بررسی فراینده ته نشینی و تعکیم رسوبات چسبندگی مخزن سد در

حسین صمدی بروجنی، محمود شفاعی بجستان و منوچهر فتحی مقدم

چکیده
رسوب گذاری و تعکیم آن تعکیم رسوبات چسبندگی در مخازن سد به‌صورت کلی شامل دو حالت مختلف می‌باشد. حالت اول به محدودیت دسترسی به رسوبات چسبندگی و حالت دوم به ناپذیری به‌جای رسوبات چسبندگی. در این مقاله به تحقیق در مورد مدل‌های محلولی ته نشینی و تعکیم رسوبات چسبندگی در مخازن سد می‌پردازیم.

واژه‌های کلیدی: رسوب‌گذاری، مدل فیزیکی، پارامترهای تعکیم، تنش مؤثر

نقد مؤثری دارد.

مقدمه
بررسی رسوب‌های زنده دارای خاصیت چسبندگی می‌باشد.

از زیبایی و بررسی روند ته نشینی و تعکیم رسوبات چسبندگی در مخازن سد و سواحلی از موضوعاتی مسائل مهم است که در طرح‌های مختلف رسوب‌زدایی و کنترل رسوب از جمله پروژه‌های لابوراتواری و عملیات رسوب‌شناسی هیدروتوپیک سد ها

1. دانشجوی سابق دکتری مهندسی علوم آب، دانشگاه شهید چمران اهواز و در حال حاضر استادیار دانشکده کشاورزی، دانشگاه شهید چمران اهواز

2. به ترتیب استاد و استادیار آپاری، دانشکده کشاورزی، دانشگاه شهید چمران اهواز
خصوصیات فیزیکی: شیمیایی متفاوتی با دانه‌های رسوبی مجزا دارد (7).

رفنگر رسوبات چسبنده به دلیل خاصیت فلزی شدن آنها، پسیات پیچیده است و کارایی تحقیقاتی زیادی جهت شناخت و تبیین رفنگر این نوع رسوب انجام می‌شود (4). با این حال هنوز یک بار یافته‌ای از رفنگری رسوبات چسبنده در پرده اندام قرار دارد و فواید مکاتبه بسیار تبیین و تفسیر رفنگر آنها در دسترس نمی‌باشد (7). با پیدایش و ساخت دستگاه‌های دقیق اندام‌های لرزان، نوری و میکروسکوپی، امکان انجام تحقیقات دقیق تر و قابل اعتقاد بر جوی آمدن این است (5). با این حال بازه‌ای به این که تحقیق رسوبات چسبنده نسبت به زمان شدت منگری بوده و تحقیق مکاتبی می‌گرازد زمان طغیان می‌کند، لذا شیب‌سازی باید به وسیله‌ای انجام شود که بتوان بر اساس آن وضعیت تراکم و وزن مخصوص رسوبات را در زمان‌های مختلف تعیین نمود. این آزمایش در خواندن رسوبات به مدل رسوب‌گذاری رو به افزایش است، با پیچیدگی بیشتری همراه است (12). به نظر رسیدن به این هدف، اگر این ابتدا نسبت به محور، نسبت به محور و تراکم رسوبات چسبنده، پنج مرحله جزئی تعیین نمود و نشان داد تراکم رسوبات چسبنده با افزایش زمان رابطه مستقیم دارد (شکل ۱)، در مرحله اول میزان رسوب کاملاً به هم مخلوط
شکل ۲، مراحل چهارگانه تنشی و تحمیم رسوبات چسبنده پیشنهادی بلوم کوئینس و تاوین سنده (۳)

شده‌اند و رسوبات کاملاً به صورت معلق هستند و در این مرحله فرابندن نشیبی آغاز می‌شود. در مرحله دوم که ممکن است حدود چند ثانیه طول بکشد، اولین ذرات رسوبی به فاز نئشیبی نزدیک می‌شوند. در مرحله سوم پخشی از رسوبات فلوکوله شده، نشیبی می‌شود و در فاز مجزا به وجود می‌آید. در این مرحله ممکن است غلطی رسوبات تا ۲۰۰ گرم بر لیتر برود. در مرحله چهارم یک مراحل مشخص یک فاز سیال و جامد به وجود می‌آید و پس از آن می‌توان روند تحمیم و نشیبی رسوبات را با زمان تین تمیز در این مرحله به تدریج آب‌های محسوس شده از یک فلوکولها خارج شده و بخشی از فلوکولا به واسطه نیروی وزن لایه‌های بالایی در هم شکسته و عمل تحمیم آغاز می‌شود. غلطی رسوبات ممکن است در این مرحله به ۳۰۰ گرم بر لیتر برود. در مرحله پنجم آب منفی به دلیل تراکم پیش از حد فاقد به تخلیه سریع از لایه‌ای از رسوبات بیشتر و روند تحمیم در این مرحله کند می‌شود و در صورتی که آزمایش برحال مدت طولانی ادامه داشته باشد، عمل تحمیم با روند کننده صورت می‌گیرد و به آن یک فاز تحمیم نئشیبی نیز می‌گویند.

