بررسی مقاومت به استرس‌های شوری و فرمالین دریست لاروها میگو سفید هندی تغذیه
شده از روتوبرها غنی شده با اسیدهای چرب غیرشیمیایی (DHA, EPA) و ویتامین C

چکیده

تست‌های استرس به طور معمول در هرج و مرگ جهت استخوان کینیت پست لاروها (PL) (در طی پروتئین مورده استفاده) قرار می‌گیرند. در این تحقیق لاروها میگو سفید هندی با ناهید نازه تحصیل کشیده شده در آزمایشگاه زیست‌شناسی تیمار‌های از گذشته روی جلبک تازه (تیمار 1)، روتوبرها غنی شده با روتوبرها غنی شده با اکسیژن و روتوبرها غنی شده با اکسید کریستال تیمار 2) و روتوبرها غنی شده با اکسید کریستال تیمار 3) (تیمار 3) نگهداری گردیدند. به‌طوری که در مرحله I نگهداری بیشینه میزان پلاسما در تیمار 3) (برتسب 7777 درصد) مشاهده شد، به‌طوری که در این تیمار 2) (برتسب 7777 درصد) فرمولی نشان داده شد. در اختلاف این تیمار با تیمار 1) و تیمار 2) نشان داده شد. در اختلاف این تیمار با تیمار 1) و تیمار 2) نشان داده شد. در اختلاف این تیمار با تیمار 1) و تیمار 2) نشان داده شد.

dao8y1,
22
dao8y2,
22

dao8y3,
22

dao8y4,
22

dao8y5,
22

واژه‌های کلیدی: تست استرس، پست لاروها، میگو، روتوبرها غنی سازی، استرس‌های چرب غیرشیمیایی، ویتامین C

1. دانشجو دکتری شیلات، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران
2. استادان بهداشت و بیماری‌های انسانی، دانشگاه دامپزشکی، دانشگاه تهران

519
مقدمه
یکی از روش‌های مناسب جهت ارزیابی کیفیت پست لازهوای میگوها خانواده پنیکنه به سادگی تبیز در هنگامه‌ها قابل انجم است افتاده از استرس‌های محیطی ازجمله استرس‌های شوری می‌باشد (28، 31 و 32). دهشت و همکاران (8) در سال 1992 افتاده از استرس‌های استرس را به عنوان یک از ابزار در ارزیابی کیفیت لازهوای و سختی پزشکی و نمونه‌گیری پیشنهاد نمودند. همچنین هدایاتی از پژوهشگان گزارش کردند که پست لازهوایی که در شرایط استرس بقای بالاتری از خود نشان می‌دهد، دارای کیفیت بهتری می‌باشد (11، 28 و 32). چنین مطالعه شامل هرگونه یافته با میزان فراوانی است. ارزیابی چرب غیر اشاع بلند زنجبیر جهت یافتن بالاتری لازهوایی نسبت به استرس در مرحله پست لازهوایی گزارش و پیشنهاد است. (34، 35 و 31).

افزایش پلاکیر در اثر استرس شوری به سبب شرایط فیزیولوژیکی بهتر که تحت تاثیر وضعیت غذایی به وسیله اثرات استرسی چرب غیر اشاع بلند زنجبیر روی میکانیسم‌های تهیه‌ای می‌باشد. می‌تواند در سطح افزایش میکروتیکی می‌باشد، اما بر اساس مطالعات انجام شده مشخص گردیده که سختی پوست می‌باشد و همگونی یافته آکسیداز خونونکوپیل برای اولین مرحله از این پوست می‌باشد (6، بنابراین این بازی‌های می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غذاهای وابسته هستند. بنابراین بیانگر یافته‌های ویژه است. این می‌باشد در غدا...
مواد و روش‌ها

۱. روتیرها و غنی سازی روتیرها

روتیرهای Brachionus plicatilis مورد نیاز جهت تغذیه لاوری میکوی سفید هندی است. در طوفان ۱۵ و سپس ۲۰ لبری کشت داده شده و در نهایت جهت تولید اینو به دست افراد فیبرگلاس ۳۰۰ لبری و ۴ تنی در فضای آزاد انتقال داده شده و با جلب های کرالا و تراکمیسم تغذیه شده‌اند. پس از افزایش تعداد روتیرها در طوفان به دست اینو به دست افراد ۱۵۰۰ لبری گرفته شد و در اساس روش دهتر (۷) غنی سازی کرده و در اساس با تیمارها مورد استفاده قرار گرفتند.

