برآورد پارامترهای زنیتیکی عملکرد دانه گندم و خصوصیات مربوط با آن به روش
تطلقی دای آلی در اثر اثرات رطوبیات مطلوب و تنش خشکی

سیروس طهماسبی، محمود خدامی‌اشت و عبدالمحسن رضایی

چکیده
به منظور برآورد پارامترهای زنیتیکی و تعیین چگونگی کنترل زنیتیکی صفات عملکرد و اجرای عملکرد گندم و همچنین تعیین اثر محیط بر
برآورد این پارامترها از طریق تلاقی‌های دای آلی یک طرفه با وابستگی استفاده گردید. در این مطالعه تناجع 24 تلاقی‌های همه‌الزمانی و همه‌الزمانی که در
دو آزمایش متغیر به در نمود شرایط رطوبیت مطلوب و دگرگانی تحت شرایط تنش خشکی انتهایی، به یک طرح بلکه‌های کامل تصادفی در
سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه شهید رجایی قرار گرفته. میانگین مربوط محیط و همچنین اثر مطلق
زنیتیکی × محیط برای صفات طول سبیله و تعداد دانه در سبیله تعیین داده شد. واریانس قابلیت ترکیب‌پذیری غلیطی (GCA)
پرای کلیه
صفات مورد بررسی به جز تعداد پنجه بارور در محیط بدون تنش و عملکرد بونه در محیط تحت تنش خشکی، در هر دو محیط معنی دار
گردید. واریانس قابلیت ترکیب‌پذیری خصوصی (SCA)
برای ارتفاع بونه در محیط بدون تنش و بیرون تنش پنجه بارور و عملکرد بونه در
هر دو محیط معنی دار بود و برای بیشینه معنی در هر یک از دو محیط معنی دار از دست در دوم دو محیط معنی دار واریانس قابلیت
ترکیب‌پذیری غلیطی و واریانس ترکیب‌پذیری خصوصی برای ارتفاع بونه، طول سبیله و تعداد دانه در سبیله در هر دو محیط و بیرون تعداد
سیلچه در سبیله و محیط تحت تنش خشکی حاکی از بخش نهایی افزایش زنیتیکی در کنترل زنیتیکی این صفات بود. برآورد پارامترهای
زنیتیکی نشان داد که صفات ارتفاع بونه، طول سبیله و تعداد دانه در سبیله در هر دو محیط و تعداد سیلچه در سبیله در محیط تحت تنش خشکی
تحت تأثیر غالب‌نیتی زنیتیکی قرار داشتند. ویتای دانه و عملکرد بونه در هر دو محیط و تعداد سیلچه در سبیله در محیط
 بدون تنش تحت کنترل اثر فوق غالب‌نیتی زنیتیکی بودند.

واژه‌های کلیدی: دای آلی، ترکیب‌پذیری، اثر زنیتیکی محیط

علاوه محیط و اثر متقابل عوامل زنیتیکی و محیطی ضروری

است. انتخاب والده‌های مناسب می‌تواند جهت تغییر یک
برنامه به‌پایان موفق بسیار مفید باشد. این امر می‌تواند

مقدمه

به منظور طراحی و اجرای یک برنامه به‌پایان مؤثر و مفید

آگاهی از نحوه کنترل زنیتیکی صفت مورد بررسی، میزان تأثیر

1. به تریب دانشجویان سابق کارشناسی ارشد و استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهرکرد

2. استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

299
نامی‌باید منجر به آمار ترکیب‌پذیری و محیط سبب برآورد ارب‌الزمانیها
بنابراین آمار متقابل زنوتیپ و محیط سبب برآورد ارب‌الزمانی
از هدر رفت وقت و ارزی در مراحل بعدی جریان‌های ترکیب‌پذیری
ناب‌داشتی قابلیت ترکیب‌پذیری عمومی (GCA) با یک دارا
بودن آثار افزایشی بیشتر قبول می‌شوند مفاهیم خود را به
راهیت به نتایج خود متصل نمایند. از آثار دارای ترکیب‌پذیری
خصوصی (SCA) (با نیز می‌توان در برخی‌های دوران‌گیری و
تولید هیبرید استفاده نمود) (18). هنگامی که نرم‌دوزن،
وراتایت نتیجه‌گیری و نحوه توزیع آثار زمانی و مغلوب
مورد استفاده در دوران‌گیری نشان مهمی در میزان نفوذیت
برنامه‌های اصلاحی دارد (17). برای مطبوعه یک برنامه اصلاحی
می‌توان از روش تغییرات دای اعلی(GA) یا نسل‌های دیگر
تپتن استفاده کرده (19). از نظر برخی هیبرید برای اصلاح
وزنایی زنوتیپی و الیوتیج جهت استفاده در برنامه‌های یهپزندی و
همچنین برتری زنوتیپی نتایج فراهم می‌نماید (18).

