پرآورد هم‌زمان پارامترهای هیدرولوژیکی و انتقال املاح در خاک به‌روش حِل مکروس در مقياس مزره

چکیده

پرآورد ویژگی‌های هیدرولوژیکی و پارامترهای انتقال املاح به‌روش حِل مکروس، عملکردی به‌طور تحلیل‌های یک بعدی در آزمایشگاه با فرض شرایط مناطق‌گذاری محید شده است. عملکرد این امر به‌میزان زیاد کمیتی و کیفیتی آن‌ها افزایش داده و ویژگی‌های هیدرولوژیکی و پارامترهای انتقال املاح از آزمایش‌های زمین‌پردازی با آب‌یابی جوی‌چک که در شرایط دو بعدی و غیر مناطق‌گذاری برآورد شده است. سه آزمایش، در جوی‌چک‌هایی که آغاز به‌پردازی بسته و زمان آب‌یابی مشابه با مقایسه مختلف آب و املاح دور فناوره‌ای ناشی از عمق آب 6، 10، و 1 متری انجام گردیده است. دو آزمایش دور به‌روش انتقال‌کاربردی و زمان آب‌یابی مشابه در جوی‌چک‌هایی با عمق آب 6 و 10 سانتی‌متر نیز انجام شد. ۲۰ دانه آب اشباع (Ks) یا پارامترهای انتقال املاح در مدل (CDE) و مدل غیر تعادلی رویان-ساین (MIM) به‌روش مکروس و با استفاده از الگوریتم به‌سازی CDE بطیعت‌گیری به‌روش ساینی-تقریبی-افزایش شده‌های HYDRUS-2D و شرایط انتقال‌کاربردی به‌روش مکروس و پارامترهای انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتقال‌کاربردی در حین بهینه‌سازی، داده‌های رطوبت خاک، نفوذ تجمیعی و غلظت املاح به‌روش CDE و شرایط انتق...
مقدمه

اگرچه پیشرفته‌های قابل توجهی در زمینه توصیف و مدلسازی حركة آب و املاح تحت شرایط کنترل شده، غالباً مانند‌گارد و در مقياس آزمایشگاهی در جنگ دهه‌های به دست آمد ولی تعداد تحلیل‌های دقیق در مقياس مزرعه‌ای اندک بوده است.

علت این امر را می‌توان به دنیای‌ها و تربیت کارگری مورد نیاز و همچنین پیچیدگی‌های ذاتی ناشی از تغییرات جاجیده و خاک در مقياس مزرعه‌ای دانست. به عنوان مثال، هدایت هیدرولوکی و اثرات خاکی در حین افزایش خاک ممکن است در داخل فواصل کم‌تر افزایش یابد (۲۴) و یا ذکر کاربرد آنها در مطالعات مزرعه‌ای کم‌تر باشد.

مدل‌های زیادی برای شبیه‌سازی جریان آب و انتقال املاح در محیط غیر اصلاح و بدون دارد. این کار در مدل‌های انتقال املاح بر حسب مدل‌هایی که بعد از تحقیق و تحقیق (Stochastic) (Determistic) عنوان‌های علمی و کاربرد (Functional) (Mechanistic) (Management) (Research) تحلیل و تحقیقات، تقدم بندی و مقایسه مزرعه‌ها. آن‌ها همچنین درجه‌بندی و انعطاف پذیری، تعیین یادآوری و مفید بودن مدل‌ها در شرایط مزرعه‌ای را مورد بررسی قرار دادند. مطالعات صوتی در زمینه انتقال املاح در شرایط غیرشتابانی و در مقياس مزرعه‌ای مورد انتقاد کاربرد مفیدی دارد. اگر به تغییرات یکان به مدل‌های دیگر، به تغییرات نویسی، داده‌های وردی، حافظه رایانه‌ای، و زمان محاسبه کمتری نیاز دارد، اما معمولاً نتایج آنها برای توصیف دقیق ویژگی‌های هندسی و شباهت‌های حركة آب و املاح در حین آبیاری با روش‌های جویچه‌ای، قطره‌ای و لوله‌های تراکم تعبیه نمی‌شود و بررسی حسینی و انتقال آب و املاح مستلزم بهکارگیری مدل‌های چند بعدی می‌باشد.

