اثر کادمیم اضافه شده به زمان خواباندن بر شکل‌های شیمیایی کادمیم در دو گروه بانی خاک

مجید رجایی و نجفی‌نژاد کریمیان

چکیده

در میان فلاتس سنگین آلوده کننده خاک، کادمیم از اهمیت ویژه‌ای برخوردار است. زیرا به راحتی به وسیله ریشه گیاه جذب می‌شود و سبب آن تا ۲۰ برای بیشتر از سایر فلاتس سنگین است. بنابراین درک عوامل مؤثر بر قابلیت استفاده این فلز و تغییر و تبدیل آن در خاک از اهمیت قراردار برخوردار است. غرچه در سال‌های اخیر عصاره‌گیری دنباله‌ای به عنوان روش مناسب در تعیین شکل‌های شیمیایی و قابلیت استفاده بالقوه فلاتس در خاک‌های ایران به کار رفته است، اما ظرفیت اجزای مختلف خاک برای نگهداری کادمیم و تغییر و تبدیل شکل‌های شیمیایی آن با زمان کمتر مورد توجه قرار گرفته است. در این پژوهش به منظور بررسی نتایج زمانی شکل‌های شیمیایی کادمیم و تعیین ظرفیت اجزای مختلف خاک برای نگهداری این فلز به یک خاک لوم رسمی آبیکی Fine, mixed (calcareous), mesic Typic Calciserepts از فلاتس در کیلومتری افزوده شد و بافت لوم شنی حاصل به همراه خاک اولیه با مقادیر ۵، ۱۵، ۳۰ و ۶۰ میلی‌گرم کادمیم در کیلوگرم خاک تیمارگذاری گردید. نمونه‌های خاک به مدت ۲، ۴، ۶، ۸ و ۱۰ هفته در رطوبت حدود ظرفیت مزرعه خوابانده شد. در پایان هر زمان با برداشت زیر نمودن شکل‌های شیمیایی کادمیم به روش عصاره‌گیری دنباله‌ای تعیین شد. نتایج نشان داد که به ترتیب در بافت‌های لوم و فلوش ۴۸ و ۷۲ درصد از کادمیم به کار رفته به شکل‌های محلول + تبدیلی کربناتی و آلی در آب در آمد. در بافت لوم شنی مقدار بیشتری از کادمیم به کار رفته در مقایسه با بافت لوم رس به شکل محلول + تبدیلی و کربناتی در آمد. برای سایر شکل‌ها (به جز شکل اکسید آهن متیلور که در تمامی تیمارها کمتر از حد تصور شده دستگاه جذب اتمی بود) عکس این مطلب درست بود. با افزایش سطح کادمیم کاربردی تمامی شکل‌های کادمیم در خاک افزایش یافته، اما درصد این افزایش‌ها به ظرفیت اجزای مختلف خاک برای نگهداری این فلز بستگی داشت. بیشترین ظرفیت نگهداری کادمیم مربوط به بخش کربناتی بود. اثر زمان بر تغییر شکل‌های کادمیم معنی‌دار بود. اما در اثر تیمارها بلا‌افکده پس از افزودن کادمیم به خاک بیش از ۸۰ درصد این فلز وارد شکل‌های کربناتی و آلی گردید و نتایج آزمایش این نسبت تغییری نشان داد.

۱ یکی از دانشجوی دکتری و استاد خاکشناسی، دانشگاه کشاورزی، دانشگاه شیراز

واژه‌های کلیدی: شکل‌های شیمیایی کادمیم، عصاره‌گیری دنباله‌ای، خواباندن
مقدمه
امروزه آلودگی محیط زیست و از جمله خاک به عنوان یکی از مباحث بسیار مهم در زندگی بشر مطرح است. این بین بده تا نه تخریب محیط طبیعی را به دنبال دارد. بنابراین بروز مسیر ایجاد محصولات بیشتر برای سازگاری زمین می‌گردد. فلزات سنگین از جمله موارد آلودگی خاک هستند که در صورت تجمع در خاک و جلب به وسیله گیاه به زنجیره غذایی وارد می‌شوند و مسمومیت های را در گیاهان و یا افراد تغذیه کننده از آنها ایجاد می‌کند. (1، 4، 8، 9، 10، 14 و 26). بنابراین مطالعه راه‌سازی و تغییر و تبدیل ان فلزات در محیط و تاثیر آن بر رشد گیاهان و سایر جانداران زراعی اهمیت خاصی برمی‌خورد.

