بررسی کاربرد مدل‌های هوش مصنوعی در شیب سازی وپیش بینی به‌نگام جریان‌های سیلابی

محمدهی دستورانی

چکیده

در این تحقیق توانایی مدل‌های شبکه عصبی مصنوعی جهت شبیه‌سازی رفتار هیدرولوژیکی آب در جریان‌های آبخیز مورد بررسی قرار گرفته است. هدف اصلی تحقیق بررسی کاربرد این گونه شبکه‌های عصبی مصنوعی جهت شبیه‌سازی جریان در یک جریان آبخیز با چند ایستگاه، هیدرومتری و پیش بینی به‌نگام جریان‌های سیلابی در پایین‌دست بوده است. مکانیزم مورد بررسی قسمت فوقانی معادلات رودخانه در ناحیه مرکزی انگلستان است. جریان سیلاب (Trent river) درونی می‌باشد که یکی از شاخه‌های اصلی رودخانه ترنت (Derwent) می‌باشد. این رودخانه درونی در مسیر مشترک با شاخه‌های اندزه‌گیری (Whatstandwell) و در ناحیه مرکزی انگلستان است. شبکه (MLP network) شبکه مورد استفاده برگشته (Recurrent network) یا شبکه پیشرفته‌تر (Time lag recurrent network) به‌صورت جداگانه مورد استفاده و ارزیابی واقع شد. براساس نتایج بدست آمده‌های مختلف، شبکه عصبی مصنوعی می‌تواند مدل‌های مشابه را در ناحیه مرکزی انگلستان برآورد کند که تأثیر عمده‌ای را روی خروجی‌های مدل دارد.

واژه‌های کلیدی: پیش بینی سیلاب، شبکه عصبی مصنوعی، پیش بینی به‌نگام سیلاب، پیش بینی جریان رودخانه

اهتمام فراوانی می‌باشد. پیش بینی به‌نگام و خصوصاً مدت زمان بین تکمیل پیش بینی یک واقعه و اتفاق آن واقعه مهم‌ترین پارامتر در یک ارزیابی موفقیت آمیز سیستم‌های هشدار سیلاب است. پیش بینی درست سیلاب با مدت زمان کافی قبل از وقوع در جریان‌های آبخیز کوچک که غالباً زمان تمرکز کوچکی از کوه‌های نیز دارد.

مقدمه

در سال‌های اخیر مدل‌سازی کامپیوتری به‌عنوان یک وسیله‌ای مهم‌ترین هیدرولوژی و هیدرولیک تهیه سیستم‌های داشته‌است. پیش بینی جریان‌های سیلابی در اغلب حوزه‌های خصوصاً پیش بینی به‌نگام آن از نظر نهایی کاهش خسارت‌های سیلاب جوانه‌ای است.

1. استادیار آبخیزداری، دانشکده مهندسی برق، دانشگاه‌برد
کاری سیاسی مشکل و پیچیده به و بستگی کامل به صحبت پیش بینی وضعیت اقتصادی و جویانویسیشن مسیر محور مورد ارزیابی قرار گرفته و در هر دو مورد نتایج مناسبی را ارائه نمود. همچنین در زمینه بینی جریان رودخانه با مدل‌های شبکه عصبی مصنوعی می‌توان به تحقیقات کاربردی و پیش‌بینی در سال ۱۹۹۳ اشاره کرد (۱۰). در این تحقیقات دو استخراج معنی‌دار از شبکه عصبی مصنوعی جهت پیش‌بینی وضعیت جریان رودخانه با استفاده از داده‌های بارش مورد ارزیابی قرار گرفت و در مقایسه با روش‌های موجود نتایج بهتری را ارائه داد. همچنین در رابطه با کاربرد شبکه عصبی مصنوعی در تعبیه رابطه و ایجاد یک روش مبتنی بر توانسته محققینی می‌توان اشاره کرد که در آن نرم‌افزار یک کامپیوتر و کردن شبکه عصبی مصنوعی به‌صورت داده‌های اصلی-دیه به‌طوری که گذشته توانستند فقط با این کردن روش مختلف داده‌های مربوط به جریان نسبت به سال‌های مورد به‌نظر بررسی کرده و نتایج مناسبی از شبکه‌های عصبی مصنوعی برآوردار کردند. جهت استفاده از شبکه عصبی مصنوعی برآوردار کردن، روش‌های موجود تجربه حاصل از شبکه‌های عصبی مصنوعی به‌مبارزه روش‌های مرتبط با مشخصی سازه و داده‌های مورد بررسی و مقایسه قرار گرفته و مشخص شد که تکنیک شبکه عصبی مصنوعی در مقایسه با این روش‌ها نتایج مناسب‌تری از خود نشان داده است.

