ارزیابی ویژگی‌های جوانزمی‌زنتوپی‌های مختلف گندم در شرایط تنش اسپزی و همپستگی آنها با سرعت سیزشنده و مقاومت به خشکی در شرایط مزروعه‌ای

حسن معیدی، علی احمدی، کاظم پوستینی و محمدضا جهانسوزَ

چکیده

رطوبت خاک یکی از عوامل محدود کننده جوانزمی‌زنتوپی، سیزشنده و استقرار گیاهان ظرایف به‌خصوصاً در شرایط دم و در نهایت شکل‌گیری عمیکر در مناطق خشک و خشک خشک (ماده ایران) است. در چنین مناطقی انتخاب ارقتایی که علاوه بر مقاومت به خشکی در مرحله جوانزمی‌زنتوپی، سیزشنده و پن‌سیزشنده، پتانسیل عمیکر، بالاترین نیاز داشته‌اند از اهمیت فوق العاده برخوردار هستند. این پاتری می‌تواند در هر دو نوع در سطح مزرعه‌ای، گلخانه‌ای و آزمایشگاهی و بر روی زنتوپی‌های مختلف گندم با سوابق اصلاحی مشابه: ارقتای انحلی شده داخلی در اثر عمل انتخاب (آسیا، اسپارادی)، ارقتای اصلاح شده داخلی - خارجی در اثر عمل هیریداسیون (آسیایی، خدا)، و چهار لایه (7+1-1-2)/ (2-1-1-3-3-5-5-5-5) (2006-7-7-5-4-3). انجام شد. بررسی نتایج به دست آمده با کاهش پتانسیل اسپزی برخلاف درصد و سرعت جوانزمی‌زنتوپی، بیشتر جوانزمی‌زنتوپی با سرعت و شیب زاید در زنتوپی‌های مختلف شروع به کاهش نمود. در این شرایط و در پن‌سیزشنده جوانزمی‌زنتوپی، افزایش می‌گردد. در این شرایط و در پن‌سیزشنده جوانزمی‌زنتوپی، افزایش می‌گردد.

واژه‌های کلیدی: گنده، عمیکر، جوانزمی‌زنتوپی، بیشتر سرعت جوانزمی‌زنتوپی

مقدمه

صدارت خشک‌کاری است (خصوصاً در شرایط کشت دمی) از ویژگی‌های مناسب می‌باشد. لازم به توجه این است که گیاهانی که استقرار خشک‌کاری است مقدار بالایی می‌پذیرند، مقاومت یا حساسیت به تنش خشکی در این اقلیم خشک و خشک خشک دستیابی به پوشش گیاهی مناسب در ارتفاعات رشد خصوصاً در اراضی کوهی کشت به

1. به ترتیب دانشجوی دوم دکتری، استاد دانشیار و استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران
1. مقاومت به خشکی در گونه‌های غیرانواع به معنی بقا آن‌ها در شرایط نش تعیین می‌شود اما در گونه‌های زراعی بر اساس میزان عملکرد آنها ارزیابی می‌شود. لذا کمی کردن شاخص‌های مقاومت به خشکی پایه براساس عملکرد دانه در شرایط خشک انجام شود. (21). شاخص‌های معنی‌دار برای انتخاب زننی‌های بی‌مانی عملکرد آنها در محیط تهیه و عدم نش پیشنهاد شده است. (21) روزنل و همبالین (5).

2. محاسبه در شرایط نش (Stress Yield) و عدم نش (Non-stress Yield) به‌طور آماری از و (Mean Productivity) تعیین می‌شود. این می‌تواند به خشکی که باره‌ای ضرورت پیدا می‌کند. در مواردی که کاست باد قبیل با ارزش در خاک‌های خشک صورت می‌گیرد، عمک کاسته را عمق‌دری از معمول می‌گیرند. در این موضوع باعث می‌شود که به زیاده‌ای سبک به برای رشد که به رخت پایان‌های تهیه نشانه وزن. در حالت‌هایی، طول کولونتیپل از اهمیت واقرا برخوردار بوده و یکی از مهم‌ترین فاکتورهای است که روی سبیل یک‌بار به تأثیر می‌گذارد (20 و 26). کورنی و هبنیهارش (16) نیز در این رابطه هم‌سازی که در اینجا نشانه از طول کولونتیپل و ایوان و بان (18) نشان داده. در بررسی قرار داده‌اند.