است

در بین فلزات سنگین، به کادمیم توجه و به‌ویژه شده است. زیرا به لحاظ به وسیله رشد گیاه خاک می‌شود و سبب آن 20 برابر بیشتر از سایر فلزات سنگین است (2). فراهمی زستی بالای کادمیم و احتمال ورود آن به زنجیره غذا، حتی در سطح پایین آلودگی خاک با این فلز سبب شده است که نیاز پیشتری نسبت به فهم عوامل مؤثر قابلیت استفاده این فلز و تغییر و تبدیل آن در خاک احساس شود. به طور کلی قابلیت استفاده کادمیم تحت تاثیر مقدار و منشا کادمیم، pH فلزات، مقدار ماده آلی، مقدار و نوع رس، طرفیت تبدیل کانیوی، و رقابتی سایر عناصر به ویژه روی در خاک می‌باشد (16، 17، 18 و 19).

10 در رابطه به تغییر و تبدیل فلزات در خاک و از جمله کادمیم خود برآن است که عناصر فلزی با بخار محلول پس از افزودن شدید به خاک، دارای بیشتر حلالیت و فراهمی زیستی می‌باشند. با گذشت زمان و ایجاد تیدال بین فلز و خاک به اثر واکنش‌های هم‌وجون جذب سطحی، تیدال، کلاک، رسوب، اکسید و احیا، واکنش با سیستم‌ها و هیودرومایزه‌های آهن و منگنز و ورود به شکل کانی قابلیت استفاده فلز کاهش یافته و فلزات از شکل‌های با حلالیت کمتر تبدیل خاکی می‌شوند. (20، 21، 22، 23 و 24).

98
گرچه در سال‌های اخیر در خاک‌های ایران از عصاره‌گیری دنباله‌ای جهت تعیین شکل‌های شیمیایی قلاته و از جمله کادیم استفاده شده است (۱۵، ۲۳). اما طرفین اجرای مختلف این جهت‌ها برای جذب و نگهداری کادیم و تغییر و تبدیل شکل‌های شیمیایی این فلز با گذشت زمان کمتر مورد توجه قرار گرفته است. بنابراین در تعیین حاضر سعی شده تا با استفاده از عصاره‌گیری دنباله‌ای و سطح بالایی کادیم مقدار تغییر و تبدیل کادیم در طول زمان و طرفین خاک برای تبدیل این فلز در یک آزمایش خوابیدن بررسی شود. هم چنین تأثیر باتف خاک بر سرنوشت کادیم به کار رفته کا افروند شن به یک بافت لوم رسی و تبدیل آن به بافت لوم مورد مطالعه قرار گرفته.

مواد و روش‌ها

در تعیین حاضر از دو گروه باتفی استفاده شد. برای گروه باتفی اول، نمونه‌هایی از حاکم لوم رسی آهکی [Fine, mixed (calcareous), mesic Typic Calixerpts] اسناد نواحی تحقیقات دانشگاه کشاورزی دانشگاه شیراز از عمق ۲۰ سانتی‌متر جمع‌آوری شدند. پس از خشک کردن در هوا و یون در میلی‌متری در آزمایش به کار رفت.

جهت تعیین گروه نواحی لومی به کار گرفته، نمونه‌ها به مدت ۲۰ میلی‌متری قطع شدند. سپس از آن‌ها عصاره‌گیری یافت و آزمایش شد.
جدول 1. خلاصه‌ای از روشهای عصاره‌گیری دنیالهای آزمایشی به وسیله سنگین و همکاران (1978) برای تعیین شکل‌های شیمیایی فلزات در خاک‌های آهکی

