کارایی مصرف کود در آفتاگردان با سیستم کود- آبیاری

امحمد کرمی، محمد معزداریان، مهدی همتی، عبدال-placeholder

چکیده
کودهای شیمیایی در گسترده‌ای به روش پخش سطحی مصرف می‌گردد. مصرف کودهای شیمیایی مطلوب این روش، زمان کافی را برای انجماد واکنش‌های هدررفته فرآم نموده و سرآغاز از تهیه نشان درجه آنها توسط رشته گاهی می‌کاهد. به این دلیل در بیشتر موارد افزایش عملکرد همگام با افزایش کود مصرفی تیپس. کود- آپاری نشان دهنده در آفتاگی کارایی مصرف آب و کود دارد. هدف از این پژوهش، بررسی اثر کود- آپاری بر کارایی مصرف کود در آفتاگردان با استفاده از سیستم آبیاری قطراتی- نواری بود. این آزمایش شامل دخالت سطحی می‌باشد و در قالب طرح کلیدی تصادفی با دو فاکتور مدار آبیاری در چهار سطح (0، 50، 100 و 120 درصد نیاز آبی) محاسبه شده بر اساس تحلیل رطوبیت خاک و میزان کود شیمیایی در پنج سطح (شاده، نشانگر 0، 50، 100 و 120 درصد تهیه کودهای آبنامی از این کود پذیرفته) در سه نواحی به انتخاب شده ترکیب کودهای نانه در صورت 4% سیال گرم اوره، 5% سیال گرم کارچ پاتاس، 50% کیلگرم سولفات آهن، 30% کیلگرم سولفات سدک و 30% کیلگرم اسید بیوریک در هرکل بود. در مورد تیمارها به سه تیمارهای شاهد، کوله کودهای موجود در ترکیب توصیه کودهای نیازمند در سطح 5/1 بر کارایی مصرف کودهای آبنامی طراحی شده که باید افزایش مقدار آب مصرف کارایی مصرف از فرآم و پاتامس در تولید ماده خشک کل آفتاگی می‌پاید. در حالی که در تولید دامان افزایش مقدار کارایی مصرف از فرآم و پاتامس در تولید ماده خشک کل آفتاگی می‌پاید. تابع کارایی مصرف تیپس، تیمار یا تیمارهای آبیاری که تا حدودی در این سطح از طرف دیگر می‌تواند کارایی اIRONMENT

وژه‌ی کلیدی: آبیاری قطراتی- نواری، آفتاگردان، کارایی مصرف کود، آبیاری

1. دانشوری سبک درک خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تهران و در حال حاضر استادیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تهران
2. دانشوری سبک درک خاک‌شناسی، دانشگاه کشاورزی و منابع طبیعی، دانشگاه تهران
3. دانشوری سبک درک خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تهران و در حال حاضر استادیار خاک‌شناسی، دانشگاه کشاورزی
4. دانشوری سبک درک خاک‌شناسی، دانشگاه کشاورزی و منابع طبیعی، دانشگاه تهران
5. دانشوری سبک درک خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تهران

65
در حیات مختلف مفهوم کارایی مصرف کود متفاوت بین شده است. کود (6) کارایی مصرف عناصر غذایی به صورت افزایش عمکرد و به داشت دردسته گیاهی به ازای هر واحد عناصر غذایی مصرف شده به صورت کود تعیین می‌کند. کاسول و گودوئین (6) کارایی عناصر غذایی را تحت نام کارایی بیایند. تا زمانی که به یادداشت نظری (Recovery efficiency) در این اساس کارایی مصرف کود (عنصر غذایی) به مقدار عناصر غذایی جذب شده، به ازای هر واحد عناصر غذایی مصرف شده که می‌شود، در برابر زیر بیان می‌شود:

\[E = \frac{U - U_c}{F} \]

که در این فرمول کودی با کودی طبیعی و کودی، مقدار عناصر غذایی جذب شده توسط گیاهی که کود دریافت کرد است (کیلوگرم در هکتار). \(U \) مقدار عناصر غذایی جذب شده توسط گیاهی که کود دریافت کرد (کیلوگرم در هکتار) و \(F \) مقدار عناصر غذایی مصرف شده (کیلوگرم در هکتار) می‌باشد.

