Icerya purchasi Mask. (Hom.: Margarodidae)

زیست شناسی شیپک استرالاسی (Icerya purchasi Mask.) در شرایط آزمایشگاهی و نوسانات فصلی آن در باه‌های مركبات شمال خوزستان

مهدی استفندیاری، محمد سعید مصدق و رحیم اسلامی زاده

چکیده

شیپک استرالاسی Icerya purchasi Mask. حشرهای پیل قزل با انتشار جهانی و از مخرب ترین آت آفت‌ها بر اثر مركبات است که علاوه بر انواع مركبات به نامهای Icerya purchasi Mask. در شرایط آزمایشگاهی در داخل انکوباتور در سه دماه ۱۷، ۲۴ و ۳۰ درجه سانتی‌گراد، رطوبت نسبی ۷۵ ± ۵ درصد و ۱۴ به ۱۰ ساعت (روش‌نامه تاریک) بررسی شد. در دمای ۱۷ درجه سانتی‌گراد میانگین طول دوره پورگری، دوره زنده ماتی بالغ و طول مدت یک نسل حشره ماده به ترتیب ۸۵/۲/۸۳، ۸۵/۲/۸۱ و ۸۵/۲/۸۳ روز تعیین شد. در دمای ۲۴ درجه سانتی‌گراد این مقادیر به ترتیب ۵/۳/۸۰ و ۵/۳/۸۱ و ۵/۳/۸۰ به ترتیب ۱۲، ۹ و ۶ روز محاسبه شد. در شرایط طبیعی، از پاتزه‌ها تا تماس ۱۳۸۲ نمونه برداری از یک باغ ۳ هکتاری به مدت ۱۴ ماه در فصل آبادان دژول انجام گرفت. بدین منظور ۵ اصله درخت پرفکت سیاورز به‌طور تصادفی در این باغ انتخاب و هر ۱۰ روز یکبار از جهت چهار جهت جغرافیایی و نیز داخل ناحیه درختان در سه افزایش مختلف در مجموع ۷۵ مرحله نگاه ۱۵ سانتی‌متر به‌طور تصادفی قطع و مراحل مختلف سنی آنها شمارش و به تفکیک تیپ گردیده. تا پایان ۱۴ ماه بررسی زیست شناسی شیپک استرالاسی نشان داد که این آفت در دژول‌های مینیمال در ناحیه بهار، نیازمند و نسل که سرمایه‌گذاری به داشته‌اند نسل سوم از پایای شروع شده و در مجموع آن تا ۶ ماه به طول مانیده و زست‌های آن‌ها آفت به صورت مراحل مختلف سنی روي می‌زاده‌های مختلف می‌باشد و در منابع به‌طور یکسان جمعیت زست‌های آفت را تشکیل می‌دهد. این شیپک در خوزستان علاوه بر ارقام مختلف مركبات به ۴۱ گونه مختلف از گیاهان حمله می‌کند.

واژه‌های کلیدی: شیپک استرالاسی، زیست شناسی، مركبات، شمال خوزستان

مقدمه

در حدود سال ۱۸۶۸، شیپک استرالاسی Icerya purchasi در شمال شرق آفریقا در کالیفرنیا به‌پایان درآمد. این آفت به‌طور مداوم در کالیفرنیا می‌باشد و در ایران در شمال خوزستان به پایان رسید. در اینجا ۷۵ گونه مختلف از گیاهان حمله می‌کند که این شیپک به‌طور مداوم در این منطقه به پایان رسیده و در اینجا ۷۵ گونه مختلف از گیاهان حمله می‌کند.
کفس‌دوز استرالیایی

پاتریاچیم

آن (استرالیایی) کشف و به کالیفرنیا وارد گردید. کنتشر شیپک استرالیایی توسط کفس‌دوز استرالیایی اولین مورد مکمل کنتشر بیولوژیک کلاسیکی یک افت غیر بومی در جهان می‌باشد. با این حال طبیعت شیپک استرالیایی در مناطقی که سه‌شاخی (به‌ویژه کاربرد تنظیم کندنهالی شد حشرات) علیه سایر آفات مربکات منجر به مرم دشمان طبیعی آن شده، به کرات گزارش گردیده است (11).