<table>
<thead>
<tr>
<th>شکل شیمیایی کادمیم</th>
<th>علامت</th>
<th>ترکیب عصاره‌گیر</th>
<th>متعدّد تکان دادن (ساعت)</th>
<th>نسبت خاک به عصاره‌گیر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1M Mg(NO₃)₂</td>
<td>2</td>
<td>5/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1M NaOAc(pH=5 CH₂COOH)</td>
<td>5</td>
<td>5/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7M NaOCl (pH=8.5)</td>
<td>0/5</td>
<td>5/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1M NH₂OH.HCl (pH=2 HNO₃)</td>
<td>0/5</td>
<td>5/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25M NH₂OH.HCl + 0.25M HCl</td>
<td>0/5</td>
<td>5/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2M (NH₂)₂C₂O₄ + 0.2M H₂C₂O₄ + 0.1 MC₆H₈O₆</td>
<td>0/5</td>
<td>5/50</td>
</tr>
</tbody>
</table>

جدول 2: بعضی از ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد آزمایش

<table>
<thead>
<tr>
<th>خاک</th>
<th>فاصله سپک لوم شنی</th>
<th>بافت لوم رسی</th>
<th>شن (درصد)</th>
<th>سیلت (درصد)</th>
<th>رس (درصد)</th>
<th>کادمیم کل (میلی گرم در کیلوگرم خاک)</th>
<th>کریت و کلسیم معادل (درصد)</th>
<th>ب- هاش (خمیر اشباع)</th>
<th>ظرفیت تبدیل کاتیونی (سانتی مول بالا در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>27</td>
<td></td>
<td>37</td>
<td></td>
<td>22</td>
<td>1/1</td>
<td>158</td>
<td>32</td>
<td>7/57</td>
</tr>
</tbody>
</table>

نتیجه‌گیری: در جدول 2 نشان داده شده است. لازم به ذکر است که شکل‌های تعیین شده در توانایی غلظت کادمیم کل عصاره‌گیری و نسبت به مخلوط سه اسید (31) و مجموع سایر شکل‌های دیگری که در این مطالعه تجربه کامل، ماده کالی (2) و سپرده برخاسته کامپیوتر، انجام و با استفاده از آزمون F مورد تجربه Mstastc تأثیر ماده زمینه به حداقل برسد. خلاصه مرحله عصاره‌گیری

* : دوبار عصاره‌گیری
جدول 3: اثر اصلی بافت‌های مورد آزمایش بر شکل‌های شیمیایی کادمیم

<table>
<thead>
<tr>
<th>شکل‌های شیمیایی (میلی‌گرم در کیلوگرم خاک)</th>
<th>Res</th>
<th>CFeOx</th>
<th>AFox</th>
<th>MnOx</th>
<th>Om</th>
<th>Car</th>
<th>Ex + Sol</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوم رسی</td>
<td>06</td>
<td>09 a</td>
<td>12</td>
<td>89</td>
<td>78</td>
<td>05</td>
<td>02 a</td>
</tr>
<tr>
<td>لوم شی</td>
<td>07</td>
<td>09 a</td>
<td>15</td>
<td>01</td>
<td>43</td>
<td>06 b</td>
<td>07 a</td>
</tr>
</tbody>
</table>

اعتماد کد در هر ستون دارای یک حرف مشترک هستند. بر اساس آزمون دانک فاصله تاقیی معنی‌دار در سطح احتمال 5 درصد می‌باشد.

نیکل لیگران در نظر گرفته شده است. میانگین‌های مربوط به هر اصلی هر یک از عامل‌ها و بر همکنش آن‌ها استخراج با آزمون دانک مقایسه شدند. رسم نمودار توزیع شکل‌های شیمیایی کادمیم با استفاده از نرم‌افزار Excel برمگری کامپیوتری انجام گرفت.

نتایج و بحث

نتایج مربوط به تجزیه فیزیکی و شیمیایی بافت‌های مورد استفاده در جدول 2 ارائه شده است. بافت لوم رسی خاک غیر آلوود با بافت سگن، ماده آلی میکروسکوپیک، کربنات کلسیم بالا و پ-هاش قلابی می‌باشد. انرژی در سن کوارتی سبب سبک شدن بافت و کاهش در کادمیم کل، ماده آلی و کربنات کلسیم این خاک شد و در مقایسه پ-هاش تغییری ایجاد نکرد.