به طور عمومی، داده‌های F1 در تجزیه و تحلیل گرفته
مورد استفاده قرار می‌گیرد از داده‌های F2 و نسل‌های دیگر
تپتن استفاده کرده (20). از جنگی مطالعه نشان داده
که ارزابت نسل‌های F2 و F3 می‌تواند نسبت به نسل
تخمین F2 بهتری از قابلیت ترکیب‌پذیری ارائه بدهد (5) و
روش تلاشی دای اعلی قابلیت و کارایی بالایی دارد و در
سال‌های اخیر به طور وسیعی به پژوهش تبدیل می‌شود
استفاده قرار گرفته است. ولی نظر نمایشگاه صنعتی
به مقدار زیادی تحت تأثیر تغییرات محیطی است. برخی از
محققان در مورد دقت و صحت روش گرفته، اجلاسی که
داده‌ها از یک محیط به دست می‌آیند اشاره کرده‌اند (23).

در چندین مطالعه (18، 21، 23، 26 و 29) مشاهده شد که

dad@jsharif.iju.ac.ir at 9:22 IRST on Thursday December 19th 2019
پروآورد پارامترهای زنیتکی عملکرد دانه گندم و خصوصیات مرتبط با آن به روش ...

جدول 1. تجزیه مركب داده‌ها در دو محیط بدون نش و نش خشکی برای صفات مورد بررسی در 24 زنیتیب گندم

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه</th>
<th>تعداد بتو</th>
<th>تعداد پایه بر</th>
<th>پایه عملکرد</th>
<th>تعداد فعلی در</th>
<th>مربوط به</th>
<th>حالت محیط</th>
</tr>
</thead>
<tbody>
<tr>
<td>محبسه</td>
<td>1</td>
<td>324/242</td>
<td>19/35</td>
<td>16/43</td>
<td>49/42</td>
<td>21/15</td>
<td>میکرو</td>
</tr>
<tr>
<td>تکرار در محیط</td>
<td>4</td>
<td>218/31</td>
<td>0/17</td>
<td>3/29</td>
<td>3/29</td>
<td>3/28</td>
<td>محیط</td>
</tr>
<tr>
<td>زنیتیب</td>
<td>35</td>
<td>15/35</td>
<td>0/15</td>
<td>3/15</td>
<td>5/35</td>
<td>3/15</td>
<td>محیط</td>
</tr>
<tr>
<td>زنیتیب x محیط</td>
<td>35</td>
<td>218/31</td>
<td>0/17</td>
<td>3/29</td>
<td>3/29</td>
<td>3/28</td>
<td>محیط</td>
</tr>
<tr>
<td>انجام</td>
<td></td>
<td>2/12</td>
<td>0/12</td>
<td>1/12</td>
<td>1/12</td>
<td>1/12</td>
<td>محیط</td>
</tr>
</tbody>
</table>

مواد و روش‌ها

در این آزمایش از 8 زنیتیب گندم به نام‌های QAD، F12، F14، F16، F18، F20، F22 و F24 حاصل از تلاقی آنها استفاده گردید. بذرها F1, F2 و والیدین آنها در اواخر آبان 1380 مزرعه دانشکده کشاورزی دانشگاه شهید رضوانی در شرایط رطوبت کافی و نش رطوبتی آخیر فصل گروه شدند. در آزمایش نش خشکی، با توجه به شرایط آب و هوایی منطقه طول جریه قبلی تا سیستمی فقط یک بالایی صورت گرفت که در حالی که در آزمایش بدون نش طی می‌گذشته سه یا چهار برای یک دوره به عنوان یکی از فرآیندهای انجام انجام. سپس برای انجام انجام انجام می‌تواند برای عملکرد بی‌فروش همین یک یا یکی از آزمایش‌ها برای پایه طرح بلوک‌های کاملاً تصادفی در سه تکرار از دسته‌بندی. هر بلوک شامل 6 سل F1 تلاقی و والیدین آنها به و عنوان زنیتیب 5 ریف به طول 3 متر و با فاصله 20 سانتی‌متر از هم گردید. فواصل کاست خاک ریف 5 سانتی‌متر در نظر گرفته شد. عملیات زراعی از قبیل کود دادن، وحشی و سیستم‌های طوری برای خشکی و مناسب برای هر دو آزمایش، که نکار و انجام نکارد.