بلوم کوئینس و تاوین سنده (۲) معتقد بودند فرابندن نشیبی و تحمیم رسوبات چسبنده می‌تواند در چهار فاز تحت عنوان فاز استقرار ایستادن (Stabilization Agglomeration) رسوب گذاری (Sedimentation) و فاز تحمیم تحت وزن خود رسوبات (Hindered settling) و تحمیم تحت نیروی خود رسوبات (Self-weight consolidation) به نظران پیشنهادی و تجربی انتخاب و تحمیم رسوبات چسبنده، علاوه بر روند نشیبی رسوبات لام است پارامترهای تحمیم تبیین می‌شوند. به نظر بوده و تراکم پذیری اشاره کرد. تراکم پذیری همان نسبت پوکی رسوبات پر حسب نسبت پوکی رسوبات به صورت رابطه نمادین بینان می‌شود (۶ و ۱۰). این پارامترها برای مدل‌سازی ریاضی نشیبی و تحمیم رسوبات چسبنده مورد استفاده قرار گرفتند (۱۱).}

م *

کربنات و ساموکو (۶) با انجام آزمایش‌هایی تنشیبی و تحمیم رسوبات لاپروپی شده در مخزنی به عمق ۴ متر روابطی را برای:

\[
k = 2 \times 10^{-6} e^{11/11}
\]

\[
e = 29/400^{10/29}
\]
پارامترهای تحکیم در دو حالات، یکی نمونه رسی 2/55 و دیگری با 2/55 آب منفی به شرح زیر به‌دست‌آورد:

<table>
<thead>
<tr>
<th>برای حال آب رسوب با 2/55 آب منفی:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = \frac{1}{2} \times 10^{-3} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>$c = 10^{-1} \times 10^{-14} \text{ s}^{-1}$</td>
</tr>
</tbody>
</table>

با توجه به اهداف تحقیق که شناخت هر چیزی بیشتر فراهم شده بود، سعی در این مقاله نتایج آزمایش‌های انجام‌شده در مدل فیزیکی استندارده فیزیکی و مکانیکی رسوبات سورد مطالعه‌انگیز (از نظر ورق مشخصات ظاهری رسوبات، نسبت پودر و پارامترهای تحکیم) مورد بررسی قرار گرفت و نتایج شتاب‌های این پارامترها نسبت به زمان تعیین گردید.

مواد و روش‌ها

یکی از روشهای مبنا ریسی این ابزاری و انجام آزمایش‌های ریسیستی مبنا در گروه کارکنان آزمایشگاه انجام شده. توسط محاسبات مختلف جهت تعیین روند نتیجه‌گیری و انجام سیستم‌های انجام رسوبات سورد، عمده‌اً با استفاده از سیستم‌های انجام‌شده و نسبت این پارامترها به‌طور گسترده‌ای بررسی و با توجه به اهداف تحقیق که شناخت هر چیزی بیشتر فراهم شده بود، سعی در این مقاله نتایج آزمایش‌های انجام‌شده در مدل فیزیکی استندارده فیزیکی و مکانیکی رسوبات سورد مطالعه‌انگیز (از نظر ورق مشخصات ظاهری رسوبات، نسبت پودر و پارامترهای تحکیم) مورد بررسی قرار گرفت و نتایج شتاب‌های این پارامترها نسبت به زمان تعیین گردید.
تشيیه رسواب مورد نیاز در آزمایش