در تحقیق حاضر سعی شده کارایی مدل‌های مختلف شبکه عصبی مصنوعی در شبیه‌سازی تغییرات دبی جریان در فاصله بین سایت‌های مختلف اندام‌گذاری مورد ارزیابی قرار گرفت و نهایتاً کارایی هر یک از این شبکه‌ها در بین بینی به‌همگان جریان در نقطه‌ای در پایین دست رودخانه و براساس داده‌های مختلف مورد آزمون و تجزیه و تحلیل قرار گرفت. سه نوع ساختارهای متفاوت وجود داشت و به بهبود دستگاه‌های مختلف رودخانه و تغییرات دبی جریان خود رفتار می‌کرد. این تحقیق نشان داد که شبکه عصبی مصنوعی با استفاده از داده‌های موجود به‌سیب مشکل مناسب می‌باشد و نتایج بدتری نسبت به سایر روش‌ها داشت.

پیش بینی وضعیت هیدرولوژی کار را در حوزه‌های پیشرفته محل دارد. در حوزه‌های پیشرفته کار گرفت و در حال پیش بینی سیالاب و بستگی زیادی به شدت بارندگی داشته و تأثیرپذیری قرار می‌گیرد. این امر در حوزه‌های پیشرفته خصوصیات جریان و تغییر شرایط حوزه و رودخانه تأثیرات پیشرفته را روی وضعیت جریان در پایین دست و طبیعی روی پیش بینی به موفقیت و صحت آن دارد. عواملی مانند داشتن در حوزه‌های داخلی حوزه، ذخیره‌رودخانه‌ای و پس زدگی آب و ایجاد اثرات آمیزه و تغییرات در حوزه‌های پیشرفته تأثیر گیرند.

پیش بینی قابل اطمینان در جریان و نتیجه‌گیری‌ها و تبدیل آب‌های سطحی می‌باشد. علایه آن پیش بینی وضعیت در پایین دست پایه را بررسی و تأثیرگیری در رابطه با کاهش خسارات و ایجاد آمکان طراحی و اجرای متخلف خطرات و تهیه خود را مازاد می‌کنند. به‌هیچ‌یک از روش‌های پیش‌بینی نکنند، تکنیک شبکه عصبی مصنوعی به عنوان یک ابزار کارآمد با توانایی مناسب بسیاری ارتباطی در زمینه‌های متنوع مورد استفاده واقع شده است که عضویت روش‌های مختلف مربوط به آب را نیاز پوشش می‌دهد. در این زمینه می‌توان از کاربرد شبکه‌های عصبی مصنوعی در مدل‌سازی رانندگی روانه به تحقیقات انجام شده توسط برخی محققین اشاره نمود (۷،۹ و ۱۱). در این تحقیقات با معرفی اطلاعات اقتصادی و فیزیکی روابط به حوزه‌های متنوع همچون پایین دشتی، دما، تبخیر، وزش و شیب به مدل‌های شبکه عصبی مصنوعی حجم و دی‌رودخانه در محیط جریان پیش بینی شده که اغلب تابع ایمیل را نیز در بر داشته است. در تحقیق دیگری که نگاشته‌گاهی (۵) به‌این اجماع رساند کاربرد شبکه‌های عصبی مصنوعی در پیش بینی جریان در حوزه‌های فاقد آب و همچنین کاربرد آن تکنیک در شناسایی و طبقه‌بندی
منطقه مورد مطالعه و داده‌های مورد استفاده در مدل
منطقه مورد مطالعه در گرگان به‌پایان حوزه رودخانه درون‌در
محدوده حوزه رودخانه ترکیب می‌باشد. جریان رودخانه در
ایستگاه هیدرومتری وانتندول با استفاده از داده‌های
اندازه‌گیری شده در ایستگاه‌های بالاتر پیش‌بینی شده است. سه
ایستگاه هیدرومتری در قسمت‌های بالای‌آبی دیواره‌بندی از
متوک، کبس ورث و یل ماون با فاصله به ترتیب ۱۵، ۲۵ و ۵۰
کیلومتر بالاتر از ایستگاه وانتندول.
داده‌های اندازه‌گیری شده جریان رودخانه با فواصل
دقیقه‌ای برای ایستگاه‌های هیدرومتری فوکن‌ال‌ماکتیکه آن‌انتزی
محیط زیست اکوسنت‌ها دریافتن گردد و از این‌میان داده‌های