کارایی مصرف کود به مقدار زمان، نوع و روش مصرف کود بستگی دارد. روش کود‌دهی نشان‌دهنده اساسی در استفاده بهشت از کود و افزایش کارایی مصرف آن است. بیان است که با مصرف عناصر غذایی بر اساس نیاز گیاه در طی دوره رشد، کارایی مصرف غذایی می‌باشد. معمولاً با الالرین کارایی مصرف کود در اولین اخراج‌های آن به سبب می‌آید.

در تجزیه با مصرف مقداری بیشتر کود، کم‌میزان عناصر غذایی برخوردار می‌شود. از این مرحله به بعد، واکنش گیاه در برابر کود مصرف کم شده و باعث کاهش کارایی مصرف آن کاهش می‌باشد. بنابر این هدف گذشتن مقالات زیادی در مورد اهمیت و جایگاه تکنولوژی کود-آبیاری از نظر افزایش کارایی مصرف آب، کود، تولید محصول و حفظ محیط زیست ارائه گردیده است. وسیله و همکاران (31) بین کردنی که غیر اکنون‌ها، کود دراز کاهش‌زای موجب می‌شود و نیز سبب هدر رفت کود می‌شود.

رالستون و همکاران (27) گزارش دادند که با مصرف ازت با آب‌پری فرآوری نسبت به روش رایج کود‌دهی، جذب از و کارایی مصرف آن در سبیل زمینی افزایش می‌یابد. پایادوپولوس (23) اثر مصرف کودهای شیمیایی را به روش کود-آبیاری بر کارایی مصرف کود و عملکرد محصولات مختلف مانند سبیل زمینی ذرت، خیار، آفتابگردان و توت فرنگی مورد آزمایش قرار داد و نتیجه گرفت که کارایی مصرف کود و عملکرد در این روش بسیار بیشتر از روش خشک می‌شود. اوریو و همکاران (11) با مصرف پنیسه از سبیل زمینی که اندازه گرفته که تیترت در طول یک ماه تن، 60 تا 90 سانتی‌متر در خاک جابجا گرد. مانگ در آزمایش نتیجه گرفت که با کود- آبیاری تیپاسی، تحت ترکیبی در هر دو جفتی و عمومی در خاک آستانه می‌گردد (19). شایدین و همکاران (29) با مصرف کودهای شیمیایی عملکرد دانه آفتابگردان را به‌طور معمولی در افزایش دانه و اطارات دانه‌ای که درصد روغن در حالت تغییر مستقیم ریخ‌ترین بود. می‌باید و همکاران (31) در تهیه گیری از تحقیق روی نفوذ این بتای دانه‌ای که در کود-آبیاری عناصر غذایی مستقیماً توسط قطره اکت‌ها در تامحی حذفکر فعال‌ساز می‌گردد. افزایش کارایی مصرف کود می‌گردد. ارگن و همکاران (12) نتیجه گرفتند که کود-آبیاری از طریق آب‌پری فرآوری نسبت به نواری آن و سبیل آب‌پری فرآوری، میزان جذب ازت و تأثیر آن را در عملکرد کرفس آفتابگرز می‌ده.

کود-آبیاری (Fertilization) که عبارت از مصرف کود همره با آب آب‌پری در طی دوره رشد گیاه است. کارایی مصرف کود را گوده می‌دهد. کود-آبیاری با سبیل‌های تحت فشار منجر به افزایش کارایی مصرف آب و کود به‌طور هم‌زمان و موجب کاهش هدر رفت خشک از کود‌های شیمیایی می‌گردد (17، 20،3). هدف از این پردازه، بررسی اثر کود-آبیاری بر کارایی مصرف کود در آفتابگردان با استفاده از سبیل‌های آب‌پری- فرآوری- نواری است.
مواد و روش‌ها

