برآورد هم‌زمان پارامترهای هیدرولوژیکی و انتقال املاح در خاک

به روش حل معکوس در مقياس مزرعه

فریبرز عباسی و فواد تاجیک

چکیده
برآورد ویژگی‌های هیدرولوژیکی و پارامترهای انتقال املاح به روش حل معکوس، عمدتاً به تحلیل‌های یک‌بعدی در آزمایشگاه و با فرض شرایط ماندگار محدود شده است. علت این امر، هزینه زیاد و دشواری‌های آن‌اداره‌گری جمع‌آوری و توصیف تغییرات زمانی و مکان داده‌های مزرعه‌ای متغیر است. در این مقاله، ویژگی‌های هیدرولوژیکی و پارامترهای انتقال املاح از آزمایش‌های مزرعه‌ای با آبیاری جویچه‌ای در شرایط توپی و غیر ماندگار برآورد شده است. به منظور محاسبه اثرات مختلف آب و املاح نفوذ به‌ناتی از عمق آب 0.1 و 0.2 سانتی‌متر انجام گردیده است. نتایج دیدگان با فیزیکی مشابه آب و اسلاک کانال‌رفت و زمان آپارتمان تغییر در جویچه‌های با عمق آب 0.1 و 0.2 سانتی‌متر نیز بنادر شده‌اند. هدایت آب اشباع (Ks) و پارامترهای انتقال املاح در مدلهای FUNDY (G) و مدل غیر تعددی روآن - ساکن (MIM) (CDE) و هم‌زمان معکوس و با اسلاک شیبی سازی (HYDRUS-2D) برآور است. نتایج مشابه با شکل کروی و تغییر در مقدار متوسط (CV) در ماه هفته کار رفت. مقادیر Ks بین 0.9168 - 0.385 سانتی‌متر در دقیقه با ضریب تغییرات (CV) در مقدار بیشتر برآورده می‌شود. تابیت ناتی در حالتی که ضریب تبادل مربوطه (R) بين 0.70 و 0.95 نتیجه نمو دارد. ضریب انتشار پذیری طولی (Dl) بین 0.2 و 320 سانتی‌متر و ضریب انتشار پذیری عرضی (Dv) بین 0.1 و 100 min1/2 تا حداً 19/52 ثانیه دارد. زمان کاربرد آب و املاح در جویچه‌ها وابسته به حالت وابستگی برای مقادیر (Ks) و دنگ پارامترهای انتقال مشاهده شده تا در حالتی که مقدار ورودی خاک بیش از مقدار ورودی آماده درون گردید، بنابراین مقدار مصرف بیشتر به شده بنابراین مقدار آب و املاح انتقال هر یک از مدل‌ها انتقال املاح کمرنگ آن است که مدل‌های مشاهده‌ای نتایج کافی با استفاده از مدل ساده CDE و مدل‌های ماندگار در پیشرفت بوده و در اثری ساکن نشت می‌پذیرد در فرآیند انتقال این مواد می‌باشد.

واژه‌های کلیدی: آب‌یاری جویچه‌ای، حل معکوس، انتقال املاح، جریان آب

1. اعضای هیئت عالی مؤسسه تحقیقات فنی و مهندسی کشاورزی کرم
مقدمه
اگرچه بیشترین‌ها قابل توجهی در زمینه توصیف و مدل‌سازی حرکت آب و املاح تحت شرایط کنترل شده، غالباً مانندگار و در مقیاس آزمایشگاهی در جنگ دهه اخیر به دست آمده و لیست تعدد تحلیل‌های دقیق در مقیاس مزرعه‌ای اندک بوده است. خلل این امر را می‌توان عمداً در هزینه‌ها و نیروی کارگری مورد نیاز و همچنین پیچیدگی‌های ذاتی ناشی از تهیه‌گی خاک در مقیاس مزرعه‌ای دانست. به عنوان مثال، هدایت هیدرولیکی غیر اشباع خاک ممکن است حتی در فواصل شناخته‌شده در این مقاله یافت شود.