جهت غنی سازی روتیرها از جلبک‌های حاوی مقدار بالای اسیدهای چرب ضروری مانند: جلبک کرالا و امپوین غنی کردن شد. در نهایت اینلاتونیسم مورد نیاز جهت تغذیه لاوری میکوی سفید هندی تغذیه امکان‌پذیر شد. به همراه تخم‌گذاری گردید. اینلاتونیسم مورد نیاز جهت تغذیه لاوری میکوی سفید هندی به دست امکان‌پذیر شد. در نهایت اینلاتونیسم مورد نیاز جهت تغذیه لاوری میکوی سفید هندی تغذیه امکان‌پذیر شد.
و نیروی های تغذیه شده در هر مرحله به طور منظم اقدام به نمونه برداری گردید. نمونه‌های برداشت شده تا زمان انتقال‌های مربوطه در دامی (در حال سنتی گردید فیلتر جهت آنتی‌بیوکسی چرب به روش لیزریاورتو) و استد آسکوربیک به روش نیلی و همکاران (نهاداری و سپس بدين منظور به آزمایشگاه انتقال داده شدند. در آزمایشگاه ابتدای انتقال مربوطه به سیستم و سپس به دستگاه گاز کرومانتوگرافی (GC) از نوع FID-Shimadzu 8A-8 با سپاس تزریق گردید و برای تعیین میزان آسکوربیک تزریق از دستگاه کرومانتوگرافی مالی با کارایی بالا (HPLC) استفاده شد (17 و 20).

5. آنالیزهای آماری
میزان استفاده چرب و آسکوربیک غذاهای مختلف مورد آزمایش و لاروهای تغذیه شده و همچنین درصد فا لاروها در تست‌های استرس شوری و فرمایش تحت آنتی‌بیوکسی به طرفه (ANOVA) قرار گرفته و سپس توسط آزمون چند دامنه داده. انتخابات دریب آنها در سطح (0/05) تعیین گردید. همه آنالیزها با استفاده از برنامه‌های EXCEL و SPSS و STATGRAPH انجام گرفت.

نتایج
1. میزان‌گین استفاده چرب ایکزوپانتونیک (EPA) n-3 و DHA/EPA و DHA (DHA) نسبت‌های (C/16) و C/18 موجود در قروپل اسیدهای چرب استخراج شده که استفاده چرب عضد آن شامل است. لیپیک (C/18) گروه‌های است. 20 0.5 دکلزه‌گراینیک است. 23 6. آرام‌شدن‌های است. 2 و است. لیپیک (C/18) می‌باشد) مربوط به غذاهای مختلف در جدول 1 اشاره گردیده است.

2. تست‌های استرس
لاروهای استرس شوری و فرمایش در مرحله PL1 و 5 لاروها تغذیه شده با تمرین‌های غذاهای مورد آزمایش اجرا گردید. بدیه منظور به هر تکرار برداشت نمونه و در تست‌های کوچک محدوداً در 30 ثانیه تغذیه شده با هر تکرار و میلی‌گرم در میلی‌گرم به دقت به دقت به دقت در 30 ثانیه با هر تکرار و در پایان حرکت آزمایشگاه شمارش و ثبت شده و در دیدگاه محاوره گردید.

4. آنالیزهای ترشحی
جهت مشخص شدن قروپل و مقدار است. دهه‌های چرب (برحسب میلی کرم / گرم وزن خشک) و میزان است. آسکوربیک (برحسب میکروگرم / گرم وزن خشک) در تیمارهای غذاهای
جدول 1. میانگین اسیدهای چرب غیر اشباع بند زنجبیر در غذایی متفاوت (mg / g DW)

<table>
<thead>
<tr>
<th>n - 3 / n - 6</th>
<th>DHA / EPA</th>
<th>DHA</th>
<th>EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 / 2</td>
<td>0.11 ± 0.00</td>
<td>0.11 ± 0.00</td>
<td>0.00 ± 0.02</td>
</tr>
<tr>
<td>1 / 3</td>
<td>0.15 ± 0.00</td>
<td>0.15 ± 0.00</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>1 / 4</td>
<td>0.19 ± 0.00</td>
<td>0.19 ± 0.00</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td>1 / 5</td>
<td>0.23 ± 0.00</td>
<td>0.23 ± 0.00</td>
<td>0.03 ± 0.02</td>
</tr>
</tbody>
</table>

