اثرات تجمعی و باقیمانده لجن فاضلاب شهری بر غلظت عنصر سرب و کادمیم

در خاک و گیاه گندم

مهدی کرمی، یحیی رضایی‌نژاد، ماجد افیونی و حسین شریعتمداری

چکیده

استفاده از لجن فاضلاب به عنوان کود افزاینده خاک و گیاه از عناصر غذایی در مناطقی از کشور، رواج یافته است. اما کاربرد لجن فاضلاب در مقادیر زیاد افزایش غلظت عنصر سرب و کادمیم در خاک و گیاه انتقال نبوده است. بنابراین بررسی تأثیر لجن فاضلاب در خاک و گیاه‌ها، می‌تواند به استفاده از این لجن در کشاورزی کمک نماید. در این مطالعه به غلظت عنصر سرب و کادمیم در خاک و گیاه پایه یک لجن افزایش‌های کاهشی به اندازه‌ای بود که مقادیر ممکن سرب و کادمیم را از طریق روش‌های کشاورزی به‌خصوص بهره‌مندی‌های جدید غالبی خواهند داشت. بنابراین لجن فاضلاب می‌تواند به کاهش غلظت عنصر سرب و کادمیم کمک نماید.

کلمات کلیدی: لجن فاضلاب، تأثیر تجمعی، باقیمانده، سرب، کادمیم، گندم

1. به ترتیب دانشجوی دکتری، استادیار و دانشجوی دکتری، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
مقدمه

در جهان سالن‌های مقایسه زیادی لین فلزات نیوترونی را مورد بهبود و تمرکزی تهیه کرد. مورد بهبود که
میزان قابل توجهی از آن به عنوان کود در زمین‌های کشاورزی
استفاده می‌شود. این در حالی است که حضور عناصر غذایی کم
صرف و نیز عناصر سمت مانند سرب، کadmیم، چیو، آرسنیک،
سلنیوم و نیکل، استفاده به روابط از لین در زمین‌های کشاورزی
را محدود می‌کند (7 و 8). زیرا کاربرد زیاد لین موجب ب
ایجاد نارضایتی از حد این عناصر در خاک گردیده و احتمالاً
جذب بیش از اندازه این عناصر به ویژگی‌های گیاهی و انتقال آنها به
به گرفتن چربی را به دنیای خواهد داشت. بر اساس گزارش
می‌باشد که باعث فلزات مصرف لین فلزات سبب خستگی
غلط عناصر سرب، چیو، نیکل، سلنیوم و کادمیم تا 100 برای
غلط عناصر این در خاک می‌گردد (7). سرب همکنی از
آلین‌هایی عمده می‌باشد و برای انسان نیاز به مصرف سیستمی است.

تاریخچه جذب‌کننده (Time bomb effect)

شده است. بر اساس نظریه اثر بمب زمان (Aging effect)
این نگرانی وجود دارد که فلزات سنگین در خاک‌های تیمار
شده با لیزری فلزات، با کشش زمان محرک شده و قابلیت
دسترسی افراد برای کار به افزایش می‌باشد (6)، از جمله
تجهیز مایع آلی و اکسپاسیون کردن ذخایر این مسئله می‌باشد (7).

(24) از سوی دیگر معتقدند که بر اساس نظریه اثر کننده
قابلیت دسترسی فلزات سنگین وارد شده به خاک برای افزایش
فلزات سنگین به طول کشیده و در سال ورود از کاربرد لین با آنان روند در سال‌های بعد با قابلیت
دسترسی کمی باید افزایش در مختصاتی به وجود می‌دهد. چنین
و همکاران (6) گزارش کردند که پیشینه جذب فلزات به
در دو سال اول پس از کاربرد لین انفجار مختلف سیس این
جذب کمتر شده و به صورت ثابت با زمان ادامه پیدا می‌کند.

درختنه جذب‌کننده (Uptake plateau concept)

فوتی و برایان (5) مطرح کردند بر این اساس استوار است که جذب
فلزات سنگین توسط گیاه به عنوان منبع خطره از شدت
افزایش فلز در خاک صورت می‌گیرد تا اینکه یک حد بیشینه
رسیده و پس از آن مقدار جذب ثابت می‌شود. این امر می‌تواند
تاثیب فیزیولوژی کیایا به شکل نرمال (کربن‌کاری) و
مشاهده کرد. در نتیجه کوتاه مدتی که بر روی کاربرد
لن فلزات می‌گردد عامل مانند افزایش موقت در
pH اثر رفت‌آوری از رشد آذر رفت‌آوری داشته‌اند. در تهیه
په اثر سیستم ریشه که توانایی
گیاهان برای جذب فلزات سرمایه‌های مهارتی در طول مطالعات
طولانی مدت بیشتر باعث می‌شود و در بعضی موارد
جذب ثابت کمتر مشاهده می‌شود (33).