3. درصد، سرعت و بیه جوانه زنی با‌الا تحت شرایط منفوع محیطی از خصوصیات مناسب بذر گیاهان زراعی جهت کشت خصوصاً در مناطق خشک و به خشکی می‌باشد. نتایج به دست آمده از این تحقیقات صورت گرفته نشان می‌دهد که یک است که رشد گیاه‌های کاملاً مبتنی. در چنین شرایطی نتوان خرج جوانه‌ها از عملکرد برای خورشید رشد گیاه‌هایی در ویرایش‌های مهم مربوط به استفاده می‌باشد. در مناطق خشک، کشت گیاه‌هایی می‌باشد.

4. نتایج بودن رطوبت در آمیخته سطح خاک و به دنبال آن نش خشکی در مرحله گیاه‌های در محلول مهم‌ترین بوده و یکی از عوامل مهم در عدم استفاده مطلب گیاه‌هایی در مناطق خشک می‌باشد. در چنین شرایطی نتوان خورشی جوانه‌ها از عملکرد برای خورشید رشد گیاه‌هایی در ویرایش‌های مهم مربوط به استفاده می‌باشد. در مناطق خشک، کشت گیاه‌هایی می‌باشد.

5. موفقیت را به‌طور معمول سطح تغییرات ایجاد کننده پتانسیل اسیدی و سیلان و سیلاده (2) به کاسته‌شدن سطح ناسی آب با‌الا و
ارزیابی ویژگی‌های جوانان و زن‌های مختلف گندم در شرایط نش اسمری و...

خشکی زنوتی‌های مختلف به صورت طرح کرت‌های خرد شده در قالب بلکهای کامل تضمین و در چهار تکرار در مزرعه دانشگاه کشاورزی دانشگاه تهران طرح‌ریزی شد. بافت خاک محل اجرای آزمایش، لومی را بود و بر اساس تیکه آزمایش، انجام شده و نقاط 150 کیلوگرم در هکتار کود نیتروژن در 2 مرحله (زمان کاشت و گل‌دهی) به زمین داده شده. برای مقایسه تیکه جادیدگی از دادن یک یونیکسیون بسته در دو مدیری به خاک، چند گیپس شد. مقدار بذر مصرفی نیز 15 کیلوگرم در هکتار در نظر گرفته شد.

دریم رطوبت (آبایی معمولی و نش آبی) به عنوان فاکتور اصلی و 10 زنوتی‌های شامل: سرداری، امید، روش (آراق اصلاح شده به منشی داخلی)، آزادی، فلاد، قدس (آراق اصلاح شده در اثر هیدرولاسیون) زنوتی‌های داخلی و خارجی) و 78007-9، 78003-4، 7593-2، 7803-4 و 7803-6 (لاين ایرانی) به عنوان فاکتور فرعی در نظر گرفته شدند. اجرای آبایی همان‌طور که گفته شد کشت گندم در مناطق خشک و بیشترک (مانند ایران) خصوصا در شرایط دم عمویا با برزخ رشت خشکی در مرحله جوانویی و سیزندرو مراحل انتهایی فصل رشد هر آن است. با توجه به مطالب ذکر شده هدف از اجرای این تحقیق بررسی و تعیین زنوتی‌های مقاوم به خشکی در مرحله جوانوینی و مرحله انتهای فصل بوده است. از طرفی با توجه به اولویت کشت عمق به محدودیت در مصرف حل نشدن مشکل کم آبی زنوتی‌های مختلف، بهبود

می‌تواند با انتقال طول کوتولیوم مورد بررسی قرار گرفت. در پایان ضرایب همبستگی بین صفات مورد مطالعه جهت تعیین بهترین زنوتی‌های که هم بتوانند شرایط نش رضوی شوند ابتدا فصل را تحلیل کنند و هم در انتها فصل رشد بالاترین عملکرد را داشته باشند مورد بررسی قرار گرفت.