نتایج مربوط به اثر بافت بر شکل‌های شیمیایی کادمیم در جدول 3 ارائه شده است. تأثیر بافت بر این شکل‌ها در سطح 5 درصد معنی‌دار بود. میانگین‌ها نشان داد که شکل‌های شیمیایی آلی، اکسیدهای منگنیز، اکسیدهای آهن یی به شکل و تنه در بافت لوم رسی بیشتر از بافت لوم شی و به ترتیب 0/875, 0/79, 0/75, 2/31, 3/24, 0/36 و 0/32 میلی‌گرم در کیلوگرم خاک بود. در مقابل در بافت لوم شی شکل محول + پت و شکل کربنیک بافت لوم شی نیز بیش از این شکل‌های بینایی از قبیل استفاده زیستی پت و شکل کربنیک در بافت لوم شی به است که به ویژه پت‌هشوگرگان دیگر به مکرر شده است. (8, 12, 14, 16, 17, 20 و 25). میانگین کمتر شکل‌های آلی اکسیدهای منگنیز، اکسیدهای آهن یی به شکل و تنه در بافت لوم شی را می‌توان به رفیق شدن این اجزای بی‌ثر افزوده شن.
جهت تهیه گروه بافتی سبک نسبت داد. لازم به ذکر است که در هردو خاک و برای همه تیمارهای مختلف کاشیم محله به اکسیدهای آلی و آلومینیوم (کنتینای) ناپذیر و همکار از حد تشخیص دستگاه جدید اتم (50/500 میلی‌گرم در کیلوگرم) بود.

این امر از خاکی امکان کامل کاشیم برای ورود به چنین شکلی در خاکها و در شرایط آزمایش حاضر بود.

داده‌های مربوط به آن‌العملی و بر همکنش زمان و مساحت کاشیم در دو بافت مورد آزمایش در جدول‌های ۴ و ۵ نشان داد. هم‌اکنون در هردو بافت و در زمان‌های اضافی سطح محله‌های شیمیایی کاشیم به طور معنی‌داری افزایش یافته است. افزایش نمایان شکل‌های شیمیایی کاشیم در همان ابتدا آزمایش‌های پیشگیر دسترسی به عادل و روس کاشیم به شکل فاکتوری معنی‌داری می‌باشد. این امر نشان می‌دهد که تاثیر زیاد خاکی مورد مطالعه را برای جذب و نگه‌داری کاشیم نشان داده‌است. در پژوهشی که توسط رنالا و همکاران انجام گرفت، جدا سازی شکل‌های شیمیایی کاشیم در یک آزمایش خواندن ۵۰۰ روز نشان داد که در همان ابتدا آزمایش (رژیم اول) کاپرکرد مقداری و ۱۰ میلی‌گرم کاشیم در کیلوگرم خاک (به شکل سه‌دفاه کاشیم) همین‌طور کمیک‌سازی جزئی گیرنده‌های نگهداری کاشیم با افزایش سطح محله و افزایش ظرفیت بهتر یکی از عوامل که به نسبت بالا بودن کاشیم در شکل‌های خاک‌های ایران می‌تواند از اقتدار نیست. گرچه در صد کاشیم سطح لیف کاشی در بافت لیف رسی افزایش به اندازه‌ای بود که بسیاری از اختلافات درگیر در رابطه با متریال‌های مختلف را به کمتر شدن مقدار نسبی سایر اجزای خاک بر انبارهای شیمیایی کاشیم را به‌طور کلی به خود جای‌ده. شکل‌های ۱ و ۲ درصد شکل‌های شیمیایی کاشیم در افزایش سطح لیف در میان زمان ۱۶ هفته و برای در بافت میدان کاشیم می‌باشد. لازم به ذکر است که در سایر زمان‌ها نیز روند تقریباً مشابهی مشاهده شد.
جدول ٢: تأثیر زمان و سطح کادمیم بر شکل‌های شیمیایی این فلز (میلی‌گرم در کیلوگرم خاک) در باتِ لوم رقی