مدل‌های زیادی برای شیب سازی جریان آب و انتقال املاح در محیط غیر اشباع وجود دارد. ابزارهای و واقعیت (36) موردی از مدل‌های انتقال یک بعدی ارائه نموده‌اند. آنان مدل‌ها را تحت (Stochastic) (Deterministic) عناوین طبقه‌بندی (Function) (Mechanistic) (Management) (Research) تحلیل و تحقیقاتی باید فهمید. در زمینه تحقیقاتی این مقاله به تبعیض نیست، به صورت استاندارد مدل‌هایی در هر یک از مدل‌های یک بعدی جریان آب و انتقال املاح (14) و (37) در سایر زمینه‌هایی از شرایط کنترل شده شناخته می‌شود. اما معمولاً نتایج آنها برای توصیف دقیق ویژگی‌های هندسی و بنابراین حرکت آب و املاح در حین آبیاری با روش‌های جریان‌های، قطره‌های و لوله‌های تراکم کافی نیست. بررسی جریان و انتقال آب و املاح مستلزم به کارگیری مدل‌های جنبه‌بندی می‌باشد.

در حال حاضر مدل‌هایی در زمینه جریان آب و روش‌های اجزای محصول، خاصیت محدودی با سایر روش‌های عددی حل می‌کنند. مدل‌های جنبه‌بندی برای مطالعه تأثیر تغییرات مکانی خاک بر
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مزرعه مورد مطالعه

<table>
<thead>
<tr>
<th>pH</th>
<th>هدایت الکتریکی (dS/m)</th>
<th>جرم مخصوص ظاهری (g/cm²)</th>
<th>سیلنت (ای)</th>
<th>افق نایل (ای)</th>
<th>عمق (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/75</td>
<td>0/93</td>
<td>1/29</td>
<td>180/00</td>
<td>9/32</td>
<td>21/50</td>
</tr>
<tr>
<td>6/67</td>
<td>0/77</td>
<td>1/56</td>
<td>150/00</td>
<td>8/27</td>
<td>27/24</td>
</tr>
<tr>
<td>6/75</td>
<td>0/63</td>
<td>1/72</td>
<td>11/94</td>
<td>7/24</td>
<td>19/12</td>
</tr>
<tr>
<td>6/85</td>
<td>0/50</td>
<td>1/41</td>
<td>17/91</td>
<td>5/21</td>
<td>1/15</td>
</tr>
</tbody>
</table>

گرایش مدل CDE در شرایط جریان نسبتاً یکنواخت صادق است. مدل MIM برای شرایط غیر یکنواخت و جریان ترجیحی در خاک مورد استفاده قرار می‌گیرد.

مواد و روش‌ها

1. آزمایش‌های مزرعه‌ای

پنج آزمایش مزرعه‌ای در جویچه‌های اتیکا بهره‌مند در مرکز تحقیقات کشاورزی ماریکیا در منطقه فینیکس ایالت آریزونا بر روی خاک لوم شنی فاقد بیشتر گیاهی انجام شد. آزمایش‌ها در کرت‌هایی با سری جویچه به طول 3 متر، عمق تقریبی 20 سانتی‌متر و فاصله یک متر انجام گردید. جویچه وسط هر کرت، غیر خاک و بوده است که آن داده به‌درازی شده و با جویچه‌های جهت بردن طرفین آن احاطه شده است. جریان آزمایش‌ها را در مقاله عباسی و همکاران (1) می‌توان یافت. مشخصات عمومی خاک مزرعه آزمایشی در جدول 1 ارائه گردیده است.

در این تحقیق، دو سری آزمایش انجام گردید. در سری اول، سه آزمایش با عمق 60 و 40 سانتی‌متر و مدت زمان کاربرد بکس و اصلاح جریان SD (Same Duration) انجارا گردید. آبیاری اول به مدت 60 دقیقه و در دو مرحله صورت گرفت. در مرحله اول، آبیاری در مدت 40 دقیقه (برای هر مس عمق) به مانور خوردن یک ترم خاک صورت گرفت. در مرحله دوم، آب به بروماید کلسیم (CaBr2) مخلوط به میقدار 3 دقیقه به‌طور یکسان در هر سه آزمایش به کار رفت. در

(113)
به دلیل خطای نیروتون متر، رطوبت لایه سطحی خاک (TDR) با استفاده از تکنیک TDR و در زمانهای مقابل نیروتون متر اندازه‌گیری شد.