(میانگین ± انحراف معیار. اعداد در یک ستون با حروف متفاوت دارای اختلاف معنی‌دار محسنت (P < 0.05))

(جدول نمونه‌ها در هر گروه 3 = 8 می‌باشد)

میزان DHA و بیشترین مقدار آن مربوط به غذای 8/0 میلی گرم / گرم وزن خشک است که با غذای شهرد (P < 0.05) نشان داده‌گر دارد. از طرفی میزان DHA در غذایی متفاوت دارای تفاوت معنی‌دار (0.05) با غذای شهرد (P < 0.05) نشان داد. نسبت EPA / DHA در بین غذایی متفاوت دارای تفاوت معنی‌دار بوده است. میزان EPA نسبت به بیشترین مقدار و بین غذایی متفاوت این نسبت در غذای شهرد (0.01) شماره 3 (0.0) مشاهده گردید که با غذای شهرد (P < 0.05) بود. میزان EPA در غذایی متفاوت دارای نسبت (n - 3 / n - 6) نسبت بین غذایی متفاوت دارای تفاوت معنی‌دار (P < 0.05) نشان داده‌گر دارد. میزان EPA در غذایی متفاوت دارای تفاوت معنی‌دار (P < 0.05) بود.

1) میانگین اسیدهای چرب ایکوزاتانئیک (EPA) و دهکوئاهژراتانئیک (DHA) / EPA نسبت‌های (P < 0.05) در بین تیمارهای مختلف دارای تفاوت معنی‌دار بوده است.

2) میانگین اسیدهای چرب ایکوزاتانئیک (EPA) و دهکوئاهژراتانئیک (DHA) / EPA نسبت‌های (P < 0.05) در بین تیمارهای مختلف دارای تفاوت معنی‌دار بوده است.

3) میانگین اسیدهای چرب ایکوزاتانئیک (EPA) و دهکوئاهژراتانئیک (DHA) / EPA نسبت‌های (P < 0.05) در بین تیمارهای مختلف دارای تفاوت معنی‌دار بوده است.
جدول ۲. میانگین اسیدهای چرب غیراشفاب بلند زنجبیل (mg/g DW) در دباتات لاروهای میگودبر مراحل ۱ و ۵

<table>
<thead>
<tr>
<th>نیمه</th>
<th>میانگین</th>
<th>DHA / EPA</th>
<th>DHA</th>
<th>EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n – 3 / n – 6</td>
<td>۴/۸ ± ۰/۳۳</td>
<td>۰/۰۱ ± ۰/۰۱</td>
<td>۰/۰۶ ± ۰/۰۱</td>
<td>۵/۷ ± ۰/۰۸</td>
</tr>
<tr>
<td></td>
<td>۳/۲ ± ۰/۳۳</td>
<td>۰/۰۲ ± ۰/۰۱</td>
<td>۰/۰۵ ± ۰/۰۱</td>
<td>۵/۸ ± ۰/۰۱</td>
</tr>
<tr>
<td></td>
<td>۲/۴ ± ۰/۳۳</td>
<td>۰/۰۵ ± ۰/۰۱</td>
<td>۰/۱۵ ± ۰/۰۱</td>
<td>۳/۲ ± ۰/۰۱</td>
</tr>
<tr>
<td></td>
<td>۱/۶ ± ۰/۱۸</td>
<td>۰/۰۴ ± ۰/۰</td>
<td>۰/۳ ± ۰/۱۱</td>
<td>۲/۲ ± ۰/۱۵</td>
</tr>
<tr>
<td>PL5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n – 3 / n – 6</td>
<td>۴/۸ ± ۰/۳۳</td>
<td>۰/۰۲ ± ۰/۰۱</td>
<td>۰/۰۷ ± ۰/۰۱</td>
<td>۴/۳ ± ۰/۰۱</td>
</tr>
<tr>
<td></td>
<td>۳/۲ ± ۰/۳۳</td>
<td>۰/۰۲ ± ۰/۰۱</td>
<td>۰/۳۶ ± ۰/۰۱</td>
<td>۴/۳ ± ۰/۰۱</td>
</tr>
<tr>
<td></td>
<td>۱/۲ ± ۰/۱۸</td>
<td>۰/۰۳ ± ۰/۱۰</td>
<td>۰/۲ ± ۰/۰۱</td>
<td>۲/۵ ± ۰/۰۱</td>
</tr>
<tr>
<td></td>
<td>۱/۶ ± ۰/۱۸</td>
<td>۰/۰۴ ± ۰/۱۱</td>
<td>۰/۱۱ ± ۰/۰۵</td>
<td>۱/۳ ± ۰/۰۱</td>
</tr>
</tbody>
</table>