این آفت همراه با نهل‌های مرکبات از ایتالیا به ایران وارد گردید و اولیه غرب در ایران نیز تولید شد و به کشت‌های آفتاب گیر در این همزمان بوده است. در سال 1342، 1344 و 1350، به عنوان سال‌های شیپک به ایران رفت و در سال 1350، کفس‌دوز استرالیایی وارد شد. در سال 1356، این افت به شیراز و از آنجا به یاهانه مرکبات استان فارس راه یافته و در سال 1358 و 1360، به هما می‌شود. این افت بسیار بی‌فای افت و علائم به انواع مرکبات به سبایی از یاهانه زنیت حمل می‌نماید. تعدادی از یاهانه‌ها می‌توانند به همراه علاوه بر این، این آفت بسیار زیاد بوده و در بین ایزی‌های تشک‌زایی که به دست افراد در این درون آزمایشات به یاهانه اختصاص داده شده، باید مورد شناخت و توجه می‌باشد. این آفت در آخرین هما ممکن است موجب دچاری بیماری‌های مختلف یاهانه شود.

مواد و روش‌ها

۱. زنبیل شناسی در آزمایشگاه

الف) فضای تشریح

در این آزمایشات به یاهانه‌های خنده‌باف بسته به یاهانه و پرانتی بالا و پرانتی بالای سیب زمین سیب‌زای خنده‌باف بسته به یاهانه انتخاب شد. برای بدست آوردن یاهانه‌های خنده‌باف بسته به یاهانه‌ها تعدادی شیپک ماده که کیفیت آن‌ها کامل گردیده بود از طبقات جمع آوری و درون خشک‌سازی شده، سپس از یاهانه‌های که طی ۲۲ ساعت از کیفیت خارج شده، با قلم طبیعی جمع‌آوری و روز سطح زیبرنگ پرانتی بالا در هر فصل منتفی و به مدت زمینه‌های که از فصل‌ها با تروری طبیعی مسند می‌گردید. در هر فصل دو شیپک (در مجموع ۱۰۰ تکرار)
زمین شناسی شبکه استرالیایی (Icerya purchasi Mask.(Hom.:Margarodidae))

در ۱۲ ظرفیت، داده‌های بالا به طور مداوم در سراسر این جفت انجام گردیده است، و در نهایت، در ۱۲ فاصله زمانی از ۱۲۰ تا ۲۴۰ دقیقه انجام گردیده است.

ب) نهال مركبات

برای اندازه‌گیری، قارچ رنگی از میوه‌های نهالی انجام گردید. آزمایش در ردیف ۰ و ۶ درجه سانتی‌گراد در مدت ۲۴ ساعت قرار گرفت. سپس، در این قارچ رنگی، قارچ رنگی از میوه قارچ رنگی انجام گردید. آزمایش در ردیف ۰ و ۶ درجه سانتی‌گراد در مدت ۲۴ ساعت قرار گرفت.
جدول 1. میانگین طول مراحل مختلف سنی (بر حسب روز) حشره نر شیشک استرالیایی

سانتی‌گراد، رطوبت نسبی ۶۵ درصد و ۱۰ ساعت (روش‌نامه به تاریکی)

<table>
<thead>
<tr>
<th>مراحل سنی</th>
<th>حداکثر</th>
<th>حداقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>جنین</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>سن یک</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>سن دو</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>شافته</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>بالغ</td>
<td>90</td>
<td>2</td>
</tr>
<tr>
<td>مجموع</td>
<td>69</td>
<td>39</td>
</tr>
</tbody>
</table>