فراپید پیش‌بینی هنگام سیالاب
توسعه و بهبود در پیش‌بینی جریان‌های سیالابی رودخانه‌ها
اساساً بستگی به خطر افزایش تعداد ایستگاه‌های اندازه‌گیری در
ده‌هایی که در شرایط سطحی به داده‌های پیش‌بینی و بخشی
دیگر به علت پیشفتن سرعت در تکنولوژی پردازش داده‌ها و
مها شکن از جهت‌های شبیه‌سازی کامپیوتری بوده است. سه

۲۹
مقدار Q هنگامی که شش ساعت قبل از وقوع پیش بینی می‌شود:

\[
Q_0 = f(Q_{t-3}, Q_{t-4}, \ldots, Q_{t-n})
\]

و به همین ترتیب برای 9 و 12 ساعت قبل از وقوع.

در نت 4 یا توجه به این که داده‌های انتزاعی‌گیری شده با فاصله زمانی 1 ساعت مورد استفاده قرار گرفت که پیش بینی ها بهصورت زیر خواهد بود:

- مقدار Q که به ترتیب سه و شش ساعت قبل از وقوع با استفاده از داده‌های یک ایستگاه پیش بینی می‌شود (زیر نت 1): $Q_0 = f(q(t-3)(1), q(t-4)(1), \ldots, q(t+1)(1) + e(t))$
- مقدار Q که به ترتیب سه و شش ساعت قبل از وقوع با استفاده از داده‌های دو ایستگاه پیش بینی می‌شود (زیر نت 2): $Q_0 = f(q(t-3)(1), q(t-4)(1), q(t-5)(1) + e(t))$

و به همین ترتیب برای 9 و 12 ساعت قبل از وقوع و نیز برای زیر نت 3 که در آن از داده‌های شش ایستگاه استفاده می‌شود.

مدل‌های شکه عصبی مصنوعی

شبکه عصبی مصنوعی در حقیقت یک سیستم محاسباتی است که بر اساس سیستم عصبی جانداران (عصب) ساخته شده است. ساختار این شبکه مشابه فکرهای مصنوعی (هندسه). سلول‌های عصبی جانداران است که انتقال سیگنال‌ها را که در اثر ارتباط داده‌های ایجاد شده انجام می‌دهد. این عمل هم‌اکنون انتقال پیام در شبکه عصبی جانداران است که در اثر محرک خارجی ایجاد شده و با ترشح هورمون‌های شیمیایی در محل اتصال سلولی به همدیگر (میان‌بان) با شدت و ضعف مورد نظر از سلولی به سلول دیگر منتقل می‌شود. این انتقال سیگنال‌ها در نرونهای مصنوعی توسط متد مانند چهار که به آنها پارامتر اصلی در پیش بینی سیالاب که با استفاده از داده‌های تخمینی، اطمینان و با پیش بینی مسئله زمان (مدت زمان بین پیش بینی و وقوع حادثه) مشابه در سیستم‌های هشدار سیالاب مسئله زمان (فاصله زمانی بین پیش بینی و وقوع حادثه) عامل تأثیر مهم و تعیین کننده است. اعبای به آنکه تغییرات شکل هیدروگراف خصوصاً شاخه هموار و نیز قسمت از آن نیز دارای اهمیت زیادی می‌باشند. در روشی که در این تحقیق مورد استفاده واقع شده در حاصل شرایط مربوط به مقطع زمانی آینده براساس داده‌های مقطع‌های زمانی گذشته و راهبردهای پیش بینی قرار می‌گیرد. بهعبارت دیگر در صورتی که مقطع‌های زمانی قبلی عدد نیستند به مقداری جزیران در زمان t نقطه‌ای در پایین دست باشد مقدار Q در مقطع زمانی آینده (t+1) به‌صورت زیر مورد پیش بینی قرار می‌گیرد:

\[
Q(t+1) = f((Q(t), Q(t-1), \ldots, Q(t-n), q(t), q(t-1), \ldots, q(t-n) + e(t))
\]

که در آن f یک تابع غیر خطی نامیم و $e(t)$ یک مقدار مجهول که مربوط به خطای فردی و t تعادل داده‌های مربوط به مقطع‌های زمانی حال و گذشته است که جهت پیش بینی جریان در آینده مورد استفاده واقع می‌شود. $Q(t)$ عبارت است از دیس جریان مقطع زمانی آینده در ایستگاه روتاتیون که با استفاده از داده‌های بالاس مصرف می‌شود.

زمانی: t-n, t-1, t, t+1, t+2, ...
رزق‌کاری این جملات مجزا و در نهایت نحوه کار کردن آن
مزیت بهترین عملکرد و در نهایت نحوه کارکردن آن

بایان‌العمل (Gradient descent)

با استفاده از تصور یادگیری کاملاً مشابه (Gradient descent)

 وزن‌ها با استفاده از رابطه زیر تصحیح می‌شوند:

\[w_j^{(n+1)} = w_j^{(n)} - \eta \frac{\partial E}{\partial w_j^{(n)}} \]

که در آن (1) عبارت است از وزن انتقال عنصر ی به

\[w_j^{(n)} + \eta \frac{\partial E}{\partial w_j^{(n)}} \]

امین-امین تجدیدی و (2) وزن در

امین-امین تجدیدی (Gradient descent) است

\[w_j^{(n+1)} = w_j^{(n)} - \eta \frac{\partial E}{\partial w_j^{(n)}} \]

وزن‌ها با استفاده از رابطه زیر تصحیح می‌شوند:

\[w_j^{(n+1)} = w_j^{(n)} - \eta \frac{\partial E}{\partial w_j^{(n)}} \]

در این روش یادگیری تکرار وزن‌ها است.

سیستمی با استفاده از رابطه زیر صورت می‌گیرد:

\[w_j^{(n+1)} = w_j^{(n)} - \eta \frac{\partial E}{\partial w_j^{(n)}} \]

هشدار!

که در آن (1) فاکتور معمولاً است و معمولاً برای عدای کمی بین

\[\eta \]

در (2) قرار داده می‌شود. همان‌طور که پیش‌تر ذکر شد وزن‌های مهم

\[\eta \]

در یک حالت سیستمی با استفاده از رابطه زیر می‌شود:

\[\eta \]

در این روش یادگیری تکرار وزن‌ها است.

سیستمی با استفاده از رابطه زیر صورت می‌گیرد:

\[\eta \]

هشدار!

که در آن (1) فاکتور معمولاً است و معمولاً برای عدای کمی بین

\[\eta \]

در (2) قرار داده می‌شود. همان‌طور که پیش‌تر ذکر شد وزن‌های مهم

\[\eta \]

در یک حالت سیستمی با استفاده از رابطه زیر می‌شود:

\[\eta \]

هشدار!

که در آن (1) فاکتور معمولاً است و معمولاً برای عدای کمی بین

\[\eta \]

در (2) قرار داده می‌شود. همان‌طور که پیش‌تر ذکر شد وزن‌های مهم

\[\eta \]

در یک حالت سیستمی با استفاده از رابطه زیر می‌شود:

\[\eta \]

هشدار!