در حال حاضر مدل‌هایی دو بعدی (۲۸) و سه بعدی (۲۴) زیادی وجود دارد که مدل‌هایی جریان‌ها و روش‌های اجرای محصول، تفاضل محدود با سایر روش‌های انتقال مدل‌های چند بعدی برای مطالعه تأثیر تغییرات مکانی خاک بر...
جدول 1. برخی ویژگی‌های الکتریکی و شیمیایی خاک مزرعه مورد مطالعه

<table>
<thead>
<tr>
<th>pH</th>
<th>هدایت الکتریکی (dS/m)</th>
<th>جرم مخصوص (g/cm³)</th>
<th>ظاهري</th>
<th>سیلت</th>
<th>فاقد</th>
<th>لوم شنی (cm)</th>
<th>عمق نخاک (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/5</td>
<td>0/93</td>
<td>1/49</td>
<td>15/00</td>
<td>0/77</td>
<td>1/56</td>
<td>8/27</td>
<td>11/49</td>
</tr>
<tr>
<td>7/6</td>
<td>0/77</td>
<td>1/56</td>
<td>15/00</td>
<td>0/97</td>
<td>1/41</td>
<td>8/27</td>
<td>11/49</td>
</tr>
<tr>
<td>7/8</td>
<td>0/93</td>
<td>1/49</td>
<td>15/00</td>
<td>0/77</td>
<td>1/56</td>
<td>8/27</td>
<td>11/49</td>
</tr>
</tbody>
</table>

پیام مراحل اول و دوم، آب باقی مانده در جویچه‌ها تخلیه و اندازه‌گیری شد. در ادامه این مقاله همه جا منظور از غلظت املح غلظت بر پدیده می‌باشد.

سری دوم آزمایش‌ها شامل کاربرد مقادیر مشابه آب و املح بود. مقدار آب مصرفی در این آزمایش‌ها مشابه مقدار آب نفوذ‌یافته در عمق آب‌پری 16 cm، در آزمایش‌های بود، آزمایش‌ها با عمق آب‌پری 6 cm و 1 سانتی‌متر اجرا شدند. آب‌پری اول مشابه با سالن سوریو در SD دو فاز آب خالص و آب همراه با بروماید کلسیم انجام شد با این تفاوت که مدت آب‌پری برای هر عمق بر اساس آزمایش قبلی با 14 cm آب نفوذ‌یافته تنظیم گردید. در همه آزمایش‌ها، از غلظت بکسان بروماید (50 گرم بر لیتر) استفاده گردید.

مجموعی بنا بر تایی از لوله‌های نترون متر به طول 35 cm برای اندام‌گیری رطوبت خاک در فواصل مختلف از محور جویچه اصلی کار کاشتگی شد. لوله‌های نترون متر در دور ریفت به فاصله 5 سانتی‌متر به نظور جلوگیری از تأثیر خالقیت قرار گرفت. نتیجه نترون متر مورد استفاده در شرایط مزرعه وسنجش شده و برای اندام‌گیری رطوبت خاک مورد استفاده قرار گرفت. قرار گرفت در عمق 0.25 و 0.5 و 100، 0.15 و 0.35 سانتی‌متر قبل از هر آب‌پری (شرایط اولیه)، برای استفاده از هر آب‌پری (شرایط اولیه) برای نشانده کردن تأثیرات به‌کار رفته است. هر یک ساعت تا 6 ساعت بعد از شروع آزمایش و سپس 3 ساعت تا 24 ساعت بعد از عمق اولیه 6 دقیقه در مصرف قرار گرفت. سپس 3 دقیقه در هر روز تا 1 روز سوم و 2 دقیقه در هر روز تا آب‌پری بعد انجام شد.

گرفت، مدل CDE در شرایط جریان نسبتاً پهن‌نواست صادق است اما مدل MIM برای شرایط غیر پهن‌نواست و جریان ترجیحی در خاک مورد استفاده قرار می‌گیرد.

مواد و روش‌ها

1. آزمایش‌های مزرعه‌ای

پنجره آزمایش مزرعه‌ای در چهار جریان انجام شد. در معک الکتریکی، کشف دقیقاً مشابه در اینجا. در مورد تحقیقات کشاورزی مارکی‌ها در منطقه، فیتنس‌های آب‌برافش این‌ها به خاطر قابلیت‌های انجام شد. آزمایش‌ها در کردهای با سه جویچه به طول 3 cm، عمق تقریبی 20 سانتی‌متر و فاصله 0.5 سانتی‌متر انجام گردید. جویچه و سطح هر کرت، غیر جری روبه بوده است که آن داده برای کشت و با جویچه‌های جری روبه در طرفین آن احاطه شده است. اجزای آزمایش‌ها را در مقاله عباسی و مهدی‌کریمی (1) می‌توان یافت. مشخصات عمومی خاک مزرعه آزمایشی در جدول 1 ارائه گردیده است.