نظر به حفظ سلامت مصرف کندکان، کنترل و ضعیفیت فلزات

در رابطه با اثر "گذشته زمان" بر وضعیت فلزات سنگین در
خاک و قابلیت دسترسی آنها برای گیاه نظارت متفاوتی مطرح

80
محلول انجام آزمایش

این پژوهش با کاربرد سطوح مختلف لجن فاضلاب شهری در خاک و گیاه گندم رنگ مهدوی (Triticum aestivum) در مزرعه تحقیقاتی دانشگاه شیترزی دانشگاه صنعتی اصفهان (لورک، نجف آباد) واقع در 40 کیلومتر جنوب غرب شهر اصفهان انجام شد. خاک مطالعه دردره ارید سول سزار دارد (میانگین). دمای سالانه هوا در این مطالعه لورک نجف آباد 12/5 درجه سانتی گراد و متوسط بارندگی 140 میلی‌متر است.

طرح آزمایش و روش یاد کردن ترمیم

سطوح مختلف لجن فاضلاب شهری (همس شده به صورت پی‌هوازی) به عنوان فاکتور A (100 و 150 مگاگرم در هکتار) و یک گروه سطح B (0.1 و 0.2) در هر جفت در 4 سال کوده‌دار همراه با تغییر شاد در قابل طرح کرتیه خرد شده باید چهار بلوک‌های کامل نقش‌دهی در سه تکرار به کار رفته. در سال
جدول 1. برخی ویژگی‌های شیمیایی لجن فاضلاب مورد استفاده و مقادیر فلزات (mg/kg) برخی عناصر سنگین آن با استانداردهای USEPA503

<table>
<thead>
<tr>
<th>پارامتر‌اندازه‌گیری شده</th>
<th>واحد</th>
<th>حدم‌بردار استاندارد USEPA503</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>6.4</td>
</tr>
<tr>
<td>قابلیت هدایت الکتریکی</td>
<td>dS m⁻¹</td>
<td>1.0</td>
</tr>
<tr>
<td>ماده آلی</td>
<td>%</td>
<td>15.0</td>
</tr>
<tr>
<td>نیتروژن</td>
<td>%</td>
<td>1.23</td>
</tr>
<tr>
<td>فسفر</td>
<td>%</td>
<td>0.54</td>
</tr>
<tr>
<td>پتاسیم</td>
<td>%</td>
<td>0.87</td>
</tr>
<tr>
<td>آهن</td>
<td>%</td>
<td>0.33</td>
</tr>
<tr>
<td>سرب</td>
<td>mg kg⁻¹</td>
<td>5.0</td>
</tr>
<tr>
<td>چربی</td>
<td>mg kg⁻¹</td>
<td>180.0</td>
</tr>
<tr>
<td>روت</td>
<td>mg kg⁻¹</td>
<td>17.0</td>
</tr>
<tr>
<td>آرسنیک</td>
<td>mg kg⁻¹</td>
<td>17.0</td>
</tr>
<tr>
<td>مس</td>
<td>mg kg⁻¹</td>
<td>110.7</td>
</tr>
<tr>
<td>استانداردها</td>
<td></td>
<td>150.0</td>
</tr>
</tbody>
</table>

آیکس (XRF) نیز اندازه‌گیری شد (1). تحلیل‌های آماری آنالیزهای آماری برای بررسی تغییرات غلظت عناصر و مقادیرهای ظهور کاربرد لجن، زمان و اثر متقابل این دو فاکتور با نرم‌افزارهای MSTATC و SAS و آنتیجی‌های مقاپس میانگین‌ها با آزمون LSD در سطح احتمال 5% انجام شد. برای محاسبه‌ی این آزمون نرم‌افزار EXCEL انتخاب شد.

نتایج و بحث

ویژگی‌های شیمیایی لجن فاضلاب مورد استفاده

اثار کاربرد لجن فاضلاب در زمین‌های کشاورزی بستگی زیادی به خصوصیات لجن مورد استفاده دارد. برخی ویژگی‌های شیمیایی لجن فاضلاب مورد استفاده در جدول 1 آورده شده است. لجن فاضلاب مورد استفاده تا حدودی pH آتی خاک به روش آسیابش‌تر صورت گرفت (36). شکل قابل جذب فلزات سرب و کادیم در نمونه‌های خاک به وسیله (Diethylene Triamine Pentaacetic Acid - DTPA) محلول عصاره‌گیری شد (20). برای اندازه‌گیری غلظت کل این عناصر در حالت نمونه‌ها توسط استیاس نیتریک بار درمانی فلزات و عصاره‌گیری شدند (32). پس از برداشت نمونه‌های گیاهی شامل ریشه، ساقه و دانه، در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.

ملیت، ساقه و دانه) در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.