این آزمایش در مزرعه مرکز تحقیقات کشاورزی شهرکرد (طول جغرافیائی ۵۰ درجه و ۴۵ دقیقه و عرض جغرافیائی ۲۳ درجه و ۱۸ دقیقه) در خاکی بات فرسوسیلینی و در قالب طرح کامالا تصادفی دو فاکتور مقدار آب ایاری در چهار سطح و مقدار کود شیمیایی در پنج سطح، در سه تکرار در سال ۱۳۸۳ انجام گردید. در اواخر بهار، ابتدا زمین مورد نظر انتخاب و پیش از کاشت آفت‌پیشگان نمونه‌های مرکب از خاک مزرعه از ظرفیت ۲۵۰ و ۲۵۰ سانتی‌متری برداشت و تجزیه‌های فیزیک‌شیمیایی بر روی آن انجام گرفت. نمونه‌ها به آزمایشگاه منتقل و بعد از خشک کردن و خرد کردن و عبرت از ۲ میلی‌متری، توزیع اندازه‌راثی از روش هیبردومتری، جرم مخصوص ظاهری با استفاده از رینگ‌های مریلی به طور ۶٪ و ۱۰۰٪ به سانتی‌متری، جرم مخصوص حقیقی با استفاده از پیکومتر، و برای تعیین مقدار آب قابل استفاده، رطوبت ظرفیت مزرعه‌وسطع pH راهنمایانه می‌گردد. در ابتدا اندازه‌گیری شد. سپس قابلیت جذب به روش استنات pH آرون‌وت مراحل، فسفر قابل جذب به روش پیکرانت ساده‌سازی نمی‌باشد. از این‌رو روش کلسیمیک، کربنات کلسیمیک معادل در خاک به روش کلسیمیک و اندازه‌گیری فیزیکی قابل جذب دی‌تا، مس. متغیر آماری که در بین خاک با روش DTPA مزرعه از طرفیت تیمار ایاری در خاک مزرعه گرفته شد. نتایج به دست آمده در این مقدار مفاهیم گردد. بر این اساس باید توجه به دور مصرف آب ایاری منطقه (۷ روز) اندازه‌گیری رطوبت خاک در تیمار عامل انجام گردد و به مه‌بسته نیاز ایاری برای تامین ۱۰۰٪ نیاز آمیز و عمل ضریب ۸۰٪ و ۱۰۰٪ و ۱۲۰٪ در آن سایر تیمارها ایاری ایاری ایاری بر اساس جدول ۱ نمونه‌گیری.

در اواخر اردیبهشت ماه زمین مورد نظر شاخص به بعد از دیسک دندان‌های فارو گردید. سپس زمین کرت بندی و تنها به طور نتیجه‌گیری در آن بخش گردید. فاصله کرت‌های ایاری به یکدیگر ۱/۵ متر و ابعاد آن ۶×۸ متر در نظر گرفته شد. در اواخر اردیبهشت ماه آفت‌پیشگان، به صورت روزانه با فاصله روزانه ۵۰ سانتی‌متر و فاصله بونه ۲۵ سانتی‌متر روز ریزی به صورت خطی توسط دست کشت.
جدول 1. تیمارهای آبیاری و کودی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>تعریف</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁</td>
<td>آبیاری به اندازه 1/6 نیاز آبی محاسبه شده</td>
</tr>
<tr>
<td>I₂</td>
<td>آبیاری به اندازه 1/4 نیاز آبی محاسبه شده</td>
</tr>
<tr>
<td>I₃</td>
<td>آبیاری به اندازه 1/2 نیاز آبی محاسبه شده</td>
</tr>
<tr>
<td>I₄</td>
<td>آبیاری به اندازه 2/3 نیاز آبی محاسبه شده</td>
</tr>
<tr>
<td>F₀</td>
<td>مصرف کودها به اندازه صفر درصد فرمول کودی توصیه شده</td>
</tr>
<tr>
<td>F₁</td>
<td>مصرف کودها به اندازه 20 درصد فرمول کودی توصیه شده</td>
</tr>
<tr>
<td>F₂</td>
<td>مصرف کودها به اندازه 40 درصد فرمول کودی توصیه شده</td>
</tr>
<tr>
<td>F₃</td>
<td>مصرف کودها به اندازه 60 درصد فرمول کودی توصیه شده</td>
</tr>
<tr>
<td>F₄</td>
<td>مصرف کودها به اندازه 80 درصد فرمول کودی توصیه شده</td>
</tr>
</tbody>
</table>

