اثر مانیтол بر رشد رویانهای بدنی تولید شده از پیتنه رویانزای میخک

(Dianthus caryophyllus L.)

چکیده
شرایط لازم برای پایان مطلوب چهار رتم میخک (Spirit و Sagres, Impulse, Nelson) به روش رویانزایی بدنی در یک آزمایش به دنبال مرحله سومیک (ورکشگی و اسکوک) دارای 20 گرم در لیتر سوکروز، 2 میلی‌گرم در لیتر BA برای ایجاد MS کالوس رویانزایی استفاده شد. رویانهای بدنی زمانی به دست آمد که پیتنه رویانزایی به محیط کشت قابل تنظیم کننده رشد و دارای 30 گرم در لیتر سوکروز به تناسب و یا همراه با غلظت‌های مختلف مانیبول (15, 30, 45 و 60 گرم در لیتر) انتقال یافتند. در محیط کشت حاوی مانیبول بدون سوکروز رویان سومیک‌تکی ایجاد نشد. با افزودن مانیبول به محیط کشت ایجاد رویانهای بدنی روی پیتنه‌های رویانزایی به میزان قابل توجهی افزایش یافت. رویانهای ایجاد شده به روت میجی‌های کشت حاوی غلظت‌های مختلف مانیبول (15, 30, 45 و 60 گرم در لیتر) به طور نرمال توسعه یافتند. رویانهای بدنی به محیط کشت 1/4 حاوی 30 گرم در لیتر سوکروز انتقال داده شدند و حدود 95% از آنها به صورت گیاه‌های کامل پاژاگر گردیدند. گیاه‌های پیتنه به‌دست آمده از این رویانهای بدنی در شرایط غلظایش نیز به طور عادی مراحل رشد خود را ادامه دادند.

واژه‌های کلیدی: میخک، پیتنه رویانزایی، مانیبول

مقدمه
میخک (Dianthus caryophyllus) یکی از مهم‌ترین محصولات گلکاری دنیا می‌باشد که هم به جهت زیبایی و گوناگونی رنگ و هم از نظر انتقادات از پیتنه قابل توجهی برخوردار است (1). محصولاتی که موجود در روش‌های به‌هندزایی سنتی (نالقی و گریشی) و داشتن ویژگی‌های

1. به ترتیب استادیار و مربی پوکتونلوزی، دانشکده خارزوری، دانشگاه بیرجسی، سبزوار، همدان
2. استادیار بافت‌پزشکی، دانشکده خارزوری، دانشگاه بیرجسی، سبزوار، همدان

179
رویان از سلول‌های روشنی (Somatic cells) در شرایط کشت.

مواد و روش‌های
مواد گیاهی

Sagres Impulse Nelson (نسل) اطلاعاتی در مورد تحقیق ری به چهرم ریپ‌سیستم (Spirit) و کشت و کار مواد انجام گرفت. جوانانه‌ای گل نارس به طول 1-5 سانتی‌متر از گیاهان در حال رشد در گلخانه بردایش شده و به مدت 3 هفته در دمای 27 درجه سانتی‌گراد نگه‌داشته شدند. سطح خارجی جوانانه با قرار دادن در محلول 2/4 هیپرکرت سدیم (فیلدهیس) و الکتکس‌اف (تااکس) حاوی 2,4-D و کورتیسون‌کس استیکس اسید (2,4-Dichlorophenoxyacetic acid) و 6-بنزنیل آدنین (6-Benzyladenine) کشت فراوان داده شدند.

ترکیبات محیط کشت و شرایط نگه‌داشته

1. تشکیل پتین (Callus formation)

برای تشکیل پتین ری زیستون‌های گل‌برگ 8 هفته بر روی محیط کشت MS محتوی 30 گرم در لیتر سوکرون، 2 میلی‌گرم در لیتر 2,4-D، 25 گرم در لیتر کورتیسون کس استیکس اسید و 4 میلی‌گرم در لیتر 6-بنزنیل آدنین (6-Benzyladenine) کشت شدند.