نمونه برداری خاک برای اندازه‌گیری گل‌هایی برموداید در عمق‌ها و مکان‌های مشابه یک متر و در ۴ نمونه، قبل از آغاز آزمایش (متداوله‌ای). ۵ روز بعد از آغاز آزمایش (۱و ۶ روز بعد از آغاز آزمایش) مشاهده گرفت. نمونه‌های خاک در هوا خشک گردید و سپس از الک میلی‌تری عبور داده شد. مقادیر برموداید را در عرصه ۷.۱۸ و با استفاده از روش زنگ سنگی Lachat Quikchem استاندارد است و توسط دستگاه جلویی این نمونه‌ها مشاهده شد. علاوه بر آن، ۲۸ نمونه خاک دست نخوردند (استاندارد به قطع ۶ قیمت سانتی‌متر) به طور تصادفی از عمق‌ها و مکان‌های منافعی (۱۰۰ تا ۱۰۰ سانتی‌متر) جمع آوری و برای تعیین محتوی رطوبتی در آزمایش‌گاه استفاده قرار گرفت.

ب) اندازه‌گیری
مدل فیزیکی غیر تعادلی جابجایی- انتشار که به عنوان یک لایه مدل دو ناحیه‌ای زیر شاخه می‌شود: به دلیل دشواری عبور RETC مورد استفاده قرار می‌گرفت. به دلیل دشواری داده‌های اندام‌گیری مستقیم هیدروژن‌پوس، آزمایش‌های Rosetta از داده‌های اندام‌گیری فقط با مقادیر nα و ۳ روزه در دمای نیروتون متر مورد استفاده قرار گرفت. به دلیل دشواری استفاده لایه Rosetta، انتخابه نشانه‌ای از داده‌های موزعی در فضای Nکس (۷۳۳) و تکنیک و همکاران (۸۹) به صورت زیر ارائه شده است:

\[
\frac{\partial (\theta_m C_m)}{\partial t} + \nabla \cdot (\theta_m D_{ij} \nabla C_m) - \frac{\partial (n_m D_{ij} q_{ij})}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\frac{\partial C_m}{\partial x_i} \right] \tag{7}
\]

\[
0_m \frac{\partial C_m}{\partial t} = 0 (C_m - C_{im}) \tag{8}
\]

که در آن: \(n_m \)، رطوبت انتخابی و \(L \) (L\(^3\))، رطوبت ناحیه سال‌کری. \(q_{ij} \)، رطوبت ناحیه سال‌کری. \(L \) (L\(^3\))، غلظت انتخابی موجود در ناحیه سال‌کری. \(C_m \) (L\(^{-1}\))، غلظت انتخابی موجود در ناحیه سال‌کری. \(C_{im} \) (L\(^{-1}\))، \(D_{ij} \) ضریب تبادل مربوط به \(q_{ij} \) (L\(^{-1}\)). در فضای ۱۵۰ متری (مزارعه) و روش نمایان- مانند برآورد گرید. آزمایش‌های به ترتیب در ۲۰۰۰ و ۲۰۰۱ و ۶۴ فوریه ۲۰۱۸ آغاز و به بعد از ۳۰ روز به اتمام رسید.

۲ مدل
الف) جریان آب
برای بررسی جریان آب در محیط مخلوط، از معادله دو بعدی به‌کار رفته در این مقاله است. محتوی رطوبتی خاک \(R(h) \) با معادله \(w_0 \) سیاست محاسبه. \(L \) (L\(^3\))، و \(q_{ij} \) می‌باشد. \(D_{ij} \) و \(q_{ij} \) مدل گل‌خورا (۳۱) و هدایت هیدروژن‌پوس (۳۱) مطلق روابط زیر به دست آمده است.

\[
\theta_m D_{ij} = D_T \delta_{ij} + (D_L - D_T) \frac{q_{ij}}{|q|} + \theta_m D_0 \tau_0 \delta_{ij} \tag{9}
\]
برآورد همزمان پارامترهای هیدرولیکی و انتقال املاح در خاک به روش…

سه حدس اولیه صورت گرفت.