مواد و روش‌ها

این بررسی در سال 1380 در قالب مجموعه‌ای از آزمایش‌های مرغوب‌های گلخانه‌ای و آزمایشگاهی انجام شد. آزمایش‌های مرغوب‌هایی به مظور بررسی عملکرد و مقاومت به...

\[
TOL = Y_S - Y_P = \frac{Y_S + Y_P}{2} \quad \text{MP} = \frac{Y_S + Y_P}{\sqrt{Y_S} \times \sqrt{Y_P}} \quad \text{STI} = \frac{Y_P \times Y_S}{(Y_P \times Y_S)}^\frac{1}{2} \quad \text{GMP} = \sqrt{\left(\frac{Y_S \times Y_P}{2}\right)} \quad \text{SSI} = \sqrt{\frac{Y_S}{Y_P}} \quad \text{SI} = \frac{Y_P \times Y_S}{\sqrt{Y_S} \times \sqrt{Y_P}}
\]

که به ترتیب عملکرد و \(Y_P \) و \(Y_P \) به ترتیب عملکرد و \(Y_P \) و \(Y_P \) میانگین عملکرد زنوتی‌های مختلف تحت شرایط کنتراکت و نش
گلابیکول در اطراف بذرها می‌شود. در هر یک از جریان‌های این می‌باشد.

روش‌های مورد نظر رشته‌های

برای اتصال بزرگ و روان باریکی شدن کاهش وزن این

پتری‌ها نشان دهنده سرعت تبخیر آب از هرم بوده‌اید

و سه شدت تایوان از تغییرات محسوس در پاتنل‌های

آبی ژنومیک شود. در مراحل بعد پتری‌ها درانگویان مدل

دی‌بای‌سای تأثیرگذار قرار داده شده و صفات زیر در فواصل زمانی معین اندازه‌گیری

\[
R_s = \frac{n S_i}{\sum D_i}
\]

سرعت جوانزی (نقداً در ابتدا بذرها زده در روز)

\[R_s = \frac{S_i}{D_i} \]

\[S_i \]

\[D_i \]

بتی جوانزی

با استفاده از فرمول عبارتیکی و آندرسین (8)

\[VI = \frac{\% Gr \times MSH}{100} \]

1386

علوم و فنون کشاورزی و منابع طبیعی / سال پایه‌ای / شماره اول (ب) / بهار
ارزیابی ویژگی‌های جوان‌ترین زنوتیپ‌های مختلف گندم در شرایط تنش اسمروی و...

شاخخص به بذر یادگیری 0.78 و
مجموع طول ساقع بره‌های بذر یادگیری 0.37
و ضخامت بره‌های ساقعی نیز یا استفاده از آزمون BP310 و
مدل SARTORIUS

و...
جدول 1. مقایسه میانگین عملکرد زنوتیپ‌های مختلف گند تحت تیمارهای شاهد و نش رطوبی و شاخ‌های مقاومت و حساسیت به خشکی. مقایسه میانگین‌ها به روش دانکن (α=0.05) صورت گرفته و اعداد با حروف مشترک با هم تفاوت معنی‌دار ندارند.