درصد وزنی رطوبت موجود در خاک به جرم مختصر ظهاری خاک (گرم بر سانتی متر مکعب) D. عمک توسعه ریشه (سانتی متر) و یبD عمک خالص آبیاری بر حسب میلی‌متر است. ترکیب کودی توصیه شده برای آفتابگردان، بر اساس تجویز ترکیب خاک به صورت ۴:۳:۱ کیلوگرم اوره، ۴۵۰ کیلوگرم کمرون، ۳۰ کیلوگرم سلفات پتاسیم، ۵۰ کیلوگرم سلفات فسفات، و ۵۰ کیلوگرم سلفات روی به هکتاً بود (V). تیمارهای کودی شامل پنج سطح کودی (شاهد)، (۳/۴)، (۲/۳)، (۱/۲) و (صفر) بود. تیمارهای کودی از اساس جدول شماره ۱ اعمال گردید. در مجموع آزمایش ۱۰ تیمار و ۱ تکرار به اجرا درآمد. در هر یک از تیمارهای کودی، از آنجا که تمام انتخاب کودها موجود در ترکیب کودها موجود در ترکیب کودهای مختلف گردیدند، اثر تجمعی کودها به‌طور مشترک قرار گرفت. کودهای آبیاری و پتاسیم در ۵ تا ۱۰ روز و با فاصله ۱۴ روز و کودهای دارای آهن، روی، مگنز، مس و بر در ۴ تا ۱۰ روز با فاصله ۱۴ روز در طی فصل رشد آفتابگردان صرف گردیدند. در این آزمایش، اگر فاصله دو دما نبود به دلیل حلالیت پایین و عدم امکان مصرف آن به روش کودی آبیاری در تمام تیمارهای آزمایش قابل ششپر در سطح کمتر مصرف گردید. نما با عملیات شخم کود تا عمق ۲۰ سانتی‌متری خاک اگهیزه گردید تا
جدول ۲: مشخصات شیمیایی خاک محل آزمایش

جدول ۲: مشخصات شیمیایی خاک محل آزمایش

<table>
<thead>
<tr>
<th>عمیق</th>
<th>درصد</th>
<th>میلی گرم بر کیلو گرم</th>
<th>پتانسیم</th>
<th>طبقه‌بندی</th>
<th>فشار قابل جذب</th>
<th>جناب</th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td></td>
<td>dS/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-25</td>
<td>0/5</td>
<td>0/088</td>
<td>3/3</td>
<td>3/0</td>
<td>2/1</td>
<td>9/3</td>
<td>16/8</td>
<td>18/5</td>
<td>2/1</td>
<td>0/5</td>
<td>0/56</td>
</tr>
<tr>
<td>25-50</td>
<td>0/5</td>
<td>0/077</td>
<td>3/6</td>
<td>0/0</td>
<td>1/0</td>
<td>2/1</td>
<td>0/3</td>
<td>1/0</td>
<td>0/3</td>
<td>0/5</td>
<td>0/66</td>
</tr>
</tbody>
</table>

جدول ۳: مشخصات فیزیکی خاک محل آزمایش

<table>
<thead>
<tr>
<th>درصد توزیع اندازه ذرات</th>
<th>عمیق خاک</th>
<th>جرم مخصوص ظاهری</th>
<th>جرم مخصوص حقيقة</th>
<th>درصد وزنی رطوبت خاک</th>
<th>جرم مخصوص</th>
<th>فشار قابل جذب</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیرت آزادی</td>
<td>شن سیلت</td>
<td>رس</td>
<td>cm</td>
<td>SP</td>
<td>FC</td>
<td>PWP</td>
</tr>
<tr>
<td>ş۴۴</td>
<td>۲۴/۸</td>
<td>۲۱/۹</td>
<td>۲۷/۹</td>
<td>۸۷</td>
<td>۳۷</td>
<td>۲۲/۲۸</td>
</tr>
<tr>
<td>Silty Clay</td>
<td>Clay</td>
<td>۱/۸۰</td>
<td>۱/۳۱</td>
<td>۱/۵۰</td>
<td>۳۳</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴: نتایج تجزیه واربکس‌کارایی مصرف کود آفتافرگان

<table>
<thead>
<tr>
<th>کارایی مصرف کود (درصد) بر اساس کل ماده خشک و عملکرد دانه</th>
<th>عمليکرد دانه</th>
<th>تغییرات آزادی</th>
<th>کود</th>
<th>آب</th>
<th>کود آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPK</td>
<td>ازت</td>
<td>فشار</td>
<td>پتانسیم</td>
<td>NPK</td>
<td>ازت</td>
</tr>
<tr>
<td>۴۰۰/۱</td>
<td>۲۴۸/۹</td>
<td>۱۲۷/۹</td>
<td>۱۱۲/۹</td>
<td>۱۱۳/۳</td>
<td>۹۸۵/۹</td>
</tr>
<tr>
<td>۴۲۴/۸</td>
<td>۸۸/۹</td>
<td>۴۱/۲۹</td>
<td>۱۹/۹۴</td>
<td>۱۵۵/۸</td>
<td>۱۷۹/۹</td>
</tr>
</tbody>
</table>