نتایج و بحث

نتایج حاصل از تجزیه واریانس مربوط به داده‌های محیط آبی و نش خشکی (جدول 2) نشان داد که میانگین صفات محیط و همین میانگین مربوطات از مقیاس زنیتیب x محیط به جی در مورد طلایی و تعداد دانه در سنجش معنی‌دار بودند. میانگین مربوطات زنیتیب‌ها برای عملکرد بی‌فروشی در سطح احتمال
در صندوق ویرایش صفحه مطلبی در سطح احتمال 1
درصد معنیدار بود، همچنین بر نمای نتایج حاصل از تجربه
و ارائه نمودن جزئیات مربوط به جزئیات زمانی و هم در
محیط بدون تنش و هم در محیط تنش خشکی، برای کلیه
صفحه مورد بررسی در سطح احتمال 1 درصد معنیدار بود.
این مطالعه نشان داد که وقتی تکنیک‌های زمانی وقفه ملاحظه
در بین ارقام مورد مطالعه برای صفحات مورد ارزیابی می‌باشد.

میانگین مربوطات ترکیب‌پذیر عضوی (GCA)

در صندوق ویرایش صفحه مطلبی در سطح احتمال 1
درصد معنیدار بود، همچنین بر نمای نتایج حاصل از تجربه
و ارائه نمودن جزئیات مربوط به جزئیات زمانی و هم در
محیط بدون تنش و هم در محیط تنش خشکی، برای کلیه
صفحه مورد بررسی در سطح احتمال 1 درصد معنیدار بود.
این مطالعه نشان داد که وقتی تکنیک‌های زمانی وقفه ملاحظه
در بین ارقام مورد مطالعه برای صفحات مورد ارزیابی می‌باشد.

میانگین مربوطات ترکیب‌پذیر عضوی (GCA)

در صندوق ویرایش صفحه مطلبی در سطح احتمال 1
درصد معنیدار بود، همچنین بر نمای نتایج حاصل از تجربه
و ارائه نمودن جزئیات مربوط به جزئیات زمانی و هم در
محیط بدون تنش و هم در محیط تنش خشکی، برای کلیه
صفحه مورد بررسی در سطح احتمال 1 درصد معنیدار بود.
این مطالعه نشان داد که وقتی تکنیک‌های زمانی وقفه ملاحظه
در بین ارقام مورد مطالعه برای صفحات مورد ارزیابی می‌باشد.

میانگین مربوطات ترکیب‌پذیر عضوی (GCA)

در صندوق ویرایش صفحه مطلبی در سطح احتمال 1
درصد معنیدار بود، همچنین بر نمای نتایج حاصل از تجربه
و ارائه نمودن جزئیات مربوط به جزئیات زمانی و هم در
محیط بدون تنش و هم در محیط تنش خشکی، برای کلیه
صفحه مورد بررسی در سطح احتمال 1 درصد معنیدار بود.
این مطالعه نشان داد که وقتی تکنیک‌های زمانی وقفه ملاحظه
در بین ارقام مورد مطالعه برای صفحات مورد ارزیابی می‌باشد.

میانگین مربوطات ترکیب‌پذیر عضوی (GCA)

در صندوق ویرایش صفحه مطلبی در سطح احتمال 1
درصد معنیدار بود، همچنین بر نمای نتایج حاصل از تجربه
و ارائه نمودن جزئیات مربوط به جزئیات زمانی و هم در
محیط بدون تنش و هم در محیط تنش خشکی، برای کلیه
صفحه مورد بررسی در سطح احتمال 1 درصد معنیدار بود.
این مطالعه نشان داد که وقتی تکنیک‌های زمانی وقفه ملاحظه
در بین ارقام مورد مطالعه برای صفحات مورد ارزیابی می‌باشد.
<table>
<thead>
<tr>
<th>نام</th>
<th>جدول</th>
<th>تعداد سلسله های زامبی</th>
<th>تعداد سلسله های کانکر</th>
<th>نتیجه‌گیری</th>
<th>GCA</th>
<th>SCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