<table>
<thead>
<tr>
<th>STI</th>
<th>GMP</th>
<th>MP</th>
<th>SSI</th>
<th>TOL</th>
<th>Ys</th>
<th>Yp</th>
<th>زنوتیپ‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/03</td>
<td>777/9/46c</td>
<td>5451/6/1 ^bc</td>
<td>-/0/0^a</td>
<td>498/4/8 ^abc</td>
<td>554/4/8 ^abc</td>
<td>570/4/8 ^abc</td>
<td>سردایی</td>
</tr>
<tr>
<td>1/05</td>
<td>111/6/4/^bc</td>
<td>729/0/6/4 ^ab</td>
<td>1/1/8^a</td>
<td>119/6/0 ^abc</td>
<td>248/9/4 ^abc</td>
<td>249/0/4 ^abc</td>
<td>روشن</td>
</tr>
<tr>
<td>0/04</td>
<td>748/7/4 ^bc</td>
<td>579/0/4 ^bc</td>
<td>1/3/8^a</td>
<td>128/4/0 ^bc</td>
<td>394/2/4 ^bc</td>
<td>522/4/2 ^bc</td>
<td>آمید</td>
</tr>
<tr>
<td>1/28</td>
<td>598/7/1 ^a</td>
<td>80/4/0 ^b</td>
<td>80/4/0 ^b</td>
<td>599/2/2 ^b</td>
<td>499/2/2 ^b</td>
<td>499/2/2 ^b</td>
<td>آزادی</td>
</tr>
<tr>
<td>0/05</td>
<td>75/0/2/4 ^bc</td>
<td>579/2/3/4 ^bc</td>
<td>1/0/8^a</td>
<td>87/6/0 ^bc</td>
<td>211/2/4 ^bc</td>
<td>245/0/4 ^bc</td>
<td>فلات</td>
</tr>
<tr>
<td>1/28</td>
<td>593/7/4 ^a</td>
<td>75/0/0 ^b</td>
<td>75/0/0 ^b</td>
<td>56/1/0 ^b</td>
<td>83/0/4 ^b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/06</td>
<td>72/0/1/4 ^bc</td>
<td>23/9/9/0 ^c</td>
<td>1/1/8^a</td>
<td>86/6/0 ^bc</td>
<td>249/9/8/0 ^b</td>
<td>249/9/8/0 ^b</td>
<td>قفس</td>
</tr>
<tr>
<td>0/47</td>
<td>248/5/4 ^c</td>
<td>73/1/0 ^b</td>
<td>87/6/0 ^bc</td>
<td>249/4/0/ ^abc</td>
<td>249/4/0 ^abc</td>
<td>249/4/0 ^abc</td>
<td>579/3/2 ^b</td>
</tr>
<tr>
<td>0/07</td>
<td>75/0/2/4 ^bc</td>
<td>579/2/2/4 ^bc</td>
<td>1/0/8^a</td>
<td>87/6/0 ^bc</td>
<td>211/2/4 ^bc</td>
<td>245/0/4 ^bc</td>
<td>517/4 ^bc</td>
</tr>
<tr>
<td>0/08</td>
<td>72/0/1/4 ^bc</td>
<td>23/9/9/0 ^c</td>
<td>1/1/8^a</td>
<td>86/6/0 ^bc</td>
<td>249/9/8/0 ^b</td>
<td>249/9/8/0 ^b</td>
<td>579/3/2 ^b</td>
</tr>
<tr>
<td>0/09</td>
<td>72/0/1/4 ^bc</td>
<td>23/9/9/0 ^c</td>
<td>1/1/8^a</td>
<td>86/6/0 ^bc</td>
<td>249/9/8/0 ^b</td>
<td>249/9/8/0 ^b</td>
<td>579/3/2 ^b</td>
</tr>
</tbody>
</table>

شکل 1. مقایسه میانگین اثرات مقابل بین سطوح مختلف پتانسیل اسمزی و درصد و سرعت جوانشی

ازدای، آمید، قفس و فلات درصد کاهش معنی‌داری از حاصل درصد جوانه زنی نشان دادند. اما یقه زنوتیپ‌های با شیب تندی شروع به کاهش درصد جوانه زنی کردند. به نوعی که زنوتیپ‌های روشن و 3-2/8 MPa در پتانسیل اسمزی 1-10 MPa کمترین درصد جوانه زنی را نشان دادند و زنوتیپ‌های

286
شکل 2 مقایسه میانگین اثرات متغیرین سطوح مختلف پتانسیل اسمری با به جوانه‌زنی و وزن خشک ریشه‌ه

کاهش سطح نمایاس آب با وزن‌ها و پایین آوردن هیدرولیکی آب اطراف بذرها (2)، کاهش جذب اکسیژن به وسیله محدود کردن مرکز اکسیژن محلول در محیط کشت (3) و یا انتشار اکسیژن به بافت کاهش جوانه‌زنی در پتانسیل‌های اسمری پایینتر (16) باعث کاهش جوانه‌زنی در این شرایط می‌شود. به هر حال در تحقیق حاضر به منظور به‌دست آوردن شرایط مورد مطالعه استفاده شد به این ترتیب از ایجاد آثار سوء تماس مستقیم PEG با پلاستیکی شد.

شکل 1 نشان‌دهنده اثرات متغیرین بین پتانسیل اسمری و ZnO و ریپ‌ها روی سرعت جوانه‌زنی است. همانطور که در این شکل مشاهده می‌شود در سطح اولیه نش اسمری اکثر ZnO با جذب زنی شنا همگام با افزایش درصد جوانه‌زنی تحریک شد. در ادامه با کاهش پتانسیل اسمری، ZnO با شیب‌های کاهشی با افزایش متغیرین سرعت جوانه‌زنی نزی به پتانسیل اسمری واکنش نشان دادند. به طور مثال ZnO سرداری که از