�

که در آن: \(D_0\), \(\theta_0\), چاپ عامل خمیدگی خاک و فرخ خاک (بدون بعد)، \(\delta_{ij}\) تابع دلتای کرونکر، \(\phi\) ضریب انتشار پذیری طولی (L)، \(\lambda\) ضریب انتشار پذیری عرضی (L) است. با فرض فاقدان ناحیه ساکن (0) روابط 4 و 5 به صورت معادلانه استفاده می‌شود:

\[
\frac{\partial (q_x)}{\partial t} = - \frac{\partial (q_y)}{\partial x} + \frac{\partial (q_y)}{\partial x} - \frac{\partial (q_y)}{\partial x}
\]

چ) شرایط اولیه و مجزی

غلطخ پرمایند و رطپیت انتدایه‌گیری شده خاک قبل از آزمایش، به عنوان شرایط اولیه در نظر گرفته شد. عمق جریان در حین آپارای جویچه‌ها و شرط مزی انتفاش یا یک آبیاری (حین توزیع معادن رطپیت) به عنوان شرط مرزی باید در نظر گرفته شد. از متوسط شدت تبخیر و تعرق مراجع و پراورد به شد به روش پمن مانیس به عنوان شرط مرزی انتفاشی (Cauchy) استفاده کرد. شرط کوشی (Cauchy) برای مرز بالایی انتقال املاح، زهکشی آزاد بیا حکمت آب و املاح در معادن یکی، و شرط مرزی بدون شدت جریان در طرفین جویچه‌ها در نظر گرفته شد.

3. بهینه سازی مکسوس

علل مکسوس بر پایه حل عددی مدل‌های CDE (معادله 4 و 5) با استفاده از روش بهینه سازی MIM لتوبرگ - مارکوارت (19) صورت گرفته است. رطپیت انتدایه‌گیری خاک داده‌های نفوذ و غلطخ پرمایند برای MIM تخمین همزمان و پارامترهای مکسوس که پارامترهای مکسوس در حل مکسوس به کار گرفته شد. سایر پارامترهای از پارامترهای هیدرولیکی مدل وان کونوختین (پارامترهای این و یوز پارامترهای هیدرولیکی مدل وان کونوختین) طی بهینه سازی ثابت در نظر گرفته شده که مقدار آنها در جدول 2 آورده شده است. به منظور افزایش اختلاف معادن به مقدار بهینه مثبت پرداخته، مرحله به مرحله، با در نظر گرفتن هموگونیتی و انتقال املاح در خاک به روش…

115
جدول ۴. میزان رابطه مدل Rosetta و RETC با مواد باطنی در هیترولوژی مدل و RETC و Rosetta

<table>
<thead>
<tr>
<th>R^2</th>
<th>SSQ</th>
<th>n</th>
<th>α (cm3)</th>
<th>β_1 (cm3)</th>
<th>β_2 (cm3)</th>
<th>Rosetta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>0.773</td>
<td>1/123</td>
<td>0/5758</td>
<td>0/333</td>
<td>0/10</td>
<td>RETC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RetC+Rosetta</td>
</tr>
<tr>
<td>0.81</td>
<td>0.737</td>
<td>1/175</td>
<td>0/5475</td>
<td>0/217</td>
<td>0/65</td>
<td>Rosetta</td>
</tr>
</tbody>
</table>

جدول ۴. میزان رابطه مدل Rosetta و RETC با مواد باطنی در هیترولوژی MIM و CDE و RETC+Rosetta

زاویه افستفاده θ، θ' و θ'' با مدل مورد استفاده گزارش شده در (روش) کمتر از مقدار میزان افستفیت مدل MIM و CDE و RETC و Rosetta. RETC در جدول ۴. میزان افستفاده θ، θ' و θ'' با مدل مورد استفاده گزارش شده در (روش) کمتر از مقدار میزان افستفیت مدل MIM و CDE و RETC و Rosetta.

![نمودار ۱. مقدار مشاهده و گزارش شده منحنی رطوبتی با مدل RETC، RETC و Rosetta و ترکیب مدل‌های RETC و Rosetta.](image)
برآورد هیپزمان پارامترهای هیدرولوژیکی و انتقال امواج در خاک به روش…

مجموع معیار باعث مانده‌ها (SSQ) در مدل‌های CDE و MIM کرت‌های مختلف (ب) جز پارامتر D_1 در کرت ۱ خیلی به هم تندزدی هستند که نشانگر اثر اندک آب ساکن در داده‌های این تحقیق بوده است.