2. روندهای (Embryogenesis)

پس از 8-9 هفته بعد از شروع کشت، انواع پتین‌های ایجاد شده MS حاوی غلظت‌های مختلف مانیتور (Mannitol) (15، 30، 50، 100 و 150 گرم در لیتر) بدون تنظیم داشتند. در این محدوده، بعد از 6 هفته، تعداد روندهای ترکیب شده شماره شدند. به منظور بررسی اثر ارگانیک و متقابل مختلف مانیتور روی ایجاد روندهای پپیه یا روندهای اصلی آزمایش در قالب طرح تکنیک اجرای گردی و 400 میلی‌گرم پپیه روندهای برای هر تیمار و هر گیاه در سه تکرار متداوم سنجش گردیده داده با استفاده.

رویان از سلول‌های روشنی (Somatic cells) در شرایط کشت در طول پیشنهادهای است به طوری که این رویانها شفیع به رویان معمول درون بدن باشند و قادر به صورت کاملاً اتفاق پیدا کنند. از این رویان کشت بافت به صورت ابریازی می‌توان برای بررسی سیستم‌های نظیر بلوشیمی، افرادی و فیزیولوژیکی و تشخیص که در بسیاری از دست‌آوردهای بیوتکنولوژی مانند انتقال (Gene transfer) (Germplasm conservation) (tolipid) بازی برون‌وسیع (Artificial seed) (Tolipid مانند تولید) (Secondary metabolites) (Tolipid مانند تولید) (Virus elimination) (Gene variation)

گیاه استفاده کرده‌اند (۳۰). گازهای شیاری شناسایی نام‌دارند که گیاه می‌خیز که طول از طول کشت (Adventitious shoot) تشکیل شناخته نام‌دارند که ریز نمونه‌های مختلف مانند ساف، برگ، کلبر، نهنج، تخمدان و تخمدان بازیابی (Regeneration) (شده است) (۲۹، ۲۸، ۲۷، ۲۶، ۲۵، ۱۸، ۱۷، ۱۶، ۱۵، ۱۴، ۱۳) در حالی که گازهای شیاری اندکی در مورد بازیابی این گذشته از طول روندهای سوماتیکی انتشار یافته است (۳۷، ۲۶).

از میان ترکیبات‌های مختلف موجود در محیط کشت، کرونودراتی از ناحیه بسیار مهم در فرآیند روندهای زیستی بدنی ایفا می‌کند (۲۱). برخی از گازهای شیاری از این است که میزان روندهای زیستی تحت تأثیر نوع و میزان کرونودراتی به کار رفته در محیط کشت ۱۱۰ هر می‌گردد (۹). همچنین برخی از تحقیقات نشان می‌دادند که کاربرد مانیتور در محیط کشت، ایجاد و توسعه نیازهای سوماتیکی در پی خواید داشت (۳۰، ۲۷ و ۲۶). تاکنون هیچ مطالعه‌ای در رابطه با مانیتور بر روی زیستی بدنی گیاه می‌خیز انجام نشده است. در این بررسی اثر غلظت‌های مختلف مانیتور بر روی میزان روندهای زیستی بدنی تولید شده از پپیه‌های روندهای زیستی گیاه می‌خیز سرعت داده شده است.
شکل ۱. مراحل مختلف روندهایی بدنی و پاتوژنیک آن در گیاه میخک (D.caryophyllus) و پیه‌های روبیانزا (e) هفته بعد از کشت در محیط کشت MS بحتی ۲ میلی‌گرم در لیتر BA. (B) هفته بعد از ۵ هفته بر روی محیط کشت MS شروع ۶۰ گرم در لیتر مایتیول. (C)؛ روبیانزا بدنی ناپایه روی محیط کشت حاوی MS کشت ۱/۵/فائق تنظیم کننده رشد. (E)؛ توسه MS کشت ناپایه روی محیط کشت حاوی باک. (F)؛ توسه گیاهچه در گلدان حاوی ماسه بعد از ۴ هفته از نرم اندازه صورت پایدارت و در پایان میانگین‌ها با استفاده SAS از آزمون چند دانه‌ای دانکن مقایسه شدند.