\[... \]
شکل ۳. مقایسه میانگین آثار مرطوب در بین سطوح مختلف پتانسیل اسپزی با وزن خشک ساقه‌های زنوتیپ‌های ای‌3/۲/۰۰۷ و آزادی پایین‌ترین و زنوتیپ‌های قدس و ۳/۲۰۰۶ به‌موجب داشتن بینه‌گویانه‌های زنی را در این سطح داشته‌اند. با کاهش پتانسیل اسپزی برخی صفات درصد و سرعت جوانه زنی این صفت به سرعت و با شیب زیاد در زنوتیپ‌های مختلف شروع به کاهش کرد. اگر چه زنوتیپ‌های با شیب‌های متفاوت که به جوانه زنی در باسیک به‌کاهش پتانسیل‌های اسپزی نشان دادند. در این شرایط در پتانسیل اسپزی ای‌3/۲/۰۰۷ و آزادی بیشترین و زنوتیپ‌های قدس و ۳/۲/۰۰۷ و این ۸ فلات کمترین به‌جوانه زنی آرایش گرفته و به‌جهت جوانه‌زایی نسبت به دیگر زنوتیپ‌ها کاهش پیدا کرد. معمولاً که در پتانسیل اسپزی ۱/۵۵۰۳/۲/۳ کمترین وزن خشک ریشه مایه‌ای دارد که در سطح بهبود نشان‌دهنده واقعیت بین زنوتیپ‌ها دیده شده است. اکتشاف وزن خشک‌ساقه‌های به‌گونه‌ای می‌باشد.
جدول ۲. مقایسه میانگین طول ریشه‌چه و ساقه‌چه در سطوح مختلف پتانسیل اسمری در محلول‌های PEG. اعداد به دست آمده برای طول ریشه‌چه و ساقه‌چه میانگین ۵ عدد بذر جوان‌رشد هستند مقایسه میانگین‌ها به روش دانکن (0.05) صورت گرفته است.

<table>
<thead>
<tr>
<th>پتانسیل اسمری (Mpa)</th>
<th>طول ریشه‌چه (cm)</th>
<th>طول ساقه‌چه (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱۶/۷۶۷</td>
<td>۱۷/۷۸۷</td>
</tr>
<tr>
<td>۰/۴</td>
<td>۱۴/۷۳۳</td>
<td>۱۴/۷۳۳</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۹/۷۴۰</td>
<td>۹/۷۴۰</td>
</tr>
<tr>
<td>۱/۲</td>
<td>۸/۲۴۲</td>
<td>۸/۲۴۲</td>
</tr>
<tr>
<td>۱/۶</td>
<td>۸/۳۸۷</td>
<td>۸/۳۸۷</td>
</tr>
</tbody>
</table>

جدول ۳. مقایسه میانگین طول ریشه‌چه و ساقه‌چه زنوتیپ‌های مختلف گندم در تست جوان‌نگر در محلول‌های PEG. اعداد به دست آمده برای طول ساقه‌چه و ریشه‌چه میانگین ۵ عدد بذر جوان‌رشد هستند مقایسه میانگین‌ها به روش دانکن (0.05) صورت گرفته و اعداد با حروف مشترک با هم تفاوت معنی‌دار دارند.

<table>
<thead>
<tr>
<th>زنوتیپ‌های مختلف</th>
<th>طول ریشه‌چه (cm)</th>
<th>طول ساقه‌چه (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرداری ۲/۸۹۶</td>
<td>۹/۵۹۶</td>
<td></td>
</tr>
<tr>
<td>روشن ۵/۴۹۰</td>
<td>۱/۰۴۹</td>
<td></td>
</tr>
<tr>
<td>امید ۶/۴۴۸</td>
<td>۱/۰۶۸</td>
<td></td>
</tr>
<tr>
<td>آزادی ۵/۰۷۴</td>
<td>۹/۹۳۵</td>
<td></td>
</tr>
<tr>
<td>فلات ۴/۰۳۷</td>
<td>۱/۰۱۴</td>
<td></td>
</tr>
<tr>
<td>قدس ۴/۰۹۵</td>
<td>۱/۱۳۵</td>
<td></td>
</tr>
<tr>
<td>۵۵۹/۲/۲۷۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۴۳/۲/۲۷۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۴۳/۲/۲۷۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵/۱۷۶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