روسواهای آزمایشی در این تحقیق از مخزن سد، در نزدیکی بندن سد تهیه شد. این رسواهای با استفاده از یک نمونه برفدار وزنی (Gravity Corer) متعلق به سازمان آب و برق خوزستان از پونر رسواهای مخزن (حدود 10 متر زیر سطح رسواه) بالا اورده شد. این رسواهای از نوع رسواهای چسبنده بوده و با ظرفیت متوسط 20 درصد رس و 60 درصد سیلت تشکیل شده‌اند (8). جهت مشخص کردن خصوصیات فیزیکی این رسواهای آزمایشی، لازم بر روزی 21 نمونه انجام گرفت که نتایج حاصله در جدول 1 ارائه شده است. همچنین آزمایش‌های نانبدی بر روی نمونه‌های رسواب در دو حالت با و بدون ماده جدا کننده (کالکون) انجام گرفت که نتیجه این آزمایش‌ها در نمونه شکل 2 ارائه شده است. اختلاف این دور محتی
جدول ۲: حالات مختلف انجام آزمایش‌های تنشینی و تحکم رسوبات چسبنده مخزن سد در

<table>
<thead>
<tr>
<th>ملاحظات</th>
<th>C_{final}</th>
<th>$C_{initial}$</th>
<th>H$_{final}$</th>
<th>H$_{initial}$</th>
<th>نام آزمایش</th>
<th>طول مدت تحکم آزمایش (روز)</th>
<th>فشرده سطح نسبتی $H_{final}/H_{initial}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp.=۱۷ °C، با اندازه‌گیری فشار آب منفی</td>
<td>۲۴۰</td>
<td>۲۰۰</td>
<td>۳۵۱/۲</td>
<td>۲۰۰</td>
<td>TA</td>
<td>۱۵</td>
<td>۱۵۱/۲</td>
</tr>
<tr>
<td>Temp.=۲۱ °C، با اندازه‌گیری فشار آب منفی</td>
<td>۶۱۰</td>
<td>۳۸۵</td>
<td>۱۳۱/۴</td>
<td>۹۶/۱۵</td>
<td>TB</td>
<td>۳۸</td>
<td>۳۸</td>
</tr>
<tr>
<td>Temp.=۵ °C، در تاریکی و بدون اندازه‌گیری فشار آب منفی</td>
<td>۶۹۱/۵</td>
<td>۲۰۰</td>
<td>۷۱۵/۵</td>
<td>۹۶/۱۵</td>
<td>TC</td>
<td>۳۸</td>
<td>۳۸</td>
</tr>
<tr>
<td>Temp.=۲۱ °C، در تاریکی و بدون اندازه‌گیری فشار آب منفی</td>
<td>۷۱۴</td>
<td>۷۱۴</td>
<td>۷۷</td>
<td>۷۷</td>
<td>TD</td>
<td>۳۸</td>
<td>۳۸</td>
</tr>
<tr>
<td>Temp.=۲۱ °C، بدون اندازه‌گیری فشار آب منفی</td>
<td>۸۷۷</td>
<td>۸۷۷</td>
<td>۸۷۷</td>
<td>۸۷۷</td>
<td>TE</td>
<td>۳۸</td>
<td>۳۸</td>
</tr>
<tr>
<td>Temp.=۲۱ °C، بدون اندازه‌گیری فشار آب منفی</td>
<td>۹۱/۱</td>
<td>۹۱/۱</td>
<td>۹۱/۱</td>
<td>۹۱/۱</td>
<td>TF</td>
<td>۳۸</td>
<td>۳۸</td>
</tr>
</tbody>
</table>

جهت ایجاد شرایط تاریکی در مدل فیزیکی از یک چند لوله‌ای با قطر بزرگتر استفاده شد.

نتایج داده‌هایش نشان می‌دهد که برای تحقیق در سیستم بهره‌برداری توسعه دهنده، نحوه شبیه‌سازی مشابه در مدل چرخه‌های رفت و برگشت و سایر آزمایش‌ها و اندازه‌گیری‌ها در دانشگاه شهداد، هیچ‌گونه اتصال غیر است.

در نهایت، البته به این موضوعات و شیوه‌های اختصاصی به کار بردن یک مدل مورد تحقیق با یک مدل مورد تحقیق از این نظر بهترین استفاده می‌شود.

ملاحظه: در مقاله، ترجمه‌ای از مقاله علوم و فنون کشاورزی و منابع طبیعی سال ۱۳۸۶ شماره چهل و پنجم (الف)، نشان داده شد.

 imagem_url
توجه و بحث
نتیجه اندوزه گیری‌ها
در آزمایش‌های انجام شده، ضرف کمتر از یک ساعت یک سطح مشخص بین رسوایی‌ها و آب بالای آن تشکل و امکان اندوزه‌گیری روند نشان دهنده و تحقیق در مدل بوده است. نتایج اندوزه‌گیری‌ها حاکی از آن است که گاهی زمان سرعت نتیجه و تحقیق رسوایی‌ها کاهش می‌یابد. جهت نشان دادن این امر معمولاً از پارامتر H_1 استفاده می‌شود که در آن H_1 هر ارتقاء سطح مخلوط آب و رسوب در ابتدا آزمایش و ارتقاء رسوایی‌ها نشان دهنده در زمان‌های پس از شروع آزمایش می‌باشد. نتیجه انجام گرفته در نمونه شکل ۵ ارائه شده است.