که در آن (1) فاکتور معمولاً است و معمولاً برای عدای کمی بین

\[\eta \]

در (2) قرار داده می‌شود. همان‌طور که پیش‌تر ذکر شد وزن‌های مهم

\[\eta \]

در یک حالت سیستمی با استفاده از رابطه زیر می‌شود:

\[\eta \]

هشدار!

که در آن (1) فاکتور معمولاً است و معمولاً برای عدای کمی بین

\[\eta \]

در (2) قرار داده می‌شود. همان‌طور که پیش‌تر ذکر شد وزن‌های مهم

\[\eta \]

در یک حالت سیستمی با استفاده از رابطه زیر می‌شود:

\[\eta \]
شکل ۲. توصیفی ساده از ساختار ML兴起 استفاده شده در این تحقیق

به مدل معرفی می‌گردد، پس از هر مرحله تحکیم ون (چرخه) در طول دوره‌اموزشی، مدل ورزشی cross-validation مزدیا به عنوان یک داده‌ای شروع به افزایش می‌کند (که نشان دهنده ادامه به سرعت کم شده و کاهش فاقد آموزش است) فراورده آموزش موفقیت می‌شود و این دقیقاً همان موقعی است که وزنه‌ها خالی بهینه و بهبود بایستی می‌شود که بهینه شده و بهبود بایستی می‌شود.

شکل عصبی برگشتی (Recurrent):
این نوع شبکه عصبی مصنوعی خود به دو نوع برگشتی کامل یا Recurrent و برگشتی جزئی یا Recurrent تفکیک می‌شود. هر چند شبکه برگشتی به مارک و قوی تر و توانایی قطعی زبان ML兴起 است و لایه آموزشی یک نبی به همین نسبت حساسیت و مشکل که باعث آن باشد و نتایج مشابه تاثیر گذاری در آن بیشتر است. جنی سپسیند به یک ساختار مناسب این نوع شبکه برای این تحقیق ساختاری مختلف با تعداد

لایه‌ها توانایی و پارامترهای پیاده‌ای متفاوت ساخته شده و نتایج حاصل از آنها مورد بررسی و مقایسه قرار گرفت. در نهایت پس از این بررسی ها این تجربه حاوی که نماینده تاثیر همبستگی برای انتقال برای‌های شیمیایی (یافته) است و برای‌های برگشتی نباید انتقال از نوع سیگمودیز تابس بیشتری دارد. از صندوق دنبال‌کننده شبکه که عبارت‌اند از کاما (Laguerre) و تأخیر زمانی (Time delay)

فوق‌العاده‌ای دارد. در این تحقیق جهت پیش‌بینی مناسب‌ترین تراکم ساختاری ML兴起، ساختارهای مختلف‌الا بیانی به‌ویژه انتقال مختلف مورد استفاده و ارزیابی قرار گرفت و نتایج مشخص گردید که شبکه سه‌بی‌ای‌ای (عینی فقط بیک لایه)

شاپه‌ای (Gamma) یا لایه‌ای (Laguerre) تا می‌باشد. به بهبود استفاده مورد استفاده متفاوت بود طوری که برای تست‌هایی وا داده کم یک لایه پنهان و برای تست‌هایی با داده زیاد به لایه پنهان تغییراتی را به نمودار. در اینجا از محتوایی که شیپ ماهی‌های این تحقیق شبکه برگشتی چرخش‌یا یک شیپ گاهی و نتیجه بهتری را به شبکه برگشتی کامل داشته.