脚注: Ms GCA / Ms SCA

، * و **** نشان‌دهنده تعداد بیش‌تر یا کمتر از تعداد موجود در موازی است.
جدول 3. اثرات قابلیت ترکیب‌پذیری عمومی برای صفات مورد مطالعه در دو محیط بدون نش و نش خشکی

<table>
<thead>
<tr>
<th>عملکرد بوته</th>
<th>تعداد دانه در سبیله</th>
<th>تعداد سنبلچه در سبیله</th>
<th>طول سنبله</th>
<th>ارتفاع بوته</th>
<th>والد</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون نش</td>
<td>بدون نش</td>
<td>بدون نش</td>
<td>بدون نش</td>
<td>بدون نش</td>
<td>بدون نش</td>
</tr>
<tr>
<td>8/0/25</td>
<td>1/28</td>
<td>3/36**</td>
<td>0/24**</td>
<td>0/56**</td>
<td>3/25</td>
</tr>
<tr>
<td>0/78</td>
<td>1/01**</td>
<td>0/44**</td>
<td>0/02**</td>
<td>0/67**</td>
<td>0/78</td>
</tr>
<tr>
<td>0/81</td>
<td>0/62**</td>
<td>0/83**</td>
<td>0/03**</td>
<td>0/98**</td>
<td>0/89</td>
</tr>
<tr>
<td>0/92</td>
<td>0/05**</td>
<td>0/05**</td>
<td>0/05**</td>
<td>0/10**</td>
<td>0/10</td>
</tr>
<tr>
<td>0/31</td>
<td>0/11**</td>
<td>0/11**</td>
<td>0/03**</td>
<td>0/09**</td>
<td>0/10</td>
</tr>
<tr>
<td>0/86</td>
<td>0/06**</td>
<td>0/08**</td>
<td>0/02**</td>
<td>0/09**</td>
<td>0/26</td>
</tr>
<tr>
<td>0/34</td>
<td>0/01**</td>
<td>0/03**</td>
<td>0/03**</td>
<td>0/14**</td>
<td>0/14</td>
</tr>
<tr>
<td>0/25</td>
<td>0/18**</td>
<td>0/17**</td>
<td>0/16**</td>
<td>0/19**</td>
<td>0/19</td>
</tr>
<tr>
<td>0/58</td>
<td>0/128</td>
<td>0/096</td>
<td>0/198</td>
<td>0/185</td>
<td>0/102</td>
</tr>
</tbody>
</table>

SE(g)

* و ** به ترتیب معنی‌دار در مانند 0.05 و 0.01 درصد
جدول 4. برآوردهای پارامترهای زیستی افراد مورد مطالعه در محیط بدون تنش و تنش خشنکی

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>شاخص‌ها</th>
<th>ارتفاع پوشه</th>
<th>طول سبیله</th>
<th>تعداد سبیله‌های در سبیله</th>
<th>تعداد دانه در سبیله</th>
<th>عامل‌کردن پوشه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>بدون تنش</td>
<td>تنش</td>
<td>بدون تنش</td>
<td>تنش</td>
<td>بدون تنش</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/17</td>
<td>0/18</td>
<td>0/17</td>
<td>0/18</td>
<td>0/17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/24</td>
<td>0/25</td>
<td>0/24</td>
<td>0/25</td>
<td>0/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/30</td>
<td>0/31</td>
<td>0/30</td>
<td>0/31</td>
<td>0/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/36</td>
<td>0/37</td>
<td>0/36</td>
<td>0/37</td>
<td>0/36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/42</td>
<td>0/43</td>
<td>0/42</td>
<td>0/43</td>
<td>0/42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/48</td>
<td>0/49</td>
<td>0/48</td>
<td>0/49</td>
<td>0/48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/54</td>
<td>0/55</td>
<td>0/54</td>
<td>0/55</td>
<td>0/54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/60</td>
<td>0/61</td>
<td>0/60</td>
<td>0/61</td>
<td>0/60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/66</td>
<td>0/67</td>
<td>0/66</td>
<td>0/67</td>
<td>0/66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/72</td>
<td>0/73</td>
<td>0/72</td>
<td>0/73</td>
<td>0/72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/78</td>
<td>0/79</td>
<td>0/78</td>
<td>0/79</td>
<td>0/78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/84</td>
<td>0/85</td>
<td>0/84</td>
<td>0/85</td>
<td>0/84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/90</td>
<td>0/91</td>
<td>0/90</td>
<td>0/91</td>
<td>0/90</td>
</tr>
</tbody>
</table>