<table>
<thead>
<tr>
<th>زمان (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مخلوط هیاک</td>
<td>نیابش</td>
</tr>
<tr>
<td>١/٢٤</td>
<td>١/٢٤</td>
</tr>
<tr>
<td>١/١٥</td>
<td>١/١٥</td>
</tr>
</tbody>
</table>

�یانگین‌های که در هر ستون و با در هر روز دارای یک هزینه مشترک هستند، بر اساس آزمون ناگفته فاقد دیافراگم در سطح احتمال ٠/٠٠ برآورد می‌شوند.
جدول ۵: تأثیر زمان و سطح کادمی بر شکل‌های شیمیایی این فاز (میلی‌گرم در کیلوگرم خاک) در بافت لوم شن

<table>
<thead>
<tr>
<th>میلی‌گرم</th>
<th>محصول + بانلی</th>
<th>کربناتی</th>
<th>آلی</th>
<th>میلی‌گرم در کیلوگرم خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>nd</td>
<td>nd</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/16 C</td>
<td>1/16 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/8 C</td>
<td>1/8 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/4 C</td>
<td>1/4 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/2 C</td>
<td>1/2 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3/4 C</td>
<td>3/4 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3/2 C</td>
<td>3/2 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1 C</td>
<td>1 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/2 C</td>
<td>1/2 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/4 C</td>
<td>1/4 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/8 C</td>
<td>1/8 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1/16 C</td>
<td>1/16 C</td>
<td>3/4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

شیمیایی که در سیستم و با هر رنگ دارای یک حرف مشترک هستند، بر اساس آزمون ذکر، فاقد تفاوت آماری معنادار در سطح احتمال ۵ درصد می‌باشند.
بررسی شکل‌های شیمیایی کادمیما با گذشت زمان نشان دهنده تغییرات معنی‌داری بود. البته با گذشت زمان بعضی شکل‌ها روند ثابتی را به طور معنی‌داری نشان دادند و بعضی دیگر دارای تغییرات ناپدید بودند. به طور مثال در هر دو بافت و در تمام سطوح پس از گذشت ۱۶ هفته شکل محلول + تبدیل به طور معنی‌داری کاهش یافت و به ترتیب برای بافت‌های لوم رسی و لوم شنی از میانگین ۸۷، ۸۴ و ۶۱ میلی‌گرم در کیلوگرم خاک رسید. در مقاله، در هر دو بافت، شکل‌های محلول با کاهش‌های منظم به گذشت زمان کاهش یافت. غلظت سایر شکل‌های شیمیایی کادمیما با گذشت زمان نوسانات داشت و با کمی کاهش یافت. و با کمی افزایش همراه بود (جدول‌های ۴ و ۵). کاهش غلظت شکل محلول + تبدیل و افزایش غلظت کادمیما متناسب با اکسیدهای مغنیزیم امری در اندازه‌گیری بود. نزدیک تغییر شکل‌های محلول فازات با گذشت زمان و تبدیل آنها به شکل‌های با حالیت کمتر توسط پروتئزگران دیگری نیز گزارش شده است (۱۰، ۱۱، ۱۳، ۲۱، ۲۳). در جدول برای نوسان غلظت سایر شکل‌ها دیلیت قانون‌کندهای وجود داشت اما شاید یتوان