براساس این اطلاعات نتایج زیر قابل ارائه می‌باشد.

• آزمایش‌های TB یا TF و اقتراح گرفته که غلظت اولیه و درجه حرارت در شرایط یکسان بوده ولی مدل در در ترکیک و مدل در روش‌پایی قرار گرفته بودن، بدین منظور با

• آزمایش‌های TB یا TF از نظر ارتفاع، غلظت اولیه و درجه حرارت در شرایط یکسان بوده ولی مدل در ترکیک و مدل در روش‌پایی قرار گرفته بودن. بدین منظور با

• آزمایش‌های TB یا TF از نظر ارتفاع، غلظت اولیه و درجه حرارت در شرایط یکسان بوده ولی مدل در ترکیک و مدل در روش‌پایی قرار گرفته بودن. بدین منظور با

• آزمایش‌های TB یا TF از نظر ارتفاع، غلظت اولیه و درجه حرارت در شرایط یکسان بوده ولی مدل در ترکیک و مدل در روش‌پایی قرار گرفته بودن. بدین منظور با

• آزمایش‌های TB یا TF از نظر ارتفاع، غلظت اولیه و درجه حرارت در شرایط یکسان بوده ولی مدل در ترکیک و مدل در روش‌پایی قرار گرفته بودن. بدین منظور با

• آزمایش‌های TB یا TF از نظر ارتفاع، غلظت اولیه و درجه حرارت در شرایط یکسان بوده ولی مدل در ترکیک و مدل در روش‌پایی قرار گرفته بودن. بدین منظور با
طل جهت انجام سه شرایط به‌صورت چهارگوشی در شروع گزارش نشان داده می‌شود: مزایا و معایب آزمایش‌های هندسی. نتایج‌های مشابه در گزارش نشان داده می‌شود.

(1) Stabilization (agglomeration) مرحله نیازمند است (3). طول مدت این مرحله معمولاً کمتر از یک ساعت بوده و نسبت پوکی بیشتر از 10 به‌دست آمد. در مرحله دوم که به آن اصطلاحاً مرحله سوخت‌گذاری می‌گویند، غلظت رسمی افزایش یافته و نسبت پوکی به حدود 5 کاهش می‌یابد. طول مدت این مرحله ممکن است حدود یک روز باشد (3). در مرحله سوم غلظت رسمی آن‌قدر افزایش یافته که نسبت می‌زنی یافت است. نتایج تأکیدی بوده ولی هر سرویسی ته نشان دهد به یک خاک با ساختاری خاص دوام نمی‌باید به طور جهانی افزایش نشان دهد. سرعت نشست‌های ضمنی آب و رسوب در این مرحله کندتر از مرحله دوم بوده ولی مدت زمان این مرحله پیشتر بوده و ممکن است به بیش از یک هفته برسد. به این مرحله، هن نشست به تأخیر افتاده (Hindered settling) (3). در آزمایش‌های انجام شده، نسبت پوکی در این مرحله بین 5 تا 6 بوده است. در مرحله چهارم بدین‌دردیده که این سرویس‌های اتفاق افتاده و فشار مؤثر تری افزایش یافته و نسبت پوکی با گذشت زمان کاهش می‌یابد. به این مرحله تحقیق تحت وزن خود (Self weight consolidation) می‌شود (3). روند نشست سطح رسوب در این مرحله به‌سیار
شکل ۷: ارتباط تفویض‌یزی با نسبت یوکی در آزمایش TA

آرام می‌باشد و این مرحله ممکن است پس از ۱۰ تا ۲۰ روز از زمان شروع فراوردند، نشینی و تحکیم آغاز شده و از نظر توربیک، تا زمان بی‌نتای ادامه باید. این نتایج نظر به پایان
پایانی و ناپایان (۲) که فراوردند، نشینی و تحکیم دارد
چهار مرحله مجزا تقسیم بندی کرد (۲)، تأیید می‌شود.