H1, H2, H3, H4, H5
Hb, Ha, Hc, HD

(Hb) = [(Wr + Vr)Yr]0.5

(Hn) = [(Hb) + 0.5]
تعداد پنجه بارور در هر دو محيط انتخاب می‌رود که با استفاده از این رقم در نتایج با ارقام دیگر بیان در نات جامع گاهی و تعداد پنجه بیشتری را انتخاب کرد. در محيط بدون نش خشکی کدام از تلافی‌ها از نظر تعداد پنجه بارور در بوده می‌تواند در نتیجه و معنی دار داشته باشد در حالی که در محيط نش خشکی تلافی اروند به روش‌سیابی دارای آثار مثبت و معنی دار SCA از نظر این صفت بود. با توجه به نوار تپه‌وری پایین (جدول 4) و سهم بیشتر اثرات عفونی آنتی‌ژن در کنترل تعداد پنجه بارور، انتخاب مستقیم برای این صفت در نسل‌های اوله مؤثر نیست و گریز به این صفت باید به نسل‌های پیش‌ترین برقراری پنهانه به‌نهایت ممکن است گردد.

میزان نسبت پلاس و معنی دار واریانس GCA به هم سهم مورد مطالعه (جدول 2) نشان داد که اثرات افزایشی سهم پیش‌تری را در کنترل صفت طول سبیله دارا می‌باشد که برخی از محققین (4 و 25) نیز به این امر اشاره کرده‌اند. ارقام فقس، داراب و اروند در هر دو محيط بدون نش و نش خشکی GCA سبیله و معنی دار بودند (جدول 3). لذا در تجربه پیش‌تری در هر دو محيط جستجو نمود. همچنین با توجه به سهم زیاد اثرات افزایشی آنتی‌ژن و پلاس با نسبت واریانس عمومی و خصوصی این صفت در میان روش‌هایی که نش خشکی بدون نش به ترتیب 44 درصد و در محيط خشکی بدون نش به ترتیب 46 و 53 درصد محاسبه شد. نتایج به‌دست آمده در مورد متوسط میانگین نشان داد که از هر دو این صفت را کنترل می‌کنند به مقدار زیادی تحت تأثیر ریزابی نش آبی قرار دارند.

نتایج تجزیه واریانس کاربردیده (جدول 4) نشان می‌دهد که برای صفت تعداد دانه در سبیله نسبت واریانس‌های در هر دو محيط در سطح احتمال 1 درصد GCA/SCA معنی‌دار است. باراینی می‌توان انتخاب می‌کرد که در هر دو محيط آثار افزایشی زن‌ها سهم بیشتری را در کنترل زن‌نش خشکی صفت تعداد داشته در سبیله داشته است. برای این محققین (20 و 22 نیز با مطالعه این صفت در محيط‌های مختلف نشان می‌کند که کسب کرده‌اند.

در محيط بدون نش ارقام قفس و فلاته برای صفت تعداد دانه در سبیله دارای آثار گردیده و معنی‌دار بودند (جدول 3). این در حالی است که در محيط نش خشکی وارد
برآورده پارامترهای زنیکی عملکرد دانه گندم و خصوصیات مرتبط با آن به روش ...

جمیره دارای اثرات مثبت و معنی‌دار و والده‌های قدرت، فلات، دارد و برکت دارای اثرات مثبت و معنی‌دار بودند (جدول ۳). این اثرات احتمالاً از تاثیر ارقام م кругی به دست آمده است.

برای این صفت در میانگین سطح مکانیک هر دو دستگاه پارامترهای

فایلر ژنیکی روش هنیم–جینکز در هر دو میانگین بالاتر نبود

و تحلیل جزئیات به ترتیب یک جمله به یک جمله مکانیک انجام تحقیر. در

محیط نش خشکی میانگین درجه غلیبیت (H2/ID) در نشان دهنده جود غلیبیت نسبی برای این تحقیر داده در سیستم می‌باشد.

