تعیین شکل‌های شیمیایی منگنز و ارتباط آنها با پاسخ‌های گیاه سیبیا در شماری از خاک‌های آهنی استان فارس

سیدعلی غفاری‌نژاد و تجربی کریمی

چکیده
در یک آزمایش کشت گل‌خانه‌ای به منظور بررسی شکل‌های شیمیایی منگنز، معدنی و ارتباط آنها با پاسخ‌های گیاهی، تعداد 22 نمونه از خاک‌های آهنی استان فارس (عمق 0-20 سانتی‌متر) در گلدان‌های 6 سانتی‌متر ریخته شد و گیاه سیبیا از رأس ویداگام در سه نفره به مدت هفت هفته پرورانده شد. میزان شکل‌های شیمیایی منگنز در خاک‌گلدان‌ها پس از برداشت، به روش عصاره‌گیری دیتالیز واردن و ریزوتور اندوزگیری شد. در این روش منگنز به آتشک کاملاً محلول (عصاره‌گیری با (Ca(OH)2) به طور ضعیف جذب شده (عصاره‌گیری یا (CaDTPA + Na2B4O7) چنداسازی می‌شود. نتایج نشان داد پیشترین میزان منگنز به ترتیب در اشکال کربناتی، اکسیدی، به طور ضعیف جذب شده و محلول وجود داشت. روابط رگرسیون بین خواص فیزیکی و شیمیایی خاک‌ها و شکل‌های شیمیایی منگنز حاکی از همبستگی کربناتی کلسیم معادل خاک‌ها و منگنز کربناتی بود. همچنین همبستگی معنی‌دار بین جزء کربناتی و غلظت منگنز در اندازه‌گیری سیبیا حاکی از آن نقش فعال یا جزء در تغذیه گیاه‌ها بود.

واژه‌های کلیدی: منگنز، عصاره‌گیری دیتالیز، خاک‌های آهنی، سیبیا

مقدمه
منگنز یک عنصر غذایی ضروری در تغذیه گیاه محسوب می‌شود. این عنصر در فعال نمودن آنزیم‌های مختلف در گیاه نقش داشته و در متابولیسم گروه‌های ترکیبی، آمینو‌آسیدها و پیداگیری نور شیمیایی (Photochemical) نقش مهمی را ایفا می‌کند. (1) مهم‌ترین نقش شناخته و مطالعه شده منگنز در گیاهان سبز نقش آن در فتوسنتز و تولید اکسیژن است (23).

1. عضو هیئت علمی مرکز تحقیقات کشاورزی جیرفت و کهورم
2. استاد خاکشناسی، دانشگاه کشاورزی، دانشگاه شیراز

125
در مورد ویژگی مکانیک در خاک‌های آهکی ایستگاه فارس مطالعه‌ای صورت گرفته است. غلامعلیزاده و
مقدار 2 کیلوگرم از گیاه زیر خاک داخل گل‌دانه‌های بالا‌ستیکی کیلویی ریخته و عنصر غافل‌گیری شده به زیر خاک گیاه ضروری بود.

Ca(H2PO4)2، Fe-EDDHA، CuSO4.5H2O، و ZnSO4.7H2O 5 میکرو‌گرم آن را در گرم خاک به صورت

متعلق به عصاره‌گیری مختلف در خاک‌های زیر است. در هر نوع خاک، کربن به صورت نازک و کربن‌های مختلف در خاک‌های استان فارس بررسی کردند.

بی‌اختسانی و رابطه آن‌ها با خصوصیات خاک و پاسخ‌های گیاه سویا این تحقیق به مرجع اجرا در آمد.

مواد و روش‌ها

با استفاده از کاراپس‌های خاک نشان‌دهنده مناطق مختلف استان فارس تعداد 40 نمونه خاک از 20 سیر مختلف جمع آوری شد. پس از خکش کردن و گذراندن دسترسی از الکترود شیمیایی بعضاً خواص فیزیکی و شیمیایی آنها به صورت زیر تعبیه شد:

خاک به روش الکترود شیمیایی در گل اشباع (42)، pH.

بافت خاک به روش هیدرومتری (9)، طرفین نیاز کاتیونی به روش گیاه‌گردی با آمیزه‌سازی (7)، کربن آلی به روش واکی (18) همایش کربن‌های خاص در عصاره اشناع خاک با هدایت سنج کربنیک، کلسیم کربن‌ها معادل با روشن شیمیایی کربن آسیب کاری داریک (8) مقدار منگر خاک در عصاره تهیه شده به وسیله DTPA (21) توسط دستگاه جذب اتمی شیمی‌زمین‌شناسی 670 آنالیزه‌گری شد.

سپس با توجه به این خواص تعداد 22 نمونه خاک که بیشترین تغییر را در تأخیر حالم تفریق خاک و جاردزند کرده‌اند انتخاب و برای آزمایش‌گذاری خاک استفاده قرار گرفتند. نام سری و برخی خواص فیزیکی و شیمیایی این خاک‌ها در جدول 1 آمده است. آزمایش به صورت طرح بلکهای کامل تصادفی در سه تکرار انجام شد (22 نمونه خاک در سه تکرار: جمعاً 66 گیاه).