پارامترهای تحکیم

در مدل‌های سه‌اندیشی نشینی و تحکیم رسویا نینه، نیاز است پارامترهای تحکیم نظیر نش مسئول و تفویض‌یزی به عنوان اطلاعات اولیه مورد نیاز، معلوم و مشخص باشد. معمولاً این پارامترها بصورت روابط تجربی و برحس نسبت یوکی به مدل‌های مذکور داده می‌شوند. اگر در این تحقیق بر پایه
آندوره‌گری‌ها و آزمایش‌های انجام شده، روابط تجربی تحکیم رایج
روسویا مخزن سد در به‌دست آمده‌که به‌شرح زیر می‌باشد.

تفویض‌یزی

پدیده تحکیم در حقیقت خروج آب‌های مذکور از لایه‌های خاک
می‌باشد. لذا تفویض‌یزی خاک را می‌توان در نظر در نظر بر
تحکیم می‌دانند (۱۱). این پارامتر در طول تحکیم ثابت نیست و
تغییرات آن غیر خطی می‌باشد. برای تعیین میزان تفویض‌یزی،
لازم است قانون‌های دارسی و پوستگی مورد استفاده قرار
گیرد. در فراوردند نشینی و تحکیم رسویا نینه، قوانین

مزکور بهصورت زیر نوشته می‌شود (۱۲): [۹]

\[n(v_f - v_s) = -k.i \]

که در آن: [۱۰]

\[v_f + n. v_i = 0 \]

متغیرهایت جدول به‌ترتیب سرعت فازهای سیال و جامد، ضریب تفویض‌یزی و گرادیان هیدرولیکی می‌باشد.

با توجه به روابط موجود و اندازه‌گیری‌های انجام شده، ضریب تفویض‌یزی به‌دست آمده‌که نتایج حاصله در نمودار شکل ۷ ارائه شده و به‌ترتین معادله آن به‌صورت زیر به‌دست آمده است:

\[k = 1 \times 10^{-9} \times 10^{3.9466} \times 10^{-9} \times 10^{3.9466} = 0.6107 \]

که در آن:

\[k = v_f/i \]

ضریب تفویض‌یزی برحس متر بر ثانیه و ۲۰ نسبت

یوکی می‌باشد.

این نتیجه نظر محقفینی همچون کاری پر، ساموگو و
کریکو (۶ و ۱۰) را که رابطه بین تفویض‌یزی و نسبت یوکی را
به‌صورت رابطه نامناسب ارائه داده بودند، تأیید می‌کند. نمای
معادله فوق که برای ۹/۴۶ هدست آمده به‌مدادرس به‌دست آمده
توسط محقفینی فوق (به ترتیب برای ۱/۱۱، ۲/۱۴ و ۳/۰۲) نسبتاً
ئزدیک است.
شکل ۸، رابطه بين مجموعت و نسبت پوکی در آزمایش تا از رابطه مذکور می‌توان در مدل سازی ریاضی ته تنشینی و تحکیم رسوایی مخون سد در و رسوایی‌های چسبنده مشابه به عنوان پیکی از پارامتر ورودی مدل ریاضی استفاده نمود.

شکل موتر

با گذشتن زمان به دلیل تحکیم رسوایی چسبنده، وزن مخصوص رسوایی ته تنشینی و رسوبات به تنشینی و تحکیم، نسبت پوکی رسوایی زیاد بوده و هنوز تنش مؤثر ظاهر نشده ولی با گذشتن زمان به تدریج به آهنگ منفی خارج شده و این امر موجب می‌شود تنش مؤثر ظاهر گردد. انداده‌گیری مستقیم نسبت موتر به شیار در باره و عمل آلیکانی از ته تنشینی به لحاظ توجهی فراوان به تنش ته تنشینی و تحکیم به ته تنش نسبت به ته تنش اندازه‌گیری شده، رابطه بین اضافه فشار آب منفی، (بر حسب تا (متر) و زمان T (بر حسب ساعت) به شرح زیر به دست آمده است:

$$\Delta H = 374.43 e^{-0.6412} \times 10^{-11}$$

همچنین رابطه بین تنش مؤثرِ ۱/۸ (بر حسب پاسکال) و نسبت پوکی، ۱/۸ مسبقه نمودار شکل‌آیه به بهترین معادله آن همان‌گونه که اغلب محققین دیگر نیز پیشنهاد نموده‌اند، نماین و به صورت زیر به دست می‌آید:

$$T = 74.5 / 374 e^{-0.6412}, R^2 = 0.9441$$