برآوردهای K_1 و K_B به پایه هم‌اک.OR از پارامترهای هاست (+) یکسان بود. این نتایج با مشاهدات مرخصیات داشته است. در حین این‌باره دوم، حجم آب نفوذ به ناهنجاری در مدل زمان تقریباً یکسان، در کرت‌های ۳ و ۵ (ب) شدت آب ۱۲ و ۱۶ سانتی‌متر شامل بوده است. اما بر خلاف انظار زمان کاربرد کوتاه‌تری در کرت ۵ که حجم آب کمتری داشته وردید. برآورد K_B به عدد گزارش شده درست‌ها در ماده اصلی انتقال بوده است. نتایج بهینه سازی، همه‌گی کمی K_B و پارامترهای را نشان داد. ضرایب هیپزمان در کرت‌های مختلف، اغلب کمتر از 0.5 بوده است.

پسینش‌های اینکه وجود آب ساکن نش ممکن در مدل سازی انتقال امواج در مقاله مرخصیات دارد. این تحقیق مقداری نسبتاً کمی برای θ_{im} (جدول ۳) که می‌توان توجه کردن آب ساکن نش ممکن در این مطالعه نشان داد. در همکاری همی‌گی و هیپزمان کمی K_B و پارامترهای را نشان داد. ضرایب هیپزمان در کرت‌های مختلف، اغلب کمتر از 0.5 بوده است.

پسینش‌های اینکه وجود آب ساکن نش ممکن در مدل سازی انتقال امواج در مقاله مرخصیات دارد. این تحقیق مقداری نسبتاً کمی برای θ_{im} (جدول ۳) که می‌توان توجه کردن آب ساکن نش ممکن در این مطالعه نشان داد. در همکاری همی‌گی و هیپزمان کمی K_B و پارامترهای را نشان داد. ضرایب هیپزمان در کرت‌های مختلف، اغلب کمتر از 0.5 بوده است.

پسینش‌های اینکه وجود آب ساکن نش ممکن در مدل سازی انتقال امواج در مقاله مرخصیات دارد. این تحقیق مقداری نسبتاً کمی برای θ_{im} (جدول ۳) که می‌توان توجه کردن آب ساکن نش ممکن در این مطالعه نشان داد. در همکاری همی‌گی و هیپزمان کمی K_B و پارامترهای را نشان داد. ضرایب هیپزمان در کرت‌های مختلف، اغلب کمتر از 0.5 بوده است.

پسینش‌های اینکه وجود آب ساکن نش ممکن در مدل سازی انتقال امواج در مقاله مرخصیات دارد. این تحقیق مقداری نسبتاً کمی برای θ_{im} (جدول ۳) که می‌توان توجه کردن آب ساکن نش ممکن در این مطالعه نشان داد. در همکاری همی‌گی و هیپزمان کمی K_B و پارامترهای را نشان داد. ضرایب هیپزمان در کرت‌های مختلف، اغلب کمتر از 0.5 بوده است.
آنالیز ادغام گیرنده نفوذ تجمعی و رطوبت خاک و غلظت پروپاژی در ۵ کرت آزمایشی با مقادیر پایین‌تری ضرب افزایشی پایین‌تری (0.95) به طور قابل قبولی (R²= ۰.۹۵) با کارایی شده در مقادیر پایین‌تری به طور پایین‌تری داشته. اما تطبیق میان رطوبت و غلظت های اندوزگیری شده با کرت بود. در اغلب موارد، مقادیر رطوبت، بیشتر و مقادیر غلظت، کمتر از حد واقعی پایلو آورده‌گیری و شدن پاییزه، باید انتخاب معنی‌داری را از این داده‌ها استفاده کنیم.

امکان‌های کاربردی نفوذ تجمعی، رطوبت خاک و غلظت پروپاژی در همه کرت‌های آزمایشی

شکل ۲. مقادیر مشاهده و پایلو آورده‌گیری نفوذ تجمعی، رطوبت خاک و غلظت پروپاژی در همه کرت‌های آزمایشی با استفاده از مدل‌های نفوذی MIM و CDE.

آماری ۹۵٪ نشان می‌دهد که آزمایش‌های این تحقیق، داده‌های کافی برای تخمین قابل اعتماد این پارامتر فراهم نمی‌کنند.