در این تحقیق، در سه آزمایش انجام گردید. در سه‌اندل، آزمایش‌ها با عمق 6، 12 و 18 سانتی‌متر و مدت زمان کاربرد بکسان آب و املح با SD (Same Duration) اجرا گردید. آب‌پری اول به مدت 89 دقیقه و در دور مصرف قرار گرفت. در مرحله اول، آب‌پری انجام 60 دقیقه (پیا مرسه عمق) به مشورت خیس کردن نیمه‌ی خاک مصرف گرفت. در مرحله دوم، آب با بروماید کلسیم (CaBr2) مخلوط و به مدت 30 دقیقه به طور یکسان در هر سه آزمایش به کار رفت.
\[0(h) = \theta_r + \frac{\theta_s - \theta_r}{(\gamma + |zh|^n)^m}
\]
\[K(h) = K_s S_c \left(\frac{\gamma}{\theta_s - \theta_r} m - \frac{1}{n}\right), n)\)
\[S_c = \frac{\theta_s - \theta_r}{\theta_s - \theta_r} m - \frac{1}{n}, n\)

به دیل خطای نوترن متر، رطوبت لایه سطحی خاک (0-30 cm) با استفاده از TDR و در زمان‌های مختلف نوترن متر اندازه‌گیری شد.

نمونه برداری خاک برای اندازه‌گیری فیزیکی و نورماید در اندازه‌گیری خاک. اکثریت نمونه‌ها به نظر عمق‌ها و مکان‌های مشابه بکار رفته و در ۴ نقطه، قبل از آغاز آزمایش (مقادیر اولیه) و ۵ نمونه در با زمان، قبل از آغاز آزمایش (مقادیر اولیه) و ۵ نمونه در با زمان قرار گرفته. نمونه‌های خاک در هوا خشک گردیده و سپس از لامپهای عبور داده شد. مقادیر

برونماینده در عصرهای ۱:۱ و با استفاده از روش زنگ سنجی

Lachat Quikchem

استاندارد متداول دسته‌بندی پست سنگ

اندازه‌گیری شد. علاوه بر این، نمونه‌های خاک دست نگهداری (استاندارد به پست ۶ و قطر ۲۵ سانتی‌متر) به طور تصادفی از

آزمایش‌های نمونه‌های (تا ۱۰۰ سانتی‌متر) جمع‌آوری و

برای تعیین مقدار رطوبت در آزمایش‌گاههای استاندارد قرار گرفت.

ب) انتقال املاح

مدل فیزیکی تر ترازی جلی‌گزاری، انتشار که به عنوان مدل

روان-سایک (MIM) آزمایش‌های پارامترهای مورد استفاده در مدل

برای انتقال املاح و اکتشاف ناپذیر در محیط مخلوط توسط وان

گونه‌ها و واکنش (۳۷) و کلیه‌ها و همکاران (۸) به صورت زیر

ارائه شده است:

\[\frac{\partial (\theta_m C_m)}{\partial t} + \frac{\partial (\theta_m D_{ij})}{\partial x_j} = \frac{\partial (\xi_m C_m)}{\partial x_j} \]

\[\theta_m \frac{\partial C_m}{\partial t} = \xi_m (C_m - C_{im})\]

\[\theta_m \frac{\xi_m C_m}{\partial t} = \xi_m (C_m - C_{im})\]

\[\theta_m \frac{\partial C_m}{\partial t} = \xi_m (C_m - C_{im})\]

\[\theta_m \frac{\xi_m C_m}{\partial t} = \xi_m (C_m - C_{im})\]

که در آن: \[m, \theta_m, (L^3), \text{روطوبت} \]

ناحیه ساکن (Cim, (L^3) غلظت املاح موجود در ناحیه رون \[Cim, (L^3) \]

و \[\rho \text{ ضریب نابودی ورودی (T)} \]