مراجع: می‌تواند در سطح ۰/۱٪

نتایج و بحث

ویژگی‌های خاک و شرایط رشد آفتافرگان

خاک مزرعه مورد آزمایش دارای بانف رسو سیلیتی است و از آجاتی که آفتافرگان با گل‌کپنگ‌ها سازگاری دارد و لی‌که برای خاک‌های نسبتاً سبک‌تر به خاک‌های خیلی سنگین رسی ترجیح می‌دهد. نتایج آن محدود بودن از نظر نوع خاک برای این گیاه

بیان این محدودیتی از نظر نوع خاک برای این گیاه
جدول ۵ مقایسه کارایی مصرف کود آفتابگردان در تیمارهای مختلف آبیاری

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مقدار آب مصرفی m³/ha</th>
<th>مقدار آب مصرفی کود آفتابگردان</th>
<th>مصرف آب مصرفی کود آفتابگردان</th>
<th>مصرف آب مصرفی کود آفتابگردان</th>
<th>مصرف آب مصرفی کود آفتابگردان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۶۴۰۰</td>
<td>۶۴۰۰</td>
<td>۶۴۰۰</td>
<td>۶۴۰۰</td>
<td>۶۴۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>۷۴۴۰</td>
<td>۷۴۴۰</td>
<td>۷۴۴۰</td>
<td>۷۴۴۰</td>
<td>۷۴۴۰</td>
</tr>
<tr>
<td>۳</td>
<td>۸۴۰۰</td>
<td>۸۴۰۰</td>
<td>۸۴۰۰</td>
<td>۸۴۰۰</td>
<td>۸۴۰۰</td>
</tr>
<tr>
<td>۴</td>
<td>۹۴۰۰</td>
<td>۹۴۰۰</td>
<td>۹۴۰۰</td>
<td>۹۴۰۰</td>
<td>۹۴۰۰</td>
</tr>
</tbody>
</table>

خاک می‌گردد. در نتیجه امکان گذب فسفر توسط گیاه کافی و کارایی مصرف فسفر کافی می‌باشد. در بین تیمارهای آبیاری تیمار ۱ و ۲ درصد بیشترین کارایی مصرف فسفر را به ترتیب برای تویل ماده خشک و تویل دانه داشت. نتایج نشان می‌دهد که کارایی مصرف کود آب مصرفی کارایی مصرف از نظر فسفر و پتاسیم در تویل ماده خشک کمتر از فسفر و پتاسیم افزایش نشان می‌داشته. در حالی که کارایی مصرف فسفر کاهش می‌یابد، آب به دلیل نقش آن در فرآیندهای جذب عناصر غذایی و وجود رطوبت کافی در داخل برای افزایش جذب عناصر غذایی و در نتیجه افزایش عملکرد ضروری است. نیاز آفتابگردان به آب به وسیله در مراحل اویه رشد، بیشتر از سایر عناصر است. هنگامی که مقدار آب مصرفی افزایش یابد و آب به صورت تقسیمی در اختیار گیاه قرار گیرد امکان جذب بیشتری آن فراهم شده و از طرف دیگر به عنوان تقسیم بودن هدر رفت آن کاهش می‌یابد در نتیجه کارایی مصرف آن در این شرایط افزایش می‌یابد. نتایج نشان‌دهنده که در بین تیمارهای آبیاری کارایی مصرف تغییر آنها تفاوت معنی‌دار در سطح آماری/۱ وجود دارد. در بین تیمارهای آبیاری تیمار ۱ و ۲ درصد بیشترین و تیمار ۳ و ۴ درصد کمترین کارایی مصرف کودها را به ترتیب برای تویل
جدول 4. مقایسه کارایی مصرف کود آناتیوگران در تیمارهای مختلف کودی

<table>
<thead>
<tr>
<th>کارایی مصرف کود (درصد)</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>ازت</th>
<th>ماده خشک کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>پس از گذشته</td>
<td>NPK</td>
<td>F0</td>
<td>F1</td>
<td>F2</td>
</tr>
<tr>
<td>عکس</td>
<td>عکس</td>
<td>عکس</td>
<td>عکس</td>
<td>عکس</td>
</tr>
</tbody>
</table>