جدول ۳. میانگین اسیدآسکوربیک (µg/g DW) در غذایهای مختلف

<table>
<thead>
<tr>
<th>غذایهای مختلف</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>آرتیمیا (غذای شاهد)</td>
<td>۵۲/۰ ± ۱۰/۰۰</td>
</tr>
<tr>
<td>رویفی + جلیك (غذای ۱)</td>
<td>۷۸/۰ ± ۱۰/۰۰</td>
</tr>
<tr>
<td>رویفی + روغن (غذای ۲)</td>
<td>۴۰/۵ ± ۱۰/۰۰</td>
</tr>
<tr>
<td>رویفی + روغن + ونیلین (غذای ۳)</td>
<td>۲۸/۰ ± ۲۰/۰</td>
</tr>
</tbody>
</table>

میانگین ± انحراف معیار. اعداد در یک ستون با حروف مختلف میانگین میان نشان داده شده است. مقایسه میانگین ها (جدول ۳) نشان داد که غذایهای آزمایشی تفاوت معنی داری از نظر میزان اسید آسکوربیک با یکدیگر داشتند. بطوری که پشتیبانی میزان آن مربوط به غذا شماره ۳ (۴۶/۰ میکروگرم / گرم وزن خشک) بوده و با غذاهای

۵۲۴
جدول 4. میانگین اسید آسکوربیک (μg/g DW) دربافت‌های میگو نیفتک به شده با غذاهای متفاوت در مرحله PL5 و PL1

<table>
<thead>
<tr>
<th>مرحله PL5</th>
<th>مرحله PL1</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>413.333 ± 67</td>
<td>550/0/0</td>
<td>تیمار شاهد</td>
</tr>
<tr>
<td>10/0/0/0 b</td>
<td>570/0/0</td>
<td>تیمار 1</td>
</tr>
<tr>
<td>20/0/0/0 d</td>
<td>287/372 ± 567</td>
<td>تیمار 2</td>
</tr>
<tr>
<td>15/0/0/0 b</td>
<td>193/579 ± 566</td>
<td>تیمار 3</td>
</tr>
</tbody>
</table>

(میانگین ± انحراف معیار، اعداد در یک ستون با حروف مختلف در میانگین هر گروه = به ترتیب (P≤0.05، P≤0.01، P≤0.001).

بیشترین تفاوت معنی در دادشند به نحوی که بیشترین بقای در تیمار 3 شاهد (54 میکروگرم / گرم وزن خشک) دارای تفاوت معنی دار (P≤0.05) بود.

بیشترین تفاوت میانگین اسید آسکوربیک (میکروگرم / گرم وزن خشک) در بیانلایه‌ها میگو نیفتک در مرحله PL5 و PL1 در جدول 4 ارائه گردیده است. در مرحله PL5 و PL1 میانگین اسید آسکوربیک در بین تیمارها دارای تفاوت معنی دار با یکدیگر بوده و بیشترین میزان در تیمار 2 (0.376/76/24/0/0) در مرحله PL1 داشته، در مرحله PL5 تیمار اسید آسکوربیک در بین تیمارها دارای تفاوت معنی دار با یکدیگر بوده و بیشترین مشاهده شده که تیمار شاهد (41/372/72/372) در تیمار پایین‌ترین کتولیک و غذایی میگو نیفتک (گرم وزن خشک) دارای تفاوت معنی دار (P≤0.05، P≤0.01، P≤0.001).