3. جوانه‌زنی بسیار جوانه‌زنی بدنی در غلظت MS میلی‌گرم در لیتر سوکور و فائق تنظیم کننده رشد متعلق شدند. بسیاری از چهار هفته، تعداد روبیانزا بدنی شد شمارش شدند. pH محسه محیط‌های کشت پیش از اتوکلاو نمودن با استفاده از سلولز تا حد ۵/۲۸ تنظیم گردید و برای نهایت جامد محیط‌های کشت از آکار (Agar-Agar Merck) به میزان ۷ گرم در لیتر استفاده شد.

نتایج و بحث

تشکیل پیه

در سه هفته اول کشت، پیه‌های زرد مالی به سبب روند حاشیه‌بری‌تهمه‌های کلیسا ایجاد شدند (شکل ۱). بین پیه‌ها دارای ناحیه نرم بوده و سرعت رشد بالایی داشتند. شش تا

انتقال گیاهچه‌ها به خاک

گیاهچه‌های با طول تقسیم‌بندی ۵۰ میلی‌متر از محیط کشت
جدول 1. اثر نوع رقم و مقادیر مختلف مانیتور روی تعداد روبان‌های بدنی تشکیل شده در شده‌ها

<table>
<thead>
<tr>
<th>نوع رقم</th>
<th>مانیتور (گرم در لیتر)</th>
<th>Impulse</th>
<th>Nelson</th>
<th>Sagres</th>
<th>Spirit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/180</td>
<td>286/7/8</td>
<td>90</td>
<td>60</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>10/150</td>
<td>105</td>
<td>60</td>
<td>60</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>10/140</td>
<td>286/7/8</td>
<td>150</td>
<td>60</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

شاهد هفته بعد از کشت، روند تپیداری تپیداری بین‌پوسته شیری، رنگ ایجاد شدند.

** Inspectionینهای اولیه: بهینه شیری، رنگ ایجاد شدند. این پیش‌های دیاگرام. گرانوله و کم رشد بودند. (شکل 8، A).**

** تشکیل روبان بدنی دو هفته بعد از انتقال پین‌های تپیداری بینپوسته به محیط کشت حاوی سوکروز و یا مانیتور همراه با سوکروز، MS ساختارهای روبان‌های کروی بر روی آنها تشکیل شدند. بعد از 2-3 هفته، روبان‌های کروی به صورت روندهای ازدی و لبه‌ای نوسیبی (شکل B). پین‌های زرد مایل به سبز به محیط‌های کشت مشابه پین‌های بینپوسته شیری، رنگی نشانه‌های ایجاد شدند. اما هیچ نوع ساختار روبان‌های بر روی آنها تشکیل نشد. و با توجه به نتایج فوق، پین‌های زرد مایل به گرانوله و پین‌های بینپوسته بینپوسته یا روبان‌ها شیری، رنگ ایجاد شدند.**

جدول 1 اثر مقادیر مختلف مانیتور بر تعداد روبان‌های ایجاد شده در هر اثر ارقام نشان می‌دهد. کناره‌گیری نشانه‌های می‌شود با افزودن مانیتور به محیط کشت، تعداد روبان‌های تشکیل شده روی پین‌های بینپوسته به طویل‌تر مانیتور با استفاده از دایره مانیتور (P<0.05). افزایش مانیتور باعث کاهش تعداد سایر مانیتور به میزان روی پین‌های بینپوسته مشابه است. تعداد روبان‌های بدنی ایجاد شده در کشت‌های هر روبان‌زای صورتی در مقیاسی با محیط بودن مانیتور به میزان قابل توجهی افزایش یافت. یک روبان بدنی در ارتقای تشکیل قابل ملاحظه‌ای مشاهده شد. اما در بین ارقام Nelson روبان‌زایی در رقم Impulse تفاوت معنی‌داری دیده نشد (جدول 1). در ساختارهای از گونه‌های گیاهی تهیه داده شده که ژنتیکا به فری دن رونک یک گونه طیفی روبان‌زایی متغیر دانستند (12). این قابل اطمینانی در طیفی روبان‌زایی ممکن است به میزان توانایی عناصر کلیدی در روبان‌زایی و ارتباط داشته باشد. اختلاف بین ارقام میخک، در روبان‌زایی منظور کروی‌گزارش شده است (27).
جدول 2. اثر مقابل نوع رقم و مقدار مختلف مانیتون روی تعداد رویان‌های بدنی تشکیل شده در 6 هفه