با توجه به توصیف کرت‌های کی در بخش مواد و روشهای گردیده، به نظر می‌رسد بین مقادیر تخمینی D۰ سطح حدود (۳ و عمق آب داخل جویچه‌ها و زمان کاربرد آب و املاح (ستون اول و دوم جدول ۳ رابطه‌ای وجود دارد. در مجموع، مقادیر D۰ به دست آمده در کرت‌های SWS (با رطوبت کمتر) بهترین واکنش از همراهی (با رطوبت بیشتر) بوده است.

این نتیجه با تحلیل نظیری صورت گرفته توسط روسو (۲۲ و ۲۳) که آزمایش ضرب ادغام گیرنده‌گیری در رطوبت‌های کم و تغییرات مکانی زیاد آن نشان می‌دهد، مطابقت دارد. همچنین، به عمق آب داخل جویچه‌ها و زمان کاربرد آب و املاح D۰ و استگنی نشان داده شده، تفکیک اثر عمق آب با زمان کاربرد و تغییرات خاصیت خاک بر D۰ چندان ساده نیست.

مطالعات نظیری و آزمایشگاهی نشان داده است که ضربین
برآورد همزمان پارامترهای هیدرولوژیکی و انتقال املاح در خاک به روش...
شکل 2. غلظت‌های مختلف و شده‌املاح در کرت 1 در زمان‌های مختلف نمونه برداری خاک (MIM، خطر پیوست: مدل CDE، خط پیوست: مدل MIM).

آزمایش‌گاهی بوده است اما با مقادیر مزرعه‌ای مشابه داشت. ضربات انتشاری اطراف طولی به عمق آب در چوبچه‌ها و زمان کاربرد آب و املح وابستگی داشت. اما تأثیر عمق آب بر ضربات انتشاری خاکی، رطوبت ساکن، ضربات تبادل جرمی مربوطه اول قابل توجه نبوده است. تطبیق میان برآوردها نفوذپذیری و مقادیر اندامگیری شده آن به طور کلی رضایت بخش بود. سازگاری میان مقادیر برآورده، اندامگیری شده رطوبت خاک و غلظت اصلی نسبتاً ضعیف نبود. برآورد هیدرولوژیکی انتقال و خصوصیات هیدرولوژیکی خاک دارای این مزیت است که بهبود سازی در یک مرحله قابل انجام است. تحقیق حاضر با فرض همگنی نیم‌کره انجام شده است. در نظر گرفتن لایه بندی خاک، به کار بردن روش بای توصیف تغییرات دکانی خصوصیات هیدرولوژیکی و انتقال در خاک، به دنبال آن، برآورد هیدرولوژیکی و سپس هیدرترمی انتقال املح در دو گام زمانی مختلف ممکن است بهبود برآوردها گردد.

از CDE و MIM هیدرولوژیکی اشاع و پارامترهای انتقال مدل‌های CDE و MIM آزمایش‌های انتقال املح و جریان آب در مقایسه مزرعه‌ای و در شرایط غیر ماندگار استفاده شده است. پارامترهای بهبود شده، به‌خصوص هیدرولوژیکی اشاع و ضربات انتشاری‌زدوزی، با مقادیر گزارش شده مطالعات قبلی در مقایسه مزرعه‌ای تطبیق خوبی داشته است. نتایج نشان داد که آب ساکن (\(\theta_{iw} \)) احتمالاً به‌علت بیافتد آب‌نگاری درشت خاک مرطوب مطالعه نقص مهمی را ایفا نمی‌کند. مقادیر \(\theta_{im} \) از آزمایش‌های مختلف کم و بسیار یکسان و دارای حد متوسط 0.305 cm³/cm³ بوده است. ضربات تبادل مربوطه اول بیشتر از مقادیر گزارش شده در مطالعات آزمایشگاهی و مزرعه‌ای بود. این تجربه، تبدیل سریع املح را با همه آب ساکن موجود در روزیل خاک نشان می‌دهد و بنا بر این آب ساکن در این تحقیق نسبتاً ناچیز بوده است. این تجیه‌گیری با تفاوت‌های اندک در برآورد غلظت املح توسط مدل‌های مختلف CDE و MIM نیز تأیید شده است. مقادیر برآورد ضربات انتشاری‌زدوزی طولی بیشتر از مقادیر