<table>
<thead>
<tr>
<th>شکل ۱</th>
<th>مقدار نسبی شکل‌های شیمیایی کادمیما با‌افراش</th>
<th>سطوح‌این فاز در بافت‌لوم رسی و زمان ۱۶ هفته</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sol+Ex</td>
<td>Car</td>
</tr>
<tr>
<td>۰٪</td>
<td>۹۰٪</td>
<td>۹۰٪</td>
</tr>
<tr>
<td>۱۰٪</td>
<td>۸۰٪</td>
<td>۸۰٪</td>
</tr>
<tr>
<td>۲۰٪</td>
<td>۷۰٪</td>
<td>۷۰٪</td>
</tr>
<tr>
<td>۳۰٪</td>
<td>۶۰٪</td>
<td>۶۰٪</td>
</tr>
<tr>
<td>۴۰٪</td>
<td>۵۰٪</td>
<td>۵۰٪</td>
</tr>
<tr>
<td>۵۰٪</td>
<td>۴۰٪</td>
<td>۴۰٪</td>
</tr>
<tr>
<td>۶۰٪</td>
<td>۳۰٪</td>
<td>۳۰٪</td>
</tr>
<tr>
<td>۷۰٪</td>
<td>۲۰٪</td>
<td>۲۰٪</td>
</tr>
<tr>
<td>۸۰٪</td>
<td>۱۰٪</td>
<td>۱۰٪</td>
</tr>
<tr>
<td>۹۰٪</td>
<td>۰٪</td>
<td>۰٪</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شکل ۲</th>
<th>مقدار نسبی شکل‌های شیمیایی کادمیما با‌افراش</th>
<th>سطوح‌این فاز در بافت‌لوم رسی و زمان ۱۶ هفته</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sol+Ex</td>
<td>Car</td>
</tr>
<tr>
<td>۰٪</td>
<td>۹۰٪</td>
<td>۹۰٪</td>
</tr>
<tr>
<td>۱۰٪</td>
<td>۸۰٪</td>
<td>۸۰٪</td>
</tr>
<tr>
<td>۲۰٪</td>
<td>۷۰٪</td>
<td>۷۰٪</td>
</tr>
<tr>
<td>۳۰٪</td>
<td>۶۰٪</td>
<td>۶۰٪</td>
</tr>
<tr>
<td>۴۰٪</td>
<td>۵۰٪</td>
<td>۵۰٪</td>
</tr>
<tr>
<td>۵۰٪</td>
<td>۴۰٪</td>
<td>۴۰٪</td>
</tr>
<tr>
<td>۶۰٪</td>
<td>۳۰٪</td>
<td>۳۰٪</td>
</tr>
<tr>
<td>۷۰٪</td>
<td>۲۰٪</td>
<td>۲۰٪</td>
</tr>
<tr>
<td>۸۰٪</td>
<td>۱۰٪</td>
<td>۱۰٪</td>
</tr>
<tr>
<td>۹۰٪</td>
<td>۰٪</td>
<td>۰٪</td>
</tr>
</tbody>
</table>
شکل ۴: مقدار نسبی شیمیایی کادمیم با گذشت زمان در بافت لوم شنی و سطح ۳۰ کادمیم

در سطح ۳۰ میلی‌گرم کادمیم در کیلوگرم و برای دو بافت مورد آزمایش نشان می‌دهند. لازم به ذکر است که سایر سطوح نیز از روند تقریباً مشابهی پیروی می‌کرده‌اند.

نتیجه‌گیری

نتایج این پژوهش نشان داد که طرفیت کریستال کلسیم برای نگهداری کادمیم در خاک‌های مورد مطالعه بالاست و این خاک‌ها قادرند که مقادیر زیادی فلز را به سرعت تثبیت کرده و به شکل کریستالی تبدیل کنند. در هر حال تبدیل بعضی کادمیم كاربردی به شکل‌های شیمیایی که توسط عصاره‌گیره‌های نسبتاً ضعیف عصاره‌گیری می‌شوند و عدم تغییر این شکل‌ها در

منابع مورد استفاده

1. حسینی، س. م. ط. و ش. حاج رسولی‌ها. ۱۳۷۴. تعیین فرم‌های شیمیایی غالب عناصر سنگین در خاک اطراف کارخانه‌های ذوب آهن اصفهان و رسوبات تخنیکی به روش عصاره‌گیری آنتئور. خلاصه مقالات چهارمین کنگره علوم خاک ایران، دانشگاه صنعتی اصفهان، صفحه ۱۶۸-۱۶۹.
2. نویاند. غ. ر. و. ج. ملکبوتی. ۱۳۷۹. اثرات روی و کادمیم بر غلظت عناصر و ترکیب شیمیایی دانه گندم. آب و خاک

۵. کریمیان، ن. غ. ابتدایی و ح. شریعت‌لاری. ۱۳۸۲. اثرات تجمیع و باقی‌مانده کود کمیسیون بر اشکال شیمیایی فلزات سنگین در یک خاک آلی. خلاصه مقالات هشتمین کنفرانس علوم خاک ایران، رشت، صفحه ۵۴۵-۵۵۴.