و \[\delta \text{ ضریب انتشار (L^2/T)} \text{ است که از رابطه زیر به \[Dij\]

\[\theta_m D_{ij} = D_f |\delta_{ij} + (D_L - D_f) \frac{q_{ij}}{k} + \theta_m D_0 \tau_{ij} \delta_{ij} \]

\[\text{ مدل‌های درک‌دار} (\text{MIM}) \text{ با مقادیر } 0(h) \text{ با استفاده از } \text{TDR} \text{ و در زمان‌های مختلف نوترن متر اندازه‌گیری شد.}

2 مدل

الف) جریان آب

برای بررسی جریان آب در محیط مخلوط از معادله دیویه (1) به عنوان مدل کابیلیرالی درک‌دار (32) مطلق روابط زیر به دست آمده است.
مقدار K_i و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید.

D_L, D_T, a, θ_i مقدار K_i و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید.

D_L, D_T, a, θ_i مقدار K_i و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید.

D_L, D_T, a, θ_i مقدار K_i و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید.

D_L, D_T, a, θ_i مقدار K_i و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید نتایج آزمایش و پارامترهای اندازه‌گیری در آمار مکانیکی به طور همزمان برآورد گردید.
جدول 2.۲۰ ویژگی‌های هیدرولوگی مدل وان گونختن به دست آمده از مدل RETC و Rosetta

<table>
<thead>
<tr>
<th>R²</th>
<th>SSQ</th>
<th>n</th>
<th>α (cm³)</th>
<th>θ₀ (cm³)</th>
<th>θ₀ (cm³)</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>0.2773</td>
<td>1</td>
<td>0.158</td>
<td>0.019</td>
<td>0.10</td>
<td>RETC</td>
</tr>
<tr>
<td>0.94</td>
<td>0.2773</td>
<td>1</td>
<td>0.158</td>
<td>0.019</td>
<td>0.10</td>
<td>Rosetta</td>
</tr>
<tr>
<td>0.94</td>
<td>0.2773</td>
<td>1</td>
<td>0.158</td>
<td>0.019</td>
<td>0.10</td>
<td>RETC+Rosetta</td>
</tr>
</tbody>
</table>

RETC: مجموع مربع باقی مانده‌ها
b: برآورد شده با Rosetta و به کار رفتن به عنوان مقدار ثابت در بهینه سازی

جدول 3. خلاصه مقادیر بهینه Kᵢ و پارامترهای مدل MIM و CDE در آزمایش‌های مختلف.

<table>
<thead>
<tr>
<th>R²</th>
<th>SSQ</th>
<th>Dₛ (cm)</th>
<th>Dᵣ (cm)</th>
<th>Ω (day⁻¹)</th>
<th>θ₀ (cm³)</th>
<th>Kᵢ (cm min⁻¹)</th>
<th>آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>0.055</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>SWS</td>
</tr>
<tr>
<td>0.98</td>
<td>0.055</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>A</td>
</tr>
<tr>
<td>0.98</td>
<td>0.055</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>A</td>
</tr>
</tbody>
</table>

(SWS): آزمایش‌های با زمان آب‌زدایی مشابه (SD): آزمایش‌های با کاربرد مقادیر مشابه آب و املاح

شکل ۱. مقادیر مشاهده و برآورد شده منحنی رطوبتی با مدل RETC و تركیب مدل‌های Rosetta و RETC و تركیب مدل‌های RETC و Rosetta و اندازه‌گیری شده در SWS.

RETC: مدل استفاده گانم‌گری شده در SWS.

SWS: مدل استفاده گانم‌گری شده در SWS.

CDE, MIM: مقادیر مورد کمترین خطا در محاسبات.

RETC: مدل استفاده گانم‌گری شده در SWS.

SWS: مدل استفاده گانم‌گری شده در SWS.

CDE, MIM: مقادیر مورد کمترین خطا در محاسبات.
برآورد هیپمن های پارامترهای هیدرولوژیکی و انتقال املاح در خاک به روش...

که مدل دو ناحیهی {با پارامترهای MIM} را کرد بررسی قرار داده‌اند (16 و 18) عملکرد شامل مدل‌های یک بعدی بوده و
غلایاً در شرایط جریان اندازه‌گیری یا تجزیه به آن صورت گرفته
است. برای تایید نتایج این تحقیق، بررسی جریان در بعدی در
شرایط غیرماندگار مرز نیاز بود که بررسی منابع بالاتر تر مقدار بهینه به
با دقت در و (3) مقدار در کنار یک مقدار بهینه بعدی MIM
و (5) سانتی متر CDE بوده است اما این تحقیق مقدار بهینه کمی
در گزارش شده بود. مقدار بهینه در گزارش شده به
و دلیل مقدار بهینه است.