شایع آب و هوایی خشک کارایی مصرف ازت، یکی از عواملی محسوس ازت، زمان و روش مصرف کود، نمای خاک و شرایط اقلیمی دارد. گزارش و همکاران در آزمایشی با مصرف کود ازت در سطح 500 و 100 کیلولیتر موردنمایی و سطح آبایی (33 و 100 درصد) بر روی گندم نتیجه گرفتند که ایزایی در کارایی ازت توسط دانه تأثیر معنی‌داری در سطح آماری 1٪ دارد (14). با افزایش مصرف آب میزان ازت برداشت شده توسط گندم افزایش یافت. بیشترین ازت برداشت شده در تیمار آبایی کامل نتیجه با مصرف 100 کیلوگرم ازت در هکتار گزارش گردید. در این پژوهش نیز بیشترین کارایی مصرف ازت در تیمار آبایی کامل و با مصرف 110 کیلوگرم ازت بدست آمد. نتایج این پژوهش با نتایج آنها مطابقت دارد.

اثر تیمارهای کودی بر کارایی مصرف کود

مقاومت مبتنی‌های کارایی مصرف کود با آزمایش دانکن در سطح 5٪ در تیمارهای مختلف کودی در جدول 6 ارائه شده است.

نتایج به‌دست آمده از جدول 6 نشان می‌دهد که تیمارهای کودی اثر معنی‌داری در سطح 1٪ بر کارایی مصرف ازت در تولید دانه و ماده خشک کل دارند. در بین تیمارهای کودی

میانگین‌های هر سیستم که حداقل دارای یک حرف مشترک هستند، بر پایه آزمون چند دامنه دانکن و در سطح احتمال 0.1% اختلاف معنی‌دار ندارند.
می‌آورد. با افزایش مقدار مصرف پتاسیم، به دلیل رفع نیاز گیاه، میزان جذب پتاسیم کمتر است. بنابراین بازده مصرف پتاسیم نیز همانند در مقدار کم مصرف کود، بیشترین میزان است. به طور کلی زمینی که گیاه به عناصر غذایی نیاز دارد، در برابر افزایش آنها به خاک واکنش منبت نشان می‌دهد. با رفع تدریجی نیاز گیاه، واکنش آن به افزایش مقدار پتاسیم کودی کمتر می‌شود. با افزایش مصرف عناصر غذایی به رفع نیاز گیاه، کمتر می‌شود. در نتیجه کارایی مصرف عناصر غذایی، در مقدار اولیه مصرف کودی بیشتر بوده و با افزایش مقدار کود مصرف کمتر می‌شود. در بین تیمارهای کودی F2 و F4 تیمار F4 ۲۶ درصد F1 و تیمار F3 ۲۴ درصد خشک و دانه دارد. در بین تیمارهای کودی تیمار F2 و F4 ۱۵ درصد خشک و دانه دارد. در بین تیمارهای کودی تیمار F1 و F3 ۲۰ درصد خشک و تولید دانه دارد (جدول ۶).

نتایج کارایی مصرف از، فسفر و پتاسیم به صورت اثر تجمعی آنها نشان داد که با افزایش مقدار کود مصرفی، کارایی مصرف کودها به صورت تجمعی در تولید دانه و ماده خشک کاهش می‌یابد. در بین تیمارهای کودی، کارایی مصرف تجمعی آنها نفیسته می‌باشد در سطح آماری ۱٪ وجود دارد. در بین تیمارهای کودی تیمار F2 و F4 ۵۷ درصد F1 و تیمار F3 ۲۱ درصد تیمار F4 و تیمار F2 ۱۳ و نیز درصد کمتر کارایی مصرف کودها را به ترتیب برای تولید ماده خشک و تولید دانه دارند (جدول ۶). مقایسه کارایی مصرف از، فسفر و پتاسیم نشان می‌دهد که کارایی مصرف P نسبت به کارایی مصرف K بهبود کارایی مصرف فسفر می‌توان پیشنهاد کند. با افزایش فسفر کود در حال تدریجی رشد برداشت و واکنش فسفر کود به سپاس از افزایش کود مصرفی کمتر از کارایی مصرف عناصر غذایی، میزان کود مصرفی کمتر از مقدار فرمول کودی توصیه شده بر اساس آزمون خاک در شرایط این آزمایشات است. بنابراین جهت افزایش کارایی
کارایی مصرف کود در آنتی‌گرداها بسیار کود - آیبایر

امیل) نوع و میزان مصرف کود، روش کوددهی و روش آبیاری می‌توان نام برده.