شکل ۲. توصیفی ساده از ساختاری ML兴起 استفاده شده در این تحقیق

(Multi–layer Perceptron) MLP:
در این نوع شبکه اتصال‌ها فقط از جوی به جو به فرمت بود MLP و در جهت جکسون وجود ندارد. یکی از مزایای شبکه‌های

توانایی آنها در تخمین توابع دلخواه است. این خصوصیت بر

بررسی بیشتری برای تشخیص و تعیین عوامل ارزش

فوق‌العاده‌ای دارد. در این تحقیق جهت پیش‌بینی مناسب‌ترین

تراکم ساختاری ML兴起، ساختارهای مختلف‌الا بیانی به‌ویژه انتقال مختلف مورد استفاده و ارزیابی قرار گرفت و نتایج مشخص گردید که شبکه سه‌بی‌ای‌ای (عینی فقط بیک لایه)

شاپه‌ای (Gamma) یا لایه‌ای (Laguerre) تا می‌باشد. به بهبود استفاده مورد استفاده متفاوت بود طوری که برای تست‌هایی وا داده کم یک لایه پنهان و برای تست‌هایی با داده زیاد به لایه پنهان تغییراتی را به نمودار. در اینجا از محتوایی که شیپ ماهی‌های این تحقیق شبکه برگشتی چرخش‌یا یک شیپ گاهی و نتیجه بهتری را به شبکه برگشتی کامل داشته.

شکل ۲. توصیفی ساده از ساختاری ML兴起 استفاده شده در این تحقیق

عکس و نکات کشاورزی و منابع طبیعی / سال ۱۳۸۶ / شماره چهلم (الف) / نایسین
شکل 3/ حالت ساده‌ای از شبکه عصبی مصنوعی که در این تحقیق استفاده شده است.

شکل عصبی برگشتی با تأخیر زمانی (Time lag Recurrent)

این نوع شبکه عصبی دارای لایه‌هایی با اتصال برگشتی محلی می‌باشد و در حیات حالت ساده‌تری از شبکه‌های برگشتی محصور می‌شود و برای یک عضوکن شبکه‌های برگشتی در این شبکه‌ها پایداری نا حاصلی تبدیل بدون و آموزش مدل بسادگی انجام می‌کند. در رابطه با این شبکه نیز تا زمان هیبرلینک مناسب‌ترین تابع انتقال برای لایه پنهانی در غالب تابع‌ها بوده‌رود. تعریف محدودی از تابع‌ها به تابع انتقال سیگموئید سازگاری بهتری در لایه‌های پنهانی از حکم‌نشان راد برای‌لایه عصبی که در این تحقیق استفاده شده است.

خلاف یک مختصات مشاهده گردیده است. مقادیر مربوط به

برای انتخاب حاصل از تابع‌های مختلف این تحقیق در

جدول 1 نشان داده شده است. لازم به ذکر است مقادیر

نیز وضعیت مشاهده را نشان می‌دهد. همان‌طور که جدول

مورد استفاده و نیز تعداد ایستگاه‌های بالادرست که مورد

استفاده قرار گرفته تنظیم گردید. در تست‌های 1 و 2،

داده‌های اندازه‌گیری شده با فاصله زمانی 10 دقیقه به ترتیب

برای 1 و 2 ساعت تأثیر تعداد ایستگاه‌های مورد استفاده جهت

به از داده، مورد تحقیق و برای قرار گرفت. این تحقیق به

یک تای‌تای محدودیت واریه‌ای قرار گیرد. هیدروکلریت در محدودیت به دبی‌های پیش‌بینی شده، ۶ و ۹

۱۲ ساعت قبل و موقعی که نتوسط شبکه عصبی

مختصات در نت ۱ (با داده‌های کم یا یک‌پیک‌های ماه) ترسیم

شهد در شکل‌های ۴ تا ۶ نشان داده شده است. به خاطر

محدودیت که می‌توانند شکسته گر را به نت‌های ۲ و ۳ را تأثیر نمی‌دهد. در اینجا می‌تواند گاه شکستگی کارا که در

از شبکه‌ها در نت‌های مختلف این تحقیق از دور برای

اموزش که ورود به راه‌های متفاوت انتقال سیگموئید

(Gamma) مناسب‌ترین تابع انتقال بود. عصور دینامیک نوع گاما

سازگاری بیشتری با این نمودار شبکه در رابطه با نت‌های این

تحقیق از نت‌های نشان داد و در رابطه با تعداد لایه‌های پنهان

به ذکر است که این نمودار شبکه‌ها شکستگی بهترین

ساختار می‌باشد. برای نت‌های ساختار داده شده در این تحقیق بوده است.