برای این صفت در میانگین نش خشکی فراوانی آللهای غلیبیت

برکت نسبت (۴) علائم منفی در هر دو دستگاه ارزیابیده بود. قابلیت توارث عموی و خصوصی در میانگین

روش هنیم–جینکز در این صفت به ترتیب ۷۰ و ۴۹ درصد

برآورده گردیده است.

نسبت واریانس‌های GCA در میانگین بی‌ای‌بی و نش خشکی برابر صفت عملکرد پهنه به ترتیب ٠/٠١ و

٠/٣٣ بود که این نسبت‌ها در هر دو میانگین معنی‌دار نگردیده

(جدول ٢). پایین بودن و غیر معنی‌دار بودن نسبت واریانس‌های

GCA در میانگین بی‌ای‌بی و نش خشکی برابر عملکرد SCA به GCA پهنه تایید می‌نماید که این صفت در هر دو میانگین، بیشتر توسط

ارث غیر افرازیونی انتقال می‌کرد. محققین دیگر (١٠) نیز با مطالعه این خصوصیات در محیط‌های مختلف و با

استفاده از این روش جزئی و تحلیل زنیکی نتایج مشابه را

گزارش کرده‌اند. در میانگین بی‌ای‌بی رقم فلات دارای اثرات

GCA معنی‌دار بود. در محیط نش خشکی اثرات هیچ‌کدام از ارقام معنی‌دار نگشته و اثرات تاثیر دارای اثرات مثبت که این نسبت به ترتیب ۷۱ و ۸ درصد بودند (جدول ۴).

با توجه به این که واریانس افزایش بخش سیستمی که

از واریانس زنیکی را در مدل عملکرد پهنه تشكل می‌دهد و

همچنین برآورده قابلیت توارث خصوصی باید برای این صفت

در هر دو میانگین به پیچیدگی زیاد ریزش وراثت این خصوصیات،

می‌توان توجه کرد که باید به‌دنبال انتخاب بی‌خصوص در

سینی‌های اولیه، در برنامه‌های بهتری این صفت یکتا خواهد

بود.

۲۷۷
جدول 5 اثرات قابلیت ترکیب‌پذیری خصوصی برای صفات مورد طالعه در دو محيط بدون نش و نش خشکی

<table>
<thead>
<tr>
<th>قلمیکه</th>
<th>بدون نش</th>
</tr>
</thead>
<tbody>
<tr>
<td>فلات</td>
<td>0.849</td>
</tr>
<tr>
<td>دارب</td>
<td>0.849</td>
</tr>
<tr>
<td>پزشک</td>
<td>0.849</td>
</tr>
<tr>
<td>کرج</td>
<td>0.849</td>
</tr>
<tr>
<td>جراح</td>
<td>0.849</td>
</tr>
<tr>
<td>اروند</td>
<td>0.849</td>
</tr>
</tbody>
</table>

SE(sij)

* و ** به ترتیب معناداری در سطح 0.05 و 0.01 درصد
پراورده پارامترهای زننکی عملکرد دانه گندم و خصوصیات مربوط به آن به روش ...

ورالد پذیری پایین و سه میزان بیشتر الکتروت غیرزاویایی زنها در کنترل تعداد بنیجه پایه، انتخاب مستقیم در نسل‌های اولیه مؤثر نتیجه و جودیت برای این صفت مثبت به نسل‌های پیشتر منطقه به‌جز میکول گردید. عملکرد بوده نبی تغییر آثار غیرزاویایی زنها کنترل مناسب به و قابلیت اخراج مؤثر آن در به روش میانجی نش (4 درصد) و به‌طور نشان انتخاب مستقیم برای عملکرد مؤقت نخواهد بود.

منابع مورد استفاده

1. میرحسینی، م. و سعیدی، م. رضائی. 1382. جیراسوری در محیط زننکی و قابلیت ترکیب پذیری برای عملکرد دانه و اجرای آن در گندم ناحیه علوم و فنون کشاورزی و منابع طبیعی (90): 175-176.
2. فرشادفر، ع. و رضائی. 1375. جیراسوری همچنین زننکی مثبت به شکسته کننده به‌طور زراعتی ریزمانی و اصلاح نیازهای ایران.
3. چودونی، م. و موضحی، م. و گلی، ا. و جیلی، م. 1376. تغییرات بروز نیازهای زراعة در محدوده کمی در اصلاح نیازهای. جلد اول، انتشارات دانشگاه رازی کرمان.