مقدمه

مجموعه مربع بالای مانده‌ها (SSQ) در مدل‌های MIM
که مرحله مختلف {به جز پارامتر D_1} در درست (1) خیلی به هم
نزدیک هستند که نشانگر اثر انگک آب ساک در داده‌های این
تحقیق بوده است.

برآورد K_0 و بیش برای همه هیپمن‌ها (به جز کرمت 5
که تقیی دو برابر سایر هیپمن‌هاست) یکسان بود. این تناوب با
مشاهده مزدروکی مختلف داشته است. در حین آب‌های دوم،
حجم آب تغذیه به در مدت زمان تقیی‌کننده، در هیپمن
3 و 5 (با بکار آمده آب 12 و 16 سانتی متر مشابه بوده است. اما بر
خلاف انتظار، زمان کارگردان کوتاه‌تر برای کرمت 5 که عمد آب
کمتری داشته مقدمه کرده. برآورد K_0 با عدد گزارش شده
(تغییرات در الگوی زمانی تغذیه بوده است. تماشا بهینه سازی,
در هیپمن‌ها کمی کننده گردید. برآورد K_0 با عدد گزارش شده
و (6) در هیپمن‌ها از نگاه داد. ضراوب

نتایج

برآورد گزارش‌های آخرین (13 و 14) و بیشترین اینکه
وجود آب ساک نش ممکن در مدل سازی انتقال املاح در
مقیاس مزرعه‌ای دارد. در این تحقیق مقدار بهینه کمی
برای پارامتر (جدول 3) که می‌توان تجربه گرفت آب
سایر نش ممکن در این مطالعه نداشته و تخمین‌گیری
و انتشار
فرایندهای اصلی انتقال بوده‌اند. این تجربه ممکن است به
درشت باید بودن خاک به دست آمده باشد. مقدار
برای کرت های مختلف بین 0/10 تا 0/15 می‌توانند بوده است. مقدار
(CV) ضریب تبادل مربوط به 0 68% می‌باشد (درصد 0/68)
و یک تا دو برابر مقدار گزارش شده مطالعات قبلی در شرایط
آزمایشگاه (16 و 18) و مزرعه (16 و 16) بوده است
(جدول 3) مقدار زیاد پارامتر (N) نشان‌گر تبادل سریع املاح بین
دو ناحیه روان و تابی می‌باشد. می‌توان تجربه گرفت که حتی با
وجود مقدار کم آب ساک، جابجایی املاح بین دو ناحیه بدان
به سرعت انجام شده که تفاوت فرایندهای انتقال بین مدل‌های
CDE و MIM

117
شکل ۲. مقدار مشاهده و برآورد شده تنش سنجی، رطوبت خاک، و غلظت پروماید در همه کرت‌های آزمایشی با استفاده از مدل‌های انتقال MIM و CDE.

امامی ۹۵٪ نشان می‌دهد که آزمایش‌های این تحقیق، داده‌هایی کافی دارند تا نتایج الگوی مصرف شد. این نتایج در منطقه و روش‌های مختلف کرت ها در تولید آب دارای قابلیت و املاح (سطوح اول و دوم جدول ۲ رابطه‌ای وجود دارد. در مجموع، مقدار SD (با رطوبت باید) به دست آمده در کرت‌های SWS (با رطوبت بیشتر) بوده است.

با استفاده از کری‌های کمتر (با رطوبت بیشتر) با رطوبت بیشتر، این نتیجه با تحلیل نظری صورت می‌گیرد توسط مدل رتوشی (۴۲ و ۲۳) که افزایش ضربه انتشار پذیری را در رطوبت‌های کم و تغییرات مکانیکی زایده آن نشان می‌دهد، مقدار دارد. همچنین، به عمق آب داخل جویچه‌ها و زمان کاربرد آب و املاح Dی و استگنیک نشان می‌دهد. تفاوت‌های اثر عمق آب زمان کاربرد و تغییرات خصوصیات خاک بر Dی، الگوهای ساده نیست.