تعیین شکل‌های شیمیایی منگر و ارتباط آنها با پاسخ‌های گیاه سویا در شماره از...
جدول 1. نام سری و پرحیز از خصوصیات فیزیکی و شیمیایی خاکهای به کار رفته در آزمایش

<table>
<thead>
<tr>
<th>شماره</th>
<th>سری خاک</th>
<th>شماره</th>
<th>سری خاک</th>
<th>شماره</th>
<th>سری خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>گرم آباد</td>
<td>2</td>
<td>سروده</td>
<td>3</td>
<td>سروده</td>
</tr>
<tr>
<td>4</td>
<td>سروده</td>
<td>5</td>
<td>دالین</td>
<td>6</td>
<td>مره</td>
</tr>
<tr>
<td>7</td>
<td>دالین</td>
<td>8</td>
<td>حساب آباد</td>
<td>9</td>
<td>مره</td>
</tr>
<tr>
<td>10</td>
<td>کرسی داراب</td>
<td>11</td>
<td>جاده‌آباد</td>
<td>12</td>
<td>هاشم آباد</td>
</tr>
<tr>
<td>13</td>
<td>هاشم آباد</td>
<td>14</td>
<td>ارزن</td>
<td>15</td>
<td>چنگال آباد</td>
</tr>
<tr>
<td>16</td>
<td>چنگال آباد</td>
<td>17</td>
<td>یکتا</td>
<td>18</td>
<td>گری</td>
</tr>
<tr>
<td>19</td>
<td>گری</td>
<td>20</td>
<td>منارو</td>
<td>21</td>
<td>یکتا</td>
</tr>
<tr>
<td>22</td>
<td>منارو</td>
<td>23</td>
<td>کیل</td>
<td>24</td>
<td>گری</td>
</tr>
<tr>
<td>25</td>
<td>کیل</td>
<td>26</td>
<td>سروستان</td>
<td>27</td>
<td>گری</td>
</tr>
<tr>
<td>28</td>
<td>سروستان</td>
<td>29</td>
<td>مصوص آباد</td>
<td>30</td>
<td>گری</td>
</tr>
<tr>
<td>31</td>
<td>مصوص آباد</td>
<td>32</td>
<td>کیچک</td>
<td>33</td>
<td>قبیلی</td>
</tr>
<tr>
<td>34</td>
<td>کیچک</td>
<td>35</td>
<td>قبیلی</td>
<td>36</td>
<td>قبیلی</td>
</tr>
</tbody>
</table>

DTMn (mg/kg⁻¹)	CCE (%)	CEC (cmolkg⁻¹)	رس (%)	pH	EC (ds m⁻¹)
22 | 39 | 27 | 4/5 | 7/8 | 1/21 |
17 | 35 | 26 | 3/8 | 4/5 | 1/21 |
16 | 30 | 24 | 3/8 | 4/5 | 1/21 |
15 | 28 | 21 | 3/8 | 4/5 | 1/21 |
15 | 24 | 22 | 3/8 | 4/5 | 1/21 |
14 | 22 | 21 | 3/8 | 4/5 | 1/21 |
12 | 21 | 20 | 3/8 | 4/5 | 1/21 |
11 | 19 | 17 | 3/8 | 4/5 | 1/21 |
10 | 18 | 16 | 3/8 | 4/5 | 1/21 |
9 | 17 | 16 | 3/8 | 4/5 | 1/21 |
8 | 16 | 15 | 3/8 | 4/5 | 1/21 |
7 | 15 | 14 | 3/8 | 4/5 | 1/21 |
6 | 14 | 13 | 3/8 | 4/5 | 1/21 |
5 | 13 | 12 | 3/8 | 4/5 | 1/21 |
4 | 12 | 11 | 3/8 | 4/5 | 1/21 |
3 | 11 | 10 | 3/8 | 4/5 | 1/21 |
2 | 10 | 9 | 3/8 | 4/5 | 1/21 |
1 | 9 | 8 | 3/8 | 4/5 | 1/21 |

DTMn = مقدار DTPA و CEC = مقدار CCE

1. پیک گرم خاک (براساس وزن خشک شده در آون) توزین و در ظرف پلاستیکی ریخته و با 20 میلیلیتر محلول CCE قابلیت هدایت الکتریکی خاکهای به کار رفته در به‌バルست گل است CPUs, CEC = کلسیم کربنات ماده و CCE = کلسیم کربنات عصاره‌گیری شده بافس. می‌باشد.
جدول 2 نتایج وزن ماده خشک، غلظت و جذب مگنتزیوم در خاک‌های مختلف