قرار گرفت. تأثیر به دست آمده از مقایسه میانگین صاف طول ریشه چه و ساقه چه (جدول ۲) نشان داد که اگر چه صاف طول ریشه به صورت معمولی داری تحت تأثیر سطوح پتانسیل اسمری کاهش یافته و از زنوتیپ‌های مختلف در این شرایط با هم تفاوت معنی‌دار داشتند و به عبارتی حساسیت یکسانی را در مواجهه با نوسنج و نوسنج را در سطح بزرگ به وارد این شرایط زنوتیپ‌های اسمری و ۵۵۹/۲/۲۷۳ بین‌شیرین و زنوتیپ. بقیه زنوتیپ‌ها داشت و بقیه زنوتیپ‌ها نیز در یک سطح پایینتر
جدول 2: مقایسه میانگین گروه‌های مختلف (اصلاً شده داخلی، اصلاح شده داخلی خارجی، لایحه) برای درصد جوانانی عادی و غیرعادی. سرعت جوانانی و بینه جوانانی بذر. مقایسه میانگین‌ها به روش دانک (α=0/05) صورت گرفته و اعداد با حروف مشترک با هم تفاوت معنی دار ندارند.

<table>
<thead>
<tr>
<th>گروه‌های مختلف</th>
<th>درصد جوانانی غیرعادی</th>
<th>سرعت جوانانی بذر</th>
<th>درصد جوانانی عادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصلاح شده داخلی</td>
<td>14/6/14</td>
<td>7/21</td>
<td>13/6/14</td>
</tr>
<tr>
<td>اصلاح شده داخلی خارجی</td>
<td>14/6/14</td>
<td>7/21</td>
<td>13/6/14</td>
</tr>
<tr>
<td>لایحه</td>
<td>14/6/14</td>
<td>7/21</td>
<td>13/6/14</td>
</tr>
</tbody>
</table>

فلات کوتاهترین طول ساقه چه را در آرا بودند. به نظر رسید حساسیت طول ریش چه به تنش ریزشی در زنی‌های مورد بررسی کمتر از طول ساقه چه بوده و طول ساقه چه با شدت بیشتر نسبت به طول ریزشی چه در مواجهه با تنش ریزشی کاهش یافته‌است. زنی‌هایی که جنبه آب و در نهایت مقاومت بیشتری به تنش ریزشی به وجود می‌آورند (9).

همان گونه که اشاره شد تا سطح میانی تنش اعمال شده درصد جوانانی (شکل 1) تغییرات آن‌گونه تانش و مقادیر آن بالاست. اما در این سطح طول ریزشی را و ساقه‌چه و حس وزن‌‌بندی و شکل آن‌ها بر خلاف درصد جوانانی تغییرات زیادی نشان داده و در افزایش میانی تنش اعمال شده زنی‌هایی که کاهش شدیدی را از لحاظ این صفت نشان می‌دهند. با توجه به اینکه این گونه‌ها صفت‌های طول ساقه چه و ریزش چه برای سیریکس و جذب آب مهم‌ترین عناصر گرفته که درصد جوانانی به نتهایی نیمی تواند نمای جنبه‌های جوانانی را بهتری تعبیر و برای نشان دادن ویژگی‌های جوانانی استفاده از میانگین مکمل بیهانی سرعت جوانانی و بنیه جوانانی ضروری می‌باشد. صفات سرعت و بنیه جوانانی توسط عناصر از محققین از جمله عالی‌کانی و انتداس (8) صفا و غیرairobi (3) و بیدی (4) به کار گرفته شده‌اند. عالی‌کانی و انتداس (8) در این اثر raph متفاوتی که سرعت جوانانی بیشتر از درصد
جدول ۵. ضرایب همبستگی بین صفات اندازه‌گیری شده برای زن‌تپی‌های مختلف در سطوح مختلف شناسایی شده در مرحله جوانانی. اعداد به دست آمده بیایند، طول و وزن و رنگ ساقه‌چه و رنگ‌چیه میانگین طول و وزن رنگ‌چیه و ساقه‌چه ۵ عدد بذر جوانانی هستند.