اثر متقابل آب و کود بر کارایی مصرف کودها

جدول ۷ اثر متقابل آب و کود بر کارایی مصرف از، فسفر، پتاسیم و اثر تجمعی این سه عنصر را بر کارایی مصرف کوده نشان می‌دهد. تیمار ۱ I _F_۱ با ۲۳ درصد و تیمار ۴ I _F_۴ با ۶۱ درصد بیشترین کارایی مصرف از را به ترتیب در عملکرد دانه و ماده خشک نشان می‌دهد. تیمار ۲ I _F_۲ با ۴۸ درصد بیشترین کارایی مصرف فسفر را به ترتیب در عملکرد دانه و ماده خشک نشان می‌دهد. تیمار ۳ I _F_۳ با ۵۴ درصد و تیمار ۵ I _F_۵ با ۴۵ درصد بیشترین کارایی مصرف پتاسیم را به ترتیب در عملکرد دانه و ماده خشک نشان می‌دهد. اثر تجمعی کودها بر کارایی مصرف آن کاهش نشان داد که با متابای آن‌ها مطابقت دارد. در این پژوهش نیز در تئمراهی کوده با افزایش مصرف از، کارایی آن کاهش نشان داد که با تابع آن‌ها مطابقت دارد. در این پژوهش با مصرف از ۱۱۰، ۱۴۲ و ۲۴۰ کیلوگرم در هektار افزایش کارایی مصرف آن به ترتیب در ۷۴، ۷۲ و ۴۸ درصد و در عملکرد ماده خشک آن‌ها به ترتیب در ۷۱، ۵۳ و ۲۶ درصد دانه به مدت آمد.

نتایج گیری

نتایج نشان داد که با افزایش مصرف کود کارایی مصرف از، پتاسیم و فسفر در تولید ماده نفیس و دانه کاهش می‌یابد. مقایسه کارایی مصرف از، فسفر و پتاسیم نشان می‌دهد که کارایی مصرف K*>N>P است. نتایج کلی نشان می‌دهد که معمولاً بالاترین کارایی مصرف کود در اولین واحدهای مصرف آن به دست می‌آید. به تدریج با مصرف مقادیر بیشتر کود، کم‌بود عناصر غذایی برطرف می‌شود. از این مرحله به بعد، واکنش گیاه در برابر کود صرفی کم شده و با این اکثر کارایی مصرف آن کاهش می‌یابد. در این اساس برای دستیابی به حداکثر کارایی مصرف کود در سیستم‌های آبی‌ای قطعه - نوشتار مصرف مقادیر طا ۶۰ درصد توصیه می‌کرد بر اساس آزمون خاک به ترتیب برای عملکرد كل ماده خشک و عملکرد دانه باعث ۴۰ درصد هایلی و همکاران (۱۶) در افزایش مصرف کود کارایی مصرف از، فسفر و پتاسیم را در مزرعه برنج کشاورزی در ۲ کشور آفریقایی بررسی کردند. آنها می‌انگین کارایی مصرف از، فسفر و پتاسیم را ۲۰-۴۵ درصد کاهش گردید. اینها همچنین در ایستگاه تحقیقات کارایی مصرف از را ۴۴ و ۵۲ درصد گزارش کردند. مقایسه کارایی مصرف از، فسفر و P*N>K است. در این پژوهش روند تغییرات با تابع آن‌ها مثالی‌ام از نظر مقدار کارایی مصرف کود نتایج و دارد. از جمله علل تفاوت در نتایج را نوع گیاه، شرایط محیطی (مقدار آب، نوع خاک و
جدول ۲: میانگین کارآیی مصرف کود در عملکرد دانه و کل ماده خشک در تیمارهای آزمایشی آفتابگردن

<table>
<thead>
<tr>
<th>تیمار</th>
<th>ارز</th>
<th>فسفر</th>
<th>نیترات</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>دانه</td>
<td>ماده خشک</td>
<td>دانه</td>
<td>ماده خشک</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۸</td>
<td>۳۷</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۸</td>
<td>۴۹</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
<tr>
<td></td>
<td>۴۳</td>
<td>۴۴</td>
<td>۳۲</td>
<td>۳۳</td>
</tr>
<tr>
<td></td>
<td>۴۴</td>
<td>۴۵</td>
<td>۳۳</td>
<td>۳۴</td>
</tr>
</tbody>
</table>