مطالعات نظری و آزمایشگاهی نشان داده است که ضربت
شکل 3: مقادیر رطوبت و استحکام شده در کرت 1 در زمان‌های مختلف پس از آب‌آوری اول. نتایج آب‌آوری دوم (ارائه نشده) کم و بیش از آب‌آوری اول مشابه بوده است.

نطاق میان غلظت آندازه‌گیری شده اصلاح و برآورد آن در ترتیبی سطح خاک ضعیف و برآورد مدل کمتر از مقدار واقعی آن بوده است. اما نتایج در لایه‌های پایین بیشتر بهبود (شکل 2). علی‌رغم برآورد کمتر غلظت حداکثر، مدل به خوبی توانست در زمان‌های مختلف محل پیشروی جبهه اصلاح را تخمین برد.

با وجود اختلاف زیاد میان مقادیر بهبود شده و برآوردها با CDE و MIM مدل‌های پیشرفته آنها (شکل 3) متغیر بوده است. این توجه مجدد حساسیت کم مدل‌های انتقال اصلاح به ضریب انتشار‌برداری طولی در شرایط مزده را نشان می‌دهد که با افزایش و تکرار و همکاران (2) در جریان یک بعدی و فور و همکاران (9) در جریان دو بعدی مطلقات دارد.

جمع بندی

برآوردهای HYDRUS-2D همره با الگوریتم بهبودی سازی لونبرگ–مکوارت در رای تخمین معکوس هدایت وجود دارند و سایر پارامترهای هیدرولوژیکی در بهبود سازی مدل CDE و MIM منجر به بهبود نتایج مدل گردید. مدل‌های انتقال‌زا در گلب موارد از نظر تطبیق مقادیر واقعی با برآورد مشابه بود (شکل 2 و 4). با این توجه داشته که R² ارائه شده در شکل 2 ضریب همبستگی بین مقادیر اندامی شده و برآوردها را برای همه داده‌های بهبود سازی (هر 3 کرت) نشان می‌دهد در حالی که ارائه شده در جدول 3 مربوط به نوع خاصی از داده‌ها (نفوذ) رطوبت و غلظت در یک بهبود سازی واحد می‌باشد. برخی مقادیری که بین مقادیر اندامی شده رطوبت خاک و غلظت اصلاح و برآورد آنها برای کرت 1 در شکل 3 و 4 ارائه گردیده است. کرت 1 به عنوان نماینده زیاد بین پارامترهای بهبود شده مدل‌های MIM و CDE در آن (جدول 3) برای مقایسه انتخاب شده است. مطلقات تطبیقی خوبی میان مقادیر و استحکام شده رطوبت در فاز توزیع مجدد (شکل 3 و 4) دیده می‌شود. اما رطوبت در فاز نفوذ‌برداری (شکل 5 و 6) بیشتر از حد واقعی برآورده شده است.
شکل ۴: غلظت‌های و استحکام شده املاح در کرت ۱ در زمان‌های مختلف نمونه برداری خاک.

(CDE, خط پیسته: مدل MIM)

آزمایشگاهی بوده است اما با مقادیر مزرعه‌ای مشابه داشت. در این آزمایش‌های انتقال و جریان آب در مقیاس مزرعه‌ای و در شرایط غیر ماندگار استفاده شده است. پارامترهای بهبود شده بخصوص هیدرولوژیکی اشباع و ضراب انتشارذپری، با مقداری گزارش شده مطابق با میزان قراردادهای تطابق خوبی داشته است. نتایج نشان داد که آب ساکن (I0m) تحت‌الحمایه به علت باند تشتتر خاک مورد مطالعه نقص مهمی را ایفا نمی‌کند. مقادیر I0m در آزمایش‌های مختلف کم و بیش‌یکسان و دارای حد متوسطه ۵۰/۰۲ cm3/s بوده است. ضربی بندبندی اول بیشتر از مقادیر گزارش شده در مطالعات آزمایشگاهی و مزرعه‌ای بود. این نتیجه، تبادل سریع املاح را با همه آب‌سیستم موجود در کیفی خاک نشان می‌دهد و بنابراین اثر آب ساکن در این تحقیق نسبتاً ناچیز بوده است. این نتیجه میرسی با نتایج‌های اندک در مدل‌های بهبود شده است. CDE و MIM نیز تأیید شده است. مقادیر یکتا انتشارذپری طولی بیشتر از مقادیر