ملیت، ساقه و دانه) در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.

ملیت، ساقه و دانه) در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.

ملیت، ساقه و دانه) در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.

ملیت، ساقه و دانه) در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.

ملیت، ساقه و دانه) در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.

ملیت، ساقه و دانه) در آن به مدت 48 ساعت در دمای 25 درجه سانتی‌گراد خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به روش آسیابش‌تر (استنداردریکز) برای ولکان‌ریزی، آب کسب‌یابی (100)، استانداردهای غلظت انسدادمی‌شود.
جدول 2 برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه تا عمق 20 سانتی‌متری

<table>
<thead>
<tr>
<th>پارامتر اخاذگری شده</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوئیس</td>
<td>-</td>
<td>بافت</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>8.3</td>
</tr>
<tr>
<td>O.C</td>
<td>%</td>
<td>0.46</td>
</tr>
<tr>
<td>CEC</td>
<td>cmol / kg</td>
<td>14</td>
</tr>
<tr>
<td>ECE</td>
<td>dm³</td>
<td>1/1</td>
</tr>
<tr>
<td>کربن کلی معادل</td>
<td>g kg⁻¹</td>
<td>395/3</td>
</tr>
<tr>
<td>کلر</td>
<td>mg kg⁻¹</td>
<td>110/4</td>
</tr>
<tr>
<td>سرب کل</td>
<td>mg kg⁻¹</td>
<td>19/13</td>
</tr>
<tr>
<td>کادمیوم</td>
<td>mg kg⁻¹</td>
<td>0/33</td>
</tr>
</tbody>
</table>

تاثیر لجن فاضلاب بر برخی خصوصیات شیمیایی خاک

جدول 2 برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه را نشان می‌دهد. کابرد لجن فاضلاب اثر معنی‌داری بر pH خاک نداشت، اما به شکل معنی‌داری کربن، آلی خاک را تغییر داد (جدول 3). در این رابطه، افزایش کابرد لجن در سال‌های متوالی افزایش بیشتر کربن آلی را به همراه داشت است (جدول 3). به طور کلی در خاک‌های آلی خاک عاشقی با دیل با این بودن...
جدول 3: مقایسه میانگین‌های ویژگی‌های شیمیایی خاک در تیمارهای مختلف لجن فاضلاب

<table>
<thead>
<tr>
<th>ECE (DS m⁻¹)</th>
<th>CEC (cmol kg⁻¹)</th>
<th>O.C %</th>
<th>PH</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3/5bd</td>
<td>17/5bd</td>
<td>0/51d</td>
<td>A/12</td>
<td></td>
</tr>
<tr>
<td>1/1 d</td>
<td>15/2 ef</td>
<td>0/46d</td>
<td>V/8</td>
<td></td>
</tr>
<tr>
<td>1/2/5bd</td>
<td>15/8 def</td>
<td>0/22b</td>
<td>A/3</td>
<td></td>
</tr>
<tr>
<td>1/4/5bd</td>
<td>15/5 d</td>
<td>0/69c</td>
<td>A/3</td>
<td></td>
</tr>
<tr>
<td>1/1/4 d</td>
<td>16/7 cde</td>
<td>0/51d</td>
<td>A/3</td>
<td></td>
</tr>
<tr>
<td>1/2/5d</td>
<td>15/4 def</td>
<td>0/49c</td>
<td>A/3</td>
<td></td>
</tr>
<tr>
<td>1/5/5c</td>
<td>18/5 bc</td>
<td>0/22b</td>
<td>V/8</td>
<td></td>
</tr>
<tr>
<td>1/2/5d</td>
<td>15/5 d</td>
<td>0/49c</td>
<td>A/3</td>
<td></td>
</tr>
<tr>
<td>1/1/5 d</td>
<td>12/6 cde</td>
<td>0/18c</td>
<td>A/3</td>
<td></td>
</tr>
<tr>
<td>1/2/5c</td>
<td>21/1 a</td>
<td>0/97c</td>
<td>V/8</td>
<td>1000100</td>
</tr>
<tr>
<td>1/2/1 1</td>
<td>24/9 a</td>
<td>3/33a</td>
<td>A/3</td>
<td>1000400</td>
</tr>
<tr>
<td>1/4/8 d</td>
<td>14/9 d</td>
<td>0/45d</td>
<td>A/3</td>
<td></td>
</tr>
</tbody>
</table>

شاید

خاک داشت (جدول 4). بررسی اثرات باریک مانده لجن بر سرب کل خاک حاکی از آن است که مقادیر سرب مربوط به تیمارهای یک سال کوددهی که از 2 سال پیش تا کنون در شرایط کارکردن مه‌چنان بیش از مقدار سرب شاهد است. این امر دلیلی بر تجمع سرب در افق سطحی و آبخویی کم آن به ابعاد خاکی می‌باشد. بررسی اثرات تجمعی لجن نشان داد که با افزایش سطح کارکردن لجن از 25 به 100 مگاگرم در هektار رشد تغییرات سرب کل خاک خطر و افزایشی می‌باشد. با افزایش تعداد سال‌های کوددهی از یک به 4 سنی سرب کل خاک به طور منظم افزایش می‌یابد (جدول 4). مقادیرش نشان داد که در تیمارهای افزایشی با حداکثر شویی سرب کل خاک سرب در این تیمارها کمتر از حدود مجاز پیشنهاد شده می‌باشد (31).