نتایج

1. زیست‌شناختی در آزمایشگاه

الف) قفس‌تاشیرو

اکثر شیشک‌های ماده پس از سن دو از یک برگ جدا شده و به تأسیس مستقر نشدن مجدد در بین رفتن و عوامل ناشاکه‌ای دیگری نیز باعث مرگ شیشک‌ها در محل استقرار خود شد. سرانجام از ۱۰۰ عضو شیشکی که در قفسی‌های گردید که از ۱۰ شیشک ماده نمونه‌گیری شد و در مدت یک ماه در آن‌ها به آب و میخ در دمای ۳۷ درجه سانتی‌گراد، رطوبت نسبی ۶۵ درصد و ۱۰ ساعت (روش‌نامه به تاریکی) نگهداری شدند، ۲۰ عضو از شیشک‌های زیر کاملاً غیر می‌شدند. به همین دلیل که در طی ۲۰۰ عضو از شیشک‌های بودند که زیست‌شناسی آنها بررسی شده در قفسی‌های گردید که زیست‌شناسی آنها بررسی گردید. به همین دلیل که دو شاخه نر و شیشک استرالیایی (تا مارک بالغ) با اختلاف دوره جنین در دمای ۳۷ درجه سانتی‌گراد ۰/۴۷/۰/۱/۰۵ به طول انجماد (جدول ۱) نسل تکامل‌ها از شیشک پای شده و مجعداً آماده به راه‌سازی شیشک گردید.

ب) پراکنش و میزان‌ها

شیشک استرالیایی به تازگی در منطقه گزارش شده بود و هیچ گونه اطلاعی راجع به انتشار جغرافیایی آن وجود نداشت. بنابراین جهت تعیین مناطق آن‌ها اقدام به بررسی و نمونه برداری تصادفی از باغ‌های مرکبات دفولت و تیز سایر مناطق مربوط به خر و خریدن از جمله ای، باغ‌های که به پوشش گردید. برای تعیین میزان‌های شیشک نیز اکنون درختان دفولت باغ‌های و نیز گیاهان زراعی نزدیک به باغ‌های آن‌ها بررسی و که همچنین جهت تشخیص گونه گیاهی جمع آوری گردید.

۳۹۶
جدول 2. میانگین طول مراحل مختلف سنی (بر حسب روز) ماده شیپک استرالیایی Icerya purchasi Mask. (Hom.: Margarodidae) روی نهال پرتقال سیاوور در دو دما

<table>
<thead>
<tr>
<th>Mراحل سنی</th>
<th>n</th>
<th>17°C ± 2°C</th>
<th>n</th>
<th>17°C ± 2°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>جنینی</td>
<td>30</td>
<td>8/0±2/7/17</td>
<td>30</td>
<td>12/0±6/0/17</td>
</tr>
<tr>
<td>سن یک</td>
<td>30</td>
<td>15/0±4/0/22</td>
<td>28</td>
<td>20/0±4/0/29</td>
</tr>
<tr>
<td>سن دو</td>
<td>30</td>
<td>20/0±4/0/29</td>
<td>28</td>
<td>24/0±4/0/51</td>
</tr>
<tr>
<td>سن سه</td>
<td>30</td>
<td>27/0±4/0/19</td>
<td>28</td>
<td>27/0±4/0/17</td>
</tr>
<tr>
<td>دوره قبل از تخم گذاری</td>
<td>40</td>
<td>28/0±4/0/16</td>
<td>24</td>
<td>30/0±3/0/28</td>
</tr>
<tr>
<td>دوره تخم گذاری</td>
<td>40</td>
<td>34/0±4/0/30</td>
<td>24</td>
<td>42/0±3/0/29</td>
</tr>
<tr>
<td>مجموع</td>
<td>160</td>
<td>142/0±4/0/26</td>
<td>112</td>
<td>168/0±3/0/29</td>
</tr>
</tbody>
</table>

روش: سپس در اواخر اردیبهشت ماه رو به به کاهش گذاشت. بدین ترتیب دوره تخم‌زایی آفت در انتهای بهار حدود ۲ ماه به طول انجامید (شکل ۲). به همین دلیل بین نسل‌های بعدی آفت همبودی وجود داشته. با مقایسه فاصله بین اوج تخم‌زایی نسل زمستانی یعنی اواخر اسفندماه (شکل ۳) از اوج ظهور پوره‌های سن یک حاصل از تخم‌زایی تخم‌ها یعنی اواخر اردیبهشت ماه (شکل ۱) طولانی‌ترین دوره جنینی تخم در این زمان مشاهده شد که به احتمال بسته به دلیل در انتهای اسفند ماه و اواخر فوروردها می‌باشد.

شروع نسل اوایل به ظهور پوره‌های سن یک در فروردین ماه بود. پوره‌های سن یک غالباً در