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>غلظت مگنتز (میکروگرم در کیلوگرم)</th>
<th>وزن ماده خشک (گ)</th>
<th>جذب مگنتز (میکروگرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>20</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>15</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>20</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>15</td>
<td>0.6</td>
</tr>
</tbody>
</table>

نتایج و بحث

خاک‌های مورد استفاده در آزمایش‌های فاصله‌دار محدودیت شوری بوده (جدول 1) و محدوده واسطه‌ای از مگنتز قابل استفاده (44-24 میلی‌گرم در کیلوگرم) در آنها دیده می‌شود. اختلاف در میزان رشد کلیه به‌طور ثابت و جذب مگنز در خاک‌های مختلف به دلیل اینکه تنویع می‌باشد. به نظر می‌آید مهمترین عاملی که باعث به‌بیان اختلاف‌های مطرح می‌باشد استفاده خاک می‌باشد.

نتایج وزن ماده خشک، غلظت و جذب مگنز توسط سویا در خاک‌های مختلف در جدول 2 نشان داده شده است.

این بخش شکل‌های شیمیایی مگنز و ارتباط آنها با پاسخ‌های گیاه سویا در شماره از ...
جدول 3. شکل‌های شیمیایی منگنز (میکروگرم در گرم خاک) و مقدار نسبی آنها (درصد) در خاک‌های تحت آزمایش

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>MnSUM</th>
<th>MnOX</th>
<th>MnCAR</th>
<th>MnWEAK</th>
<th>MnREAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>321/6</td>
<td>17/0</td>
<td>283/5</td>
<td>8/2/3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>116/7</td>
<td>16/7</td>
<td>243/9</td>
<td>1/2/8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>221/7</td>
<td>15/7</td>
<td>294/9</td>
<td>1/2/8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>331/7</td>
<td>18/7</td>
<td>30/8</td>
<td>1/2/8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>581/9</td>
<td>14/7</td>
<td>20/8</td>
<td>1/2/8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>390/2</td>
<td>16/2</td>
<td>20/8</td>
<td>1/2/8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>311/2</td>
<td>16/2</td>
<td>20/8</td>
<td>1/2/8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>244/6</td>
<td>9/2/3</td>
<td>231/6</td>
<td>1/2/8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>318/2</td>
<td>16/2</td>
<td>20/8</td>
<td>1/2/8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>312/6</td>
<td>16/2</td>
<td>20/8</td>
<td>1/2/8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>248/5</td>
<td>15/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>238/8</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>215/7</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>287/7</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>198/7</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>148/2</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>158/3</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>125/5</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>321/9</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>249/3</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>208/6</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>124/0</td>
<td>16/2</td>
<td>24/2</td>
<td>1/2/8</td>
<td>22</td>
</tr>
</tbody>
</table>

* : به ترتیب از چپ به راست مجموع شکل‌های منگنز، منگنز آکسیدی، کربنیتی، گذب شده به طور ضعیف و محلول

شکل‌های شیمیایی منگنز جداسازی شده به روش واردان و ریزپراک در خاک‌های مختلف (مقدار نسبی آنها) در جدول 3 ارائه شده است.

نتایج نشان می‌دهد (جدول ۳) که مقدار شکل‌های منگنز در خاک‌های مورد مطالعه دارای ترتیب زیر می‌باشد:

کاملاً محلول (به طور ضعیف گذب شده (اکسیدی (کربنیتی

کردنده‌های اندوز (تعداد ۱۵) گزارش کرد که قسمت اعظم منگنز در

دبی کمی منگنز در اشکال محلول و به طور ضعیف گذب شده بالای خاک‌ها و تبدیل آن در خاک‌های آلی به شکل‌های pH با حل‌آمیخته کمتر است. غذایی نژاد و کربنیزی (تبدیل قسمت اعظم سولفات منگنز مصنوعی در خاک‌های آلی استوان فارس به اشکال کم محلول کربنیتی و اکسیدی را گزارش کردند. هاندرک (۱۵) گزارش کرد که قسمت اعظم منگنز در
منابع مورد استفاده

1. سالارزدی، ض. 1366. حاصلخیزی خاک. چابه و انتشارات دانشگاه تهران. ص 761-788.
2. غفاری نژاد، س. ع. و. ن. کریمیان. 1377. همبستگی بین مگنتور عصاره‌گیری شده بوسیله پنج روش با خصوصیات خاک و پاسخ‌های کیافی و سایر عوامل در خاک‌های آهکی استان فارس. علم و فنون کشاورزی و منابع طبیعی (1377): 67-68.
3. غفاری نژاد، س. ع. و. ن. کریمیان. 1354. تأثیر سولفات مگنتور مصرفی در خاک‌های آهکی استان فارس. خلاصه مقالات ششمین کنگره علم خاک ایران، مشهد.
4. بحری، ج. و. ن. کریمیان. 1373. توزیع شیمیایی مگنتور در خاک‌های آهکی استان فارس. خلاصه مقالات سومین کنگره علم خاک ایران، اصفهان.