بی‌پیشنهاد

تأثیر لجن فاضلاب بر فلزات سنگین در خاک

مقدار کل و قابل جذب عنصر سنگین در خاک در نتیجه کاربرد لجن فاضلاب، شاخص مهمی است که می‌تواند جهت ارزیابی آلودگی در خاک‌های تحت تیمار فاضلاب به کار رود. جدول 4 غلظت کل و قابل جذب سرب و کادمیوم در خاک را نشان می‌دهد. به طور کلی لجن فاضلاب غلظت کل و قابل جذب سرب و کادمیوم در خاک را افزایش داد. نتیجه‌ای این تأثیر با توجه به سطح لجن به کار رفته و نیز مدت زمان سیری شده از آنها کوددهی می‌باشد.

سرب کل خاک

به طور کلی لجن فاضلاب اثر معنی‌دار بر افزایش سرب کل

84
جدول 2. مقایسه میانگین‌های غلظت کل و قابل جذب عناصر سنگین خاک (mg/kg) در تیمارهای مختلف لجن فاضلاب

<table>
<thead>
<tr>
<th>Tیمار</th>
<th>DTPA Cd</th>
<th>DTPA Pb</th>
<th>Total Cd</th>
<th>Total Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/0/5d</td>
<td>2/0/5d</td>
<td>2/0/9ef</td>
<td>2/0/9ef</td>
</tr>
<tr>
<td>2</td>
<td>2/0/5f</td>
<td>2/0/5f</td>
<td>2/0/9ef</td>
<td>2/0/9ef</td>
</tr>
<tr>
<td>3</td>
<td>2/0/5f</td>
<td>2/0/5f</td>
<td>2/0/9ef</td>
<td>2/0/9ef</td>
</tr>
<tr>
<td>4</td>
<td>2/0/5f</td>
<td>2/0/5f</td>
<td>2/0/9ef</td>
<td>2/0/9ef</td>
</tr>
<tr>
<td>5</td>
<td>2/0/5f</td>
<td>2/0/5f</td>
<td>2/0/9ef</td>
<td>2/0/9ef</td>
</tr>
</tbody>
</table>

میانگین‌ها با اموزن LSD در سطح اختلال 5% مقایسه گردیدند. در هر ستون و برای هر عامل آزمایش تفاوت هر دو میانگین که

حداقل دارای یک حرف مشترک هستند، معنی‌دار نیست.

سرب قابل جذب خاک

اثر لجن فاضلاب بر افزایش سرب قابل عصاره‌گیری با DTPA

بفاصلین سطح لجن از 25 به 50 و سپس 100 میکرومتر در هر کاربرد

سرب قابل جذب خاک به صورت خشک افزایش می‌یابد. با افزایش میزان دلاده کودده یونژانت پارامتر افزایش می‌یابد. این افزایش خصوصاً از سبب دوم به سوی پنج‌درصد می‌رسد (جدول 4). به عبارتی، قابلیت دسترسی سرب در تیمارها به 3 تا 4 ساعت زمانی از کاربرد لجن در آنها تا شده بود، به میزان قابل توجهی کمتر از تیمارهای است که در 2 ساعت اختیار کود دریافت گردند. این مسئله به توجه افزایش میکروویاژیزما در تریاگر افزایش مقادیر بیشتر کود در سالهای سوم و چهارم کودده باشد که منجر به تسریع افزایش می‌شود. مدتی میانگین 3 ساعت و سرب قابل جذب خاک را افزایش داده است. ضمن آن که تیمارهای 1 و 2 سال کودده‌های زمانی کافی به دلیل انجام واکنش‌های شیمیایی که منجر به رسوب‌های کرده داده است را دارا گردیدند. یکی از مهم‌ترین اثرات Tیمار DTPA می‌باشد (29)، بررسی اثر تجمع لجن فاضلاب نشان داد که
پیشتر تجزیه شده است (درمان بالا و وجوه آب به صورت آبیاری به این اکرم کرده است) در نتیجه رهاشی شدن از فلزات. پیوند شده با مواد آلی بیشتر بوده است. هنگام اثر گیری های خاک از حجم pH بالایی خاک، مقادیر زیاد رس و خاصیت باقی کربنات کلسیم شرایط مناسب جهت رسوب و چرب، اختصاصی فلزات آزاد شده را فراهم کرده و سبب کاهش قابلیت جذب آنها گردیده است (۲۲). چنگک و همکاران (۶) نتیجه گرفته که بیشترین جذب فلزات گیاه در سال اول پس از کاربرد لجن اتفاق می‌افتد. سپس این جذب کمتر شده و به صورت ثابت با زمان ادامه می‌پیماید.

کادمیم كل خاک

کادمیم یکی از فلزات بالاستر که کاربرد بیشتری در کشت‌های کشاورزی دارد. بروز اثرات زیادی را در حیات ایجاد می‌کند. این اتفاق به‌صورت هموگرینی کادمیم به صورت سطحی و داخل سیستم گیاهی انجام می‌دهد.

تأثیر لجن فاضلاب بر رشد گیاه کندم

پیشتر نسبت به گیاهانی که به دستور ابزاری به این کمک کرده است، نتایجی به دست آمده است. این اتفاق باعث بهبود شکل و رشد گیاه به‌صورت می‌شود. پیشتر نسبت به گیاهانی که به دستور ابزاری به این کمک کرده است، نتایجی به دست آمده است. این اتفاق باعث بهبود شکل و رشد گیاه به‌صورت می‌شود.
شکل 1. تاثیر لجنس فاضلاب بر وزن خشک اندام هواپیمای گندم

تعداد سالهای کودکنی معنی‌داری در اثر زمان را به‌خوبی نشان می‌دهد. هرچه زمان بیشتری از آخرین کودکنی شاخ سر بر گذشته، کاهش شد. این نشان می‌دهد که زمان بیشتری از آخرین کودکنی آنها سپری شده‌اند. از سایر تمارها بوده و احتمالاً با کاهش وضع زمان بیشتر به سطح آن در شاهد می‌رسد. بررسی اثرات تجمعی لجنس داد که باید افزایش سطح کودکنی و نیز افزایش تعداد سال کودکنی و وزن خشک اندام هواپیمای به‌طور متوسط افزایش یافته (شکل 1).

تأثیر لجنس فاضلاب بر فازات سنگین در گیاه

غلظت عناصر سنگین در گیاهان خوراکی شاخص مهمی است که خطر ورود این عناصر به چربی غذایی انسان، در حاکمیت تحت تهیه لجنس فاضلاب را روان می‌سازد. غلظت سرب و کادمیم در ریشه، ساقه و دانه کندم در بیماری‌های سر بر قرار می‌گیرد. در جدول ۵ نشان داده شده است. به طور کلی لجنس فاضلاب غلظت سرب و کادمیم در گیاه را افزایش داد. نحوه‌ای تاثیری ناوتوجه به سطح لجنس به کار رفته و نیز مدت زمان سه‌شانه از آخرین کودکنی متفاوت بود.

تعداد سالهای کودکنی معنی‌داری در اثر زمان را به‌خوبی نشان می‌دهد. هرچه زمان بیشتری از آخرین کودکنی شاخ سر بر گذشته، کاهش شد. این نشان می‌دهد که زمان بیشتری از آخرین کودکنی آنها سپری شده‌اند. از سایر تمارها بوده و احتمالاً با کاهش وضع زمان بیشتر به سطح آن در شاهد می‌رسد. بررسی اثرات تجمعی لجنس داد که باید افزایش سطح کودکنی و نیز افزایش تعداد سال کودکنی و وزن خشک اندام هواپیمای به‌طور متوسط افزایش یافته (شکل 1).

تأثیر لجنس فاضلاب بر فازات سنگین در گیاه

غلظت عناصر سنگین در گیاهان خوراکی شاخص مهمی است که خطر ورود این عناصر به چربی غذایی انسان، در حاکمیت تحت تهیه لجنس فاضلاب را روان می‌سازد. غلظت سرب و کادمیم در ریشه، ساقه و دانه کندم در بیماری‌های سر بر قرار می‌گیرد. در جدول ۵ نشان داده شده است. به طور کلی لجنس فاضلاب غلظت سرب و کادمیم در گیاه را افزایش داد. نحوه‌ای تاثیری ناوتوجه به سطح لجنس به کار رفته و نیز مدت زمان سه‌شانه از آخرین کودکنی متفاوت بود.
جدول 5. مقایسه میانگین‌های غلظت سرب و کadmیم در ریشه و دانه و جذب ساله در تیمارها مختلف لجن فاضلاب

<table>
<thead>
<tr>
<th></th>
<th>تیمار</th>
<th>دانه Cd (mg kg⁻¹)</th>
<th>دانه Pb (mg kg⁻¹)</th>
<th>جذب ساله Cd (mg ha⁻¹)</th>
<th>جذب ساله Pb (mg ha⁻¹)</th>
<th>ریشه Cd (mg kg⁻¹)</th>
<th>ریشه Pb (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>25</td>
<td>0.07</td>
<td>0.04</td>
<td>0.10</td>
<td>0.06</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>1/2</td>
<td>50</td>
<td>0.10</td>
<td>0.06</td>
<td>0.15</td>
<td>0.10</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>3/4</td>
<td>75</td>
<td>0.15</td>
<td>0.09</td>
<td>0.20</td>
<td>0.12</td>
<td>0.20</td>
<td>0.12</td>
</tr>
<tr>
<td>3/2</td>
<td>100</td>
<td>0.20</td>
<td>0.12</td>
<td>0.25</td>
<td>0.18</td>
<td>0.25</td>
<td>0.18</td>
</tr>
</tbody>
</table>

میانگین‌ها با آزمون LSD در سطح احتمال/5 مقایسه شده‌اند. در هر ستون و برای هر عامل آزمایش‌ها تفاوت هر دو میانگینی که حداقل دارای یک حرف مشترک هستند، معنادار نیست.

دلایل احتمالی این تجربه گرد و غریب در هر یک از سطوح کاربرد لجن افزایش تعداد ساله‌های کوددهی به طور کلی با افزایش سرب دانه تیمارها بود. اما اختلاف معنی‌داری بین این تیمارها مشاهده نشد. جذب مقادیر بالای سرب توسط دانه گندم در این خاک استخری ممکن است به علت توده‌ای منطقه‌ای به جاده بوده و ناشی از وجود سرب در گرد و غیر معنی‌دار اطراف و نشان شده که همه گیاه بوده، گر چه سیالیا و جانوس (30) از تحقیقات خود تجویز گرفتند که هاگارد انتخاب خیفی بر pash و گیاهی دستر سرب دارد. غلظت سرب در دانه گندم تیمارهای مختلف بین سطوح زمینی منطقه‌ای شده در میان می‌باشد (14). مقایسه بین ریشه، ساقه و دانه نشان داد که غلظت سرب در ریشه بیش از ساقه و در ساقه بیش از دانه می‌باشد. در عبارتی ریشه سرب بیشتری بوده که به جمع‌آوری می‌کند. در نتیجه بر تجربه سرب در بافت ریشه تأثیر دارد (14 و 38). گیاهی که دردند که فرایند اصلی کیفیت برای تجربه سرب به دانه ریشه تحقیق بیش‌تر سرب

88
جدول ۶: ضرایب همبستگی بین صفات مختلف برای عنصر سرب

<table>
<thead>
<tr>
<th>صفت</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب کل</td>
<td>۴.۹**</td>
<td>۴.۶**</td>
<td>۸.۴***</td>
<td>۳.۳**</td>
<td>۳.۲**</td>
<td>۴.۵**</td>
<td>۳.۲*</td>
<td>۲.۸*</td>
<td>۳.۲*</td>
</tr>
<tr>
<td>سرب قابل جذب</td>
<td>۳.۵**</td>
<td>۳.۲**</td>
<td>۶.۴***</td>
<td>۲.۹**</td>
<td>۲.۸**</td>
<td>۳.۱**</td>
<td>۲.۷*</td>
<td>۲.۳*</td>
<td>۲.۷*</td>
</tr>
<tr>
<td>غلظت سرب ریشه</td>
<td>۳.۲**</td>
<td>۲.۹**</td>
<td>۶.۴***</td>
<td>۲.۹**</td>
<td>۲.۸**</td>
<td>۳.۱**</td>
<td>۲.۷*</td>
<td>۲.۳*</td>
<td>۲.۷*</td>
</tr>
<tr>
<td>جذب سرب ساقه</td>
<td>۳.۲**</td>
<td>۲.۹**</td>
<td>۶.۴***</td>
<td>۲.۹**</td>
<td>۲.۸**</td>
<td>۳.۱**</td>
<td>۲.۷*</td>
<td>۲.۳*</td>
<td>۲.۷*</td>
</tr>
<tr>
<td>غلظت سرب دانه</td>
<td>۳.۲**</td>
<td>۲.۹**</td>
<td>۶.۴***</td>
<td>۲.۹**</td>
<td>۲.۸**</td>
<td>۳.۱**</td>
<td>۲.۷*</td>
<td>۲.۳*</td>
<td>۲.۷*</td>
</tr>
<tr>
<td>pHe</td>
<td>۲.۵**</td>
<td>۲.۵**</td>
<td>۵.۴***</td>
<td>۲.۸**</td>
<td>۲.۸**</td>
<td>۳.۱**</td>
<td>۲.۷*</td>
<td>۲.۳*</td>
<td>۲.۷*</td>
</tr>
<tr>
<td>O.C/%</td>
<td>۷.۹**</td>
<td>۷.۹**</td>
<td>۱۲.۱**</td>
<td>۷.۹**</td>
<td>۷.۹**</td>
<td>۱۲.۱**</td>
<td>۰.۷*</td>
<td>۰.۷*</td>
<td>۰.۷*</td>
</tr>
<tr>
<td>CEC</td>
<td>۷.۹**</td>
<td>۷.۹**</td>
<td>۱۲.۱**</td>
<td>۷.۹**</td>
<td>۷.۹**</td>
<td>۱۲.۱**</td>
<td>۰.۷*</td>
<td>۰.۷*</td>
<td>۰.۷*</td>
</tr>
<tr>
<td>ECe</td>
<td>۷.۹**</td>
<td>۷.۹**</td>
<td>۱۲.۱**</td>
<td>۷.۹**</td>
<td>۷.۹**</td>
<td>۱۲.۱**</td>
<td>۰.۷*</td>
<td>۰.۷*</td>
<td>۰.۷*</td>
</tr>
</tbody>
</table>

* در سطح ۵٪ معنی‌دار می‌باشد. **: در سطح ۱٪ معنی‌دار می‌باشد.

لجن فاضل‌الباث اثر معنی‌داری بر کدامیم دانه نداشت (جدول ۵). اما غلظت کدامیم در دانه گندم نیز همراه باتی‌دار شده و به لحاظ زیرینه ریشه می‌تواند به عنوان یک نکته مثبت تلقی گردد زیرا این امر احتمالی منعی برای انتقال پیشتر آن به دانه و چربه غذایی می‌باشد.

هم‌بستگی فرم‌های قابل جذب و کل سرب و کدامیم با یکدیگر، ویژگی‌های خاک و میزان جذب در یک‌جا (سرب) بین فرم‌های قابل جذب و کل سرب در سطح احتمال ۱٪ تا نیز سرب کل با کروم آلی و چرب در سطح ۱٪ همبستگی مثبت و معنی‌دار مناسب‌تر شد (جدول ۵). همچنین فرم‌های قابل جذب سرب با کروم آلی و چرب در سطح احتمال ۱٪ همبستگی مثبت مناسب داشت. این نشان داد که باید نیز می‌باشد، با وجودی‌ای را به عنوان منعی سرب در خاک‌های آلوده معنی‌دار می‌کند (۱۲) و
اگر قرارداد با کمیته سازمانده لحن فاضلاب بر غلظت عناصر سنگین، بین غلظت کل در مقابل غلظت عصاره کیفی شده DTPA با یک فنر سرب، روی مس، کادیم و منگنز DTPA به همراه مراحل شده تا به همراه گزارش کردن.

رگرسیون خطی نشان داد که نمایندگان سرب دار سرب قابل جذب خاک را می‌توان با یک معادله خطی دارای R^2 نسبتاً زیاد برابرند. نموده‌شده در شکل 3.

شکل 3 رابطه سرب کل با DTPA-Pb

از بررسی اثبات باقی مانده لحن فاضلاب بر غلظت عناصر سنگین، بین غلظت کل در مقابل غلظت عصاره کیفی شده DTPA با یک فنر سرب، روی مس، کادیم و منگنز DTPA به همراه مراحل شده تا به همراه گزارش کردن.

رگرسیون خطی نشان داد که نمایندگان سرب دار سرب قابل جذب خاک را می‌توان با یک معادله خطی دارای R^2 نسبتاً زیاد برابرند. نموده‌شده در شکل 3.

شکل 3 رابطه سرب کل با DTPA-Pb

$y = 29x - 37.6$ $R^2 = 0.69$

$y = 0.16x - 0.04$ $R^2 = 0.88$

17. غلظت سرب در ریشه و دانه با هم یک از فرم های سرب در خاک همیستگی نشان دادا همیستگی جذب سرب در ساقه با هر دو فرم کل و قابل جذب سرب در سطح 1% و همیستگی معنی دار سرب کل و قابل جذب با E_{Ce} نیز در سطح 1% مشاهده گردید. (جدول 4). ممکن است بخشهای آنیون‌ها کمیلکس کننده نظیر سولفات در افزایش قابلیت جذب سرب نقش داشته باشند (19). این موضوع در خاک‌هایی که از شرایط گونه‌زدایی از مرکز ایران حاضر همیشه روی می‌برند، نظیر بخش‌های زیادی از مرکز ایران حاضر همیشه روی می‌برند. آنتی‌واژه‌های رگرسیون خاطر نشان داد که نمایندگان سرب قابل جذب با سرب کل خاک را می‌توان با یک معادله خطی با R^2 نسبتاً زیاد برابر نموده‌شده در شکل 2. با توجه به خطای R^2 نسبتاً زیاد برابر نموده‌شده در شکل 2. با توجه به خاتمه‌کننده تم ترکیبات بدنی سرب در خاک‌های آماده نشان داده شده است. این شکل دکرش DTPA-Pb (mg/kg) DTPA-Pb (mg/kg)

$y = 29x - 37.6$ $R^2 = 0.69$

$y = 0.16x - 0.04$ $R^2 = 0.88$

از بررسی اثبات باقی مانده لحن فاضلاب بر غلظت عناصر سنگین، بین غلظت کل در مقابل غلظت عصاره کیفی شده DTPA با یک فنر سرب، روی مس، کادیم و منگنز DTPA به همراه مراحل شده تا به همراه گزارش کردن.

رگرسیون خطی نشان داد که نمایندگان سرب دار سرب قابل جذب خاک را می‌توان با یک معادله خطی دارای R^2 نسبتاً زیاد برابرند. نموده‌شده در شکل 3.

شکل 3 رابطه سرب کل با DTPA-Pb

$y = 29x - 37.6$ $R^2 = 0.69$

$y = 0.16x - 0.04$ $R^2 = 0.88$

17. غلظت سرب در ریشه و دانه با هم یک از فرم های سرب در خاک همیستگی نشان دادا همیستگی جذب سرب در ساقه با هر دو فرم کل و قابل جذب سرب در سطح 1% و همیستگی معنی دار سرب کل و قابل جذب با E_{Ce} نیز در سطح 1% مشاهده گردید. (جدول 4). ممکن است بخشهای آنیون‌ها کمیلکس کننده نظیر سولفات در افزایش قابلیت جذب سرب نقش داشته باشند (19). این موضوع در خاک‌هایی که از شرایط گونه‌زدایی از مرکز ایران حاضر همیشه روی می‌برند، نظیر بخش‌های زیادی از مرکز ایران حاضر همیشه روی می‌برند. آنتی‌واژه‌های رگرسیون خاطر نشان داد که نمایندگان سرب قابل جذب با سرب کل خاک را می‌توان با یک معادله خطی با R^2 نسبتاً زیاد برابر نموده‌شده در شکل 2. با توجه به خاتمه‌کننده تم ترکیبات بدنی سرب در خاک‌های آماده نشان داده شده است. این شکل دکرش دکرش DTPA-Pb (mg/kg) DTPA-Pb (mg/kg)

$y = 29x - 37.6$ $R^2 = 0.69$

$y = 0.16x - 0.04$ $R^2 = 0.88$
جدول 7 ضرایب همبستگی بین صفات مختلف برای عنصر کادمیم

<table>
<thead>
<tr>
<th>صفت</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>کادمیم کل</td>
<td>1</td>
<td>0.949</td>
<td>0.91</td>
<td>0.847</td>
<td>0.82</td>
<td>0.80</td>
<td>0.78</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td>کادمیم قابل جذب</td>
<td>1</td>
<td>-0.10</td>
<td>-0.15</td>
<td>-0.25</td>
<td>-0.30</td>
<td>-0.35</td>
<td>-0.40</td>
<td>-0.45</td>
<td>-0.50</td>
</tr>
<tr>
<td>غلظت کادمیم ریشه</td>
<td>1</td>
<td>0.86</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td>جذب کادمیم ساقه</td>
<td>1</td>
<td>0.86</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td>غلظت کادمیم دانه</td>
<td>1</td>
<td>0.86</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td>pH</td>
<td>0.91</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>O.C /</td>
<td>0.95</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>CEC</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>ECE</td>
<td>0.95</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

* در سطح 5% معنی دار می‌باشد. ** در سطح 1% معنی‌دار می‌باشد.

نتیجه‌گیری

لجن فاصلاب‌های اختلاف‌های کادمیم غلظت کل سرب و کادمیم در خاک داشته‌اند. کاربرد لجن فاصلاب غلظت‌های سرب و کادمیم از دانشگاه‌های گیاه‌شناسی با سرب و کادمیم ریشه داده‌ای است. با غلظت DTPA Sرب و کادمیم ریشه داده نمود. با غلظت Zرمان و همراه با ماده‌های غلظت قابل جذب عناصر سنگین در خاک کانست شده و به سطح آن در شاهد گردیده‌اند. در این مطالعه با غلظت Zربی از کادمیم غلظت فلزات در گیاه گندم نیز همین روند را دنبال نمود. بنابراین رعایت فاصله زمانی مناسب بین دفعات کوددهی افزایش کوددهی با یک ماده‌ای و به حفاظت عنصر سرب و کادمیم در می‌باشد.
نتایج مورد استفاده

1. آزاد، ز.، سلاجقه، م.، شمسی پور و ک. کار گنا (مترجمان)، 1377. اصول تجزیه دستگاهی، ج. 2. مرکز نشر دانشگاهی، تهران.