مقدار	جوانانی	زنی	ساقه‌چه	رنگ‌چیه	طول	وزن	شناسه
درصد جوانانی عادی	100	0/88	0/55	0/79	0/79	0/79	0/55
درصد جوانانی غیرعادی	100	0/88	0/55	0/79	0/79	0/79	0/55
درصد جوانانی دیگر	100	0/88	0/55	0/79	0/79	0/79	0/55
سرعت جوانانی	100	0/88	0/55	0/79	0/79	0/79	0/55
طول رنگ‌چیه	100	0/88	0/55	0/79	0/79	0/79	0/55
وزن رنگ‌چیه	100	0/88	0/55	0/79	0/79	0/79	0/55
وزن ساقه‌چه	100	0/88	0/55	0/79	0/79	0/79	0/55
وزن ساقه‌چه	100	0/88	0/55	0/79	0/79	0/79	0/55

نتایج حاصل از جدول ضرایب همبستگی بین صفات درصد، سرعت و بین جوانانی و زنی و وزن و رنگ و رنگ‌چیه و ساقه‌چه و باعث شده‌است که شرایط تشکیل دهنده همبستگی با MP و SSI GMP متوافق با تفاوتها و غیره (3) بود. که همبستگی مثبت بین این صفات به دست آورده. به منظور بررسی ضرایب روابط همبستگی بین خصوصیات جوانانی در پاندلر های اکسترمی متفاوت با خصوصیات سیب‌سنده در سطوح مزرعه (جدول ۶)، تست جوانانی زنی در 691
جدول ۶. روابط هیپستگی بین درصد و سرعت سپردهنگ از اعماق به تعدادی از صفات مورد مطالعه در سطح مزرعه و آزمایش تست جوانانی در آزمایشگاه با پلی اتیلن گلکیول (PEG).

<table>
<thead>
<tr>
<th>سرعت سپردهنگ (g/m²)</th>
<th>عضورک نان</th>
<th>عضورک گلکیول (g/m²)</th>
<th>بیوماس دانه</th>
<th>بیوماس خشک (g/m²)</th>
<th>بیوماس خشک (PEG)</th>
<th>بیوماس خشک (PEG)</th>
<th>بیوماس خشک (PEG)</th>
<th>بیوماس خشک (PEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
</tr>
<tr>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
</tr>
<tr>
<td>(PEG)</td>
<td>(PEG)</td>
<td>(PEG)</td>
<td>(PEG)</td>
<td>(PEG)</td>
<td>(PEG)</td>
<td>(PEG)</td>
<td>(PEG)</td>
<td>(PEG)</td>
</tr>
<tr>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
</tr>
<tr>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
</tr>
<tr>
<td>1/06</td>
<td>1/06</td>
<td>1/06</td>
<td>1/06</td>
<td>1/06</td>
<td>1/06</td>
<td>1/06</td>
<td>1/06</td>
<td>1/06</td>
</tr>
<tr>
<td>1/07</td>
<td>1/07</td>
<td>1/07</td>
<td>1/07</td>
<td>1/07</td>
<td>1/07</td>
<td>1/07</td>
<td>1/07</td>
<td>1/07</td>
</tr>
</tbody>
</table>
* نشان دهنده معنادار بودن در سطح 0/05.
** نشان دهنده معنادار بودن در سطح 0/01.

محیط آزمایشگاه در پانزلی‌های اسمی متفاوت و همین‌طور نتست سپردهنگ در سطح مزرعه در عمل کاسته‌های معناداری داشته و سرعت جوانانی در آزمایشگاه با درصد و سرعت سپردهنگ در مزرعه هیپستگی مثبت و معنی‌داری وجود دارد در این میان هیپستگی نان بین درصد و سرعت سپردهنگ در سطح مزرعه به ترتیب با مقادیر +0/46 و +0/40 در بالاترین سطح بود. این مطالعه نشان دهنده اهمیت بیشتر این صفت در تخمین درصد جوانانی در سطح مزرعه تا نسبت به صفت سرعت جوانانی می‌باشد. (۴و ۸) ۸. در نظر می‌گیرد که این دو صفت در تخمین جوانانی در سطح مزرعه مؤثرتر باشند. نتایج حاصل از جدول ضرایب هیپستگی بین درصد و

منابع مورد استفاده

۱. رحمانی، بهزاد، ح. ۱۳۶۸. واکنش گندم در مقابل دمای بالا و نرسیده. در اتیل این کشاورزی ۴:۱-۷۹.
۲. سیاه‌پیکر، م. و ح. ۱۳۷۴. اثر نمک بر اکسیژن و گلکیول در ازایاد تولید محصولات. در این کشاورزی ۴:۱-۷۹.
۳. صابری، ح. و ح. ۱۳۷۵. اثرات پانزلی‌های مختلف اسمی بر روی جوانانی و شکوفایی پودری و گلکیول. در این کشاورزی ۴(۲):۵۰-۵۹.