<table>
<thead>
<tr>
<th>Impulse</th>
<th>Nelson</th>
<th>Sagres</th>
<th>Spirit</th>
</tr>
</thead>
<tbody>
<tr>
<td>مانیتون (گرم در لیتر)</td>
<td>تعداد رویان‌های بدنی تشکیل شده</td>
<td>تعداد رویان‌های بدنی تشکیل شده</td>
<td>تعداد رویان‌های بدنی تشکیل شده</td>
</tr>
<tr>
<td>52 l</td>
<td>80 kg</td>
<td>93 kg</td>
<td>47 kg</td>
</tr>
<tr>
<td>118 l</td>
<td>160 kg</td>
<td>115 kg</td>
<td>16 kg</td>
</tr>
<tr>
<td>228 kg</td>
<td>228 kg</td>
<td>228 kg</td>
<td>228 kg</td>
</tr>
<tr>
<td>252 l</td>
<td>252 kg</td>
<td>252 kg</td>
<td>252 kg</td>
</tr>
<tr>
<td>440 kg</td>
<td>440 kg</td>
<td>440 kg</td>
<td>440 kg</td>
</tr>
<tr>
<td>151 l</td>
<td>250 kg</td>
<td>181 kg</td>
<td>181 kg</td>
</tr>
</tbody>
</table>

*محور مشابه در هر ستون سیانک متغیر دار نیستند اختلاف‌های (5/100). *

دقیق مانیتون روی انفرادی تعداد رویان‌ها از کالوس‌های رویان‌زا می‌شود. بنابراین می‌توانم تعبیری از این مقایسه برای مانیتون‌ها بدنی می‌خواهیم. حضور غلت‌های بازیابی ریان‌زایی ضروری است که نیاز مناسبی که از مانیتون روی انفرادی تعداد رویان‌ها به عنوان منبع اس‌مر هدف بهره‌مندی با تغییرات پتانسیل اس‌مری ناشی از حضور مانیتون در ارتباط است. استفای در بخYahoo از گزارش‌ها نشان داده است که تغییرات اس‌مری ناشی از حضور مانیتون در محیط کشت رویان‌زا سوماییکا را تحریک می‌کند.

جوایز زنی

در هفته بعد از انتقال رویان‌های بدنی به محیط کشت 16 MS در هر اسفی بود ریان‌زا با جایگزینی تبدیل کشند. در هر اسفی دیگر رویان‌های بدنی به گاه‌های تبدیل شدند. در گزارش‌های قبلی رویان‌زا بدنی می‌خک (96%) در گزارش‌های قبلی رویان‌زا بدنی می‌خک (42) که رویان‌های رویان‌زا بدنی در محیط کشت حاوی اکسین ایجاد گردید اشاره به این روش است. اما در این بررسی شهی‌ها باید این شاهد عده‌ای از رویان‌ها در محیط کشت بدون اکسین ایجاد شده باید بازیابی سیال باد بود. این نتایج می‌توانند روشن کنند که موضوع باید در محیط ایجاد ریانان رویان در محیط حاوی اکسین روی طرفین بازیابی آن اثر سوء دارد. در گیاه royanیان اکسین رویا...
گیاه‌هایی که از رشد ضعیف‌تری برخوردار بودند و بیشتری از آنها پس از انتقال به گلدان‌های حاوی خاک معمولی از بین رفتند.

در این تحقیق گیاه میکوس به طور نرمال رشد کرد که از این رویان‌زایی بدنی بارزا حاصل شد. نتایج از آزمایش‌های می‌تواند در پژوهش‌های دیگری مانند ریز ازدیادی، تولید بذر مصنوعی و تولید دور‌گره‌های دنی و دست ورزی‌های زننیکی گیاه مورد استفاده قرار گیرد.

مدل هموی نیز گزارش شده است که بازده جوانه زنی روان‌های ایجاد شده روش محیط کشت فاقد اکسین در مقایسه با محیط کشت حاوی آن بهبود بالایی داشت.

