادل کاتیونی و عملکرد کل مدل گوسی به دست آمده است. مدل کروی از جمله معقول‌ترین مدل‌های زمین‌آماری در مورد خصوصیات خاک است (19).

آنالیز تغییرات نشان می‌دهد که دامنه تأثیر خصوصیات مختلف دارای تغییراتی است. دامنه تأثیر تغییر ناما از حدود 24 متر برای اثرات کلی در 37 متر برابر پاسیب قابل استفاده در نوسان می‌باشد. در عناصر غذایی خاک شامل اثر فسفر و نیترات، اثر خاک دامنه تأثیر کوچکتر (23/9 متر) و پاسیب قابل استفاده دامنه تأثیر کوچکتر (37 متر) که این این تغییرات می‌تواند به دلیل اختلاف در تحرک خون‌ها باشد. این تحرک بیشتر نسبت به سایر بودن دامنه تأثیر کوچکتر می‌باشد و پاسیب و فسفر که تحرک کمتری دارد دامنه تأثیر کوچکتر دارند. همچنین، از جمله مهم‌ترین عوامل مؤثر بر تغییراتی دارد که عملیات باربر و کوده‌های مزروع اشتهار نمود که بر روی تحرک خون‌ها مؤثر بوده و باعث توزیع نابرابر یون‌ها و عناصر غذایی می‌گردد.

در این زمینه، نتایج تحقیق کان و همکاران نشان داد که تغییرات کوتاه‌ترین و کریم‌ترین دامنه را داشتند و معنی‌داری دیگر شامل فسفر و نیترات و مقدار آب خاک دامنه همبستگی متواضع داشتند که علی‌رغم تغییرات ناشی از تحرک خون و عوامل مدرنیت مانند کوده‌های آبی‌پایان، بسیار درکنش داشت که مؤلفه‌های عملکرد با برخی از خصوصیات خاک ارتباط مکانی توزیع دارند. دامنه تأثیر ضریب برداشت (31/2 متر) یا مدل کروی، توزیع به دامنه تأثیر مواد آلی (28/29 متر) و فسفر قابل دسترس (33/27 متر) یا مدل کروی می‌باشد. عملکرد دانه‌های دارای مدل کروی به دامنه تأثیر ۵/۴۷ متر، نرخ نرخی دانه‌های دارای کلیه (5/85 متر) و دانه‌های کاهشی ۵/۴۷ متر (می‌باشد. دامنه تأثیر عمک‌های کلیه ۵/۴۷ متر و دانه‌های کاهشی ۵/۴۷ متر (می‌باشد. لذا می‌توان اظهار کرد که پیش‌بینی مکانی
خصصات فوق‌الذکر خاک، مؤلفه‌های عملکرد محصول گندم
را بیشتر تحت تأثیر کاری داده‌اند. این امر زمینه ورای و پاژ‌گزار
(35)، نیز عملکرد محصول را بیشتر در ارتباط با خصوصیات
خاکی می‌دانند که همان، این تأثیر مشابه با آنها دارد.

به مظهر تغییر میزان همبستگی، نسبت و کلاس همبستگی
برای متغیرهای مورد بررسی محاسبه و در جدول 2 ارائه شده
است. در بین کلیه متغیرهای مورد بررسی، اثر کل و
واستگی مکانی فوق‌الذکر به سه‌گانه دارا هستند و
در مجموع به میزان عملکرد کل و درصد رطوبت اشاعه را نام
برد (جدول 2). شایان ذکر است که که کوچک بردن مقدار نسبت
همبستگی مکانی و قرار گرفتن در کلاس همبستگی فوق در
مور گینگر، مکانی فوق‌الذکر محصول بیانگر وجود غیرتی
می‌باشد. می‌باشد و همکاران (9)، مکانی فوق‌الذکر می‌باشد.
گزارش کرده که واستگی مکانی فوق‌الذکر است. تغییرات ذاتی خصوصیات خاک مثل بافت خاک و نوع
کاتی های خاک کنترل گرد و واستگی مکانی ضعیفتر می‌باشد
است. به سیله تغییرات غیرنیا. مانند کاربرد کود و شش کنتر
شد. از این رو، طور کلی می‌توان گفت تفاوت در
تغییراتی خصوصیات خاک و محصول به تأثیر فرآیند‌های
خاکسازی و محدودیت اراضی در هر منطقه بر می‌گردد. همچنین
در بین کلیه متغیرهای مورد بررسی در مطالعه حاجی‌آبدا، فسفر
قابل دسترس نسبت به سایر متغیرها واستگی مکانی
ضعیفتری نشان می‌دهد (جدول 2). در این رابطه می‌توان
گفت که میزان فسفر احتمالاً می‌توان در مقیاس‌های
کوچک‌تر از مقیاس به کار رفته در این تحقیق واستگی مکانی
داشته باشد. در این رابطه کمبود و همکاران (9) به تابع
مشابه دست‌یافتن نهایی. همچنین آنها در مورد متغیرهای پنسم
قابل استفاده و واستگی مکانی فوق‌الذکر pH مخصوص
ظرافی و واستگی مکانی متوسط را گزارش نمودند.
تکنیک لیزرپردازی و همکاران (18 نیز نشان داد که میزان
مونتاژ‌های فوق‌الذکر رأس رود آبی و آمونیوم در میزان
میزان‌ها و منابع طبیعی / سال 1399 / شماره چهل‌پنجم / دی / تابستان 1398
87
شکل 3: نقشه‌های کربناته پراپان شیمیایی منگنز خاک و محصول
نتیجه گیری
متغیرهای بررسی شده در این مطالعه همگی در دایر استخراج مکانی می‌باشند. ساختار مکانی و دامنه تأثیر متغیرهای بیشتر تجربه گردیده‌ی غیر ذاتی و عوامل مدرنیتی می‌باشد. نتایج

منابع مورد استفاده
1. حسین پاک، ع.ا.1377. زمین آمار (ژئوتودئنیستیک). انتشارات دانشگاه تهران.
2. رفیعی الکسی، م. و. محمدی. 1372. تجزیه و تحلیل برآکش مکانی حاصخلی‌ی خاک و عملکرد محصول برای مدیریت زراعی دیق، فهمینگ کنگره علوم خاک، صفحه 178-180.
3. محمدی، ج.1377. مطالعات تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از نظیره ژئوتودئنیستیک-کریکنگ. علوم و فنون کشاورزی و منابع طبیعی (24) :127-128.
4. موسی، ع.1371. سلول سازی استخراج مکانی متغیرهای حاصخلی‌ی و مواد آلی خاک بهبود دهنده میزان تولید در منطقه کشاورزی دیق در دشت مرودشت. ایران: مجله علوم خاک و آب، ویژه شماره 11 فصلنامه اراضی. صفحه 10-12.