نتایج و بحث

در این تحقیق جزئیات رودخانه در ایستگاه‌ها و انتقال‌ها استفاده از داده‌های ایستگاه‌های بالادرست پیش‌بینی گردید. در

این پیش‌بینی چهار نت متفاوت با توجه به تعداد داده‌های
شکل ۴. هیدروگراف جریان پیش‌بینی شده ۹، ۲ و ۵ ساعت قبل از وقوع (توسط شیبک شیبک عصبی مصنوعی MLP) در استگاه وانتندول در نست ب (دماه کم) در مقایسه مقادیر اندازه‌گیری شده.

شکل ۵. هیدروگراف جریان پیش‌بینی شده ۹، ۴ و ۲ ساعت قبل از وقوع (توسط شیبک عصبی مصنوعی برگشتی) در استگاه وانتندول در نست ب (دماه کم) در مقایسه مقادیر اندازه‌گیری شده.

شکل ۶. هیدروگراف جریان پیش‌بینی شده ۹، ۲ و ۵ ساعت قبل از وقوع (توسط شیبک شیبک عصبی مصنوعی برگشتی با نامی) در استگاه وانتندول در نست ب (دماه کم) در مقایسه مقادیر اندازه‌گیری شده.
جدول 1. مقادیر RMSE بین نتایج مدل‌های مختلف شبکه عصبی مصنوعی و مقدار اندازه‌گیری شده در تست و زیرنیت‌های انجام شده

<table>
<thead>
<tr>
<th>زمان تا وقوع سیل</th>
<th>فاز بیشتر تست</th>
<th>فاز چرخه پایه</th>
<th>Z.R.L</th>
<th>شیبکه</th>
<th>Rec.</th>
<th>T.L.R.</th>
<th>شیبکه</th>
<th>Rec.</th>
<th>T.L.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ساعت</td>
<td>2/125</td>
<td>5/374</td>
<td>2/125</td>
<td>5/374</td>
<td>2/125</td>
<td>5/374</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 ساعت</td>
<td>2/274</td>
<td>5/562</td>
<td>2/274</td>
<td>5/562</td>
<td>2/274</td>
<td>5/562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ساعت</td>
<td>2/074</td>
<td>7/872</td>
<td>2/074</td>
<td>7/872</td>
<td>2/074</td>
<td>7/872</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ساعت</td>
<td>2/074</td>
<td>9/352</td>
<td>2/074</td>
<td>9/352</td>
<td>2/074</td>
<td>9/352</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روش‌شهری بهبو به منظور مواردی کارایی محاسباتی در شبکه مالی و

بنک‌ها را می‌تواند شبکه عصبی برگشتی است و یکی از نتایج که تعداد زیادی داده استفاده شده روش‌شهری بهبو نیست. بهترین نتایج را در تمام تست‌های این تحقیق شبکه عصبی برگشتی از خود نشان داده است. در رابطه با تعداد 3 نیز تنها شبکه‌های

تشنیگر ملدی شده شبکه عصبی مصنوعی شیبکه یک کارایی مناسبی می‌باشد از خروط که فاصله زمانی برای بهبود و وقوع طولی از تبادل تست 1 و 2 حدید تست 2 (وقتی تعداد داده‌های مورد استفاده زیاد نیست)
1. دستورانی، م. ت. و. ج. ر. نایرجل. 1382. بهینه سازی نتایج حاصل از یک مدل هیدرودینامیکی در پیش‌بینی جریان رودخانه توسط
سیستم عصبی مصنوعی. مجموعه مقالات چهارمین کنفرانس هیدرولیک ایران، شیراز.
2. دستورانی، م. ت. 1384. ارزیابی کارایی هوش مصنوعی کامپیوتر در تخمین داده‌های مفودشده شده‌هیدرولوژی. دومین کنفرانس
سراسری آبخیزداری و مدیریت منابع آب و خاک، کرمان.
بررسی کاربرد مدل‌های هوش محاسباتی در شبیه‌سازی و ...