بیشترین تفاوت میانگین دربافت‌های میگو نیفتک در مرحله PL1 در تیمارهای ژنتیکی در مرحله PL1 و 200 هزار و 100 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردیده است. میانگین بقای لاروها در تیمارهای ژنتیکی 10 قسمت در هزار در بین تیمارها دارای تفاوت معنی دار با یکدیگر بوده و بیشترین آن در تیمار 3 (0.579/372/72/372) مشاهده گردید که در تیمار شاهد (579/372/72/372) در تیمار پایین‌ترین کتولیک و غذایی میگو نیفتک (گرم وزن خشک) دارای تفاوت معنی دار (P≤0.05، P≤0.01، P≤0.001).

نتایج این تحقیق نشان داد که بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میزان معناداری در تیمارهای ژنتیکی 10 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردید. میانگین بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میزان معناداری در تیمارهای ژنتیکی 10 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردید. میانگین بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میزان معناداری در تیمارهای ژنتیکی 10 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردید. میانگین بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میزان معناداری در تیمارهای ژنتیکی 10 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردید. میانگین بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میزان معناداری در تیمارهای ژنتیکی 10 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردید. میانگین بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میزان معناداری در تیمارهای ژنتیکی 10 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردید. میانگین بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میزان معناداری در تیمارهای ژنتیکی 10 قسمت در هزار و 100 قسمت در میلیون در زمان 30 دقیقه در جداول شماره 5 ارائه گردید. میانگین بقای لاروها در تیمارهای ژنتیکی به‌طور کلی بهبود یافته و میانگ

525
جدول 5. میانگین بقا لاروها (درصد) در مراحل PL5 و PL1 در استرس شوری و فرمالین

<table>
<thead>
<tr>
<th></th>
<th>PL5 مرحله</th>
<th>PL1 مرحله</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Mean ± SD)</td>
<td>(Mean ± SD)</td>
<td></td>
</tr>
<tr>
<td>شوری 10 قسمت در هزار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار شاهد</td>
<td>33/2332 ± 5/7865 c</td>
<td></td>
</tr>
<tr>
<td>تیمار 1</td>
<td>30/0111 ± 5/8744 c</td>
<td></td>
</tr>
<tr>
<td>تیمار 2</td>
<td>27/3134 ± 5/7845 b</td>
<td></td>
</tr>
<tr>
<td>تیمار 3</td>
<td>26/6127 ± 5/7834 b</td>
<td></td>
</tr>
<tr>
<td>شوری 20 قسمت در هزار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار شاهد</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
<tr>
<td>تیمار 1</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
<tr>
<td>تیمار 2</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
<tr>
<td>تیمار 3</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
<tr>
<td>فرمالین 100 قسمت در میلیون</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیمار شاهد</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
<tr>
<td>تیمار 1</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
<tr>
<td>تیمار 2</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
<tr>
<td>تیمار 3</td>
<td>34/4322 ± 5/7673 a</td>
<td></td>
</tr>
</tbody>
</table>

(میانگین ± انحراف معیار. اعداد در یک ستون با حروف متغیر دارای اختلاف معنادار هستند (P<0.05) و تعداد تکرار در هر گروه = 3 نمونه)

بحث و نتیجه‌گیری

تست‌های استرس شوری به طور معمول در ارزیابی کیفیت

۵۴۶
موج‌های افزایش مقاومت آنها در برای تنش اسکسیوسی و با نش انت‌نش شوری می‌شد. به طوری که در این تحقیق بچه می‌گوید تنگه‌شد با آن استرس از گروه 1/8/3 میلی‌گرم بر گرم وزن خشک اکسپرسیون n-HUFA نسبت به بچه می‌گوید تنگه‌شد با یا n-4 اکسپرسیون در یک سطح- 1 و میلی‌گرم بر گرم وزن خشک اکسپرسیون n-HUFA در برای تنش شوری مقاومت بیشتری داشته‌اند به چنین نتیجه‌گیری می‌ماند که نسبت به بچه می‌گوید تنگه‌شد با آن استرس اکسپرسیون 1/8/3 میلی‌گرم بر گرم وزن خشک برای تنش شوری مقاومت بیشتری داشته‌است. هم‌چنین در مطالعه ریس و هم‌کران (2011) نسبت لازم‌بود ریس و هم‌کران (2011) نسبت لازم‌بود 10 می‌گوید پرنی بی‌سایه (P. monodon) تغذیه شد با آنتی‌بیوتیک غنی شده با اینده‌های چرب غیربایا بند زنجیره از خانواده امکا سه‌گونه می‌گوید فیلیا بندی Litoneaeus vannamei (تغذیه شده با 2000 میلی گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان (تغذیه شده با یا بانیان C (عوامل 1000-2000 میلی‌گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان (تغذیه شده با یا بانیان C (عوامل 1000-2000 میلی‌گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان (تغذیه شده با یا بانیان C (عوامل 1000-2000 میلی‌گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان (تغذیه شده با یا بانیان C (عوامل 1000-2000 میلی‌گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان

مقاومت بیشترین از شنا نادانه‌های در طول تله‌گیره در یک گروه 10/3 میلی‌گرم بوده اما گروهی که در جهه غذایی آنها اکسپرسیون در میان تله‌گیره اکسپرسیون n-HUFA نسبت به بچه می‌گوید تنگه‌شد با آن استرس اکسپرسیون 1/8/3 میلی‌گرم بر گرم وزن خشک برای تنش شوری مقاومت بیشتری داشته‌است. هم‌چنین در مطالعه ریس و هم‌کران (2011) نسبت لازم‌بود 10 می‌گوید پرنی بی‌سایه (P. monodon) تغذیه شد با آنتی‌بیوتیک غنی شده با اینده‌های چرب غیربایا بند زن جیره از خانواده امکا سه‌گونه می‌گوید فیلیا بندی Litoneaeus vannamei (تغذیه شده با 2000 میلی گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان (تغذیه شده با یا بانیان C (عوامل 1000-2000 میلی‌گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان (تغذیه شده با یا بانیان C (عوامل 1000-2000 میلی‌گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) نسبت به میان (تغذیه شده با یا بانیان C (عوامل 1000-2000 میلی‌گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) N. هم‌چنین در مطالعه ریس و هم‌کران (2011) نسبت لازم‌بود 10 می‌گوید پرنی بی‌سایه (P. monodon) تغذیه شد با آنتی‌بیوتیک غنی شده با اینده‌های چرب غیربایا بند زن جیره از خانواده امکا سه‌گونه می‌گوید فیلیا بندی Litoneaeus vannamei (تغذیه شده با 2000 میلی گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) N. هم‌چنین در مطالعه ریس و هم‌کران (2011) نسبت لازم‌بود 10 می‌گوید پرنی بی‌سایه (P. monodon) تغذیه شد با آنتی‌بیوتیک غنی شده با اینده‌های چرب غیربایا بند زن جیره از خانواده امکا سه‌گونه می‌گوید فیلیا بندی Litoneaeus vannamei (تغذیه شده با 2000 میلی گرم امید آکسپریکی در هر کیلوگرم جهه غذایی) N. هم‌چنین در مطالعه ریس و هم‌کران (2011) نسبت لازم‌بود 10 می‌گوید پرنی B
بکارگیری

بيش از همگناهای بزرگتر 2 5/2 درصد، و

1 48/2 درصد قرار داشته که اختلاف آنها معنی دارد است.

همچنین با دیگر تیمارهای دارای دارند. تیمار 1

به علت عدم غنی سازی کمترین بقا را نشان داد. در تست

استرس فرماین (480 سه درصد درصد بیشترین درصد بقا در

تیمارهای شاهد. 3 و مشاهده کرده که تفاوت معنی‌دار با

یکدیگر ندارد. اما تفاوت آنها با تیمار 1 که کمترین درصد

بقا را دارای معنی دار است. در محله PL به غیر از غنی سازی

تیمارها، اندازه آنها بیشتر بقا از تیمارهای دیگری بودند.

ارایش افزایش اندازه لاروها بر روی دسترسی به غنی افزایش

شده است.

متناوب مورد استفاده

1. آذری تاکامی، ق. 10. علیینی، م. 1. طبیعی. م. 1354. تأثیر اسیدهای جرب بلند زنجیره امگا 3 در افزایش مقاومت بجه

میگوئه سفید هنگی در برای تن بسته اسکوئی. متناوب طبیعی ایران 86 (1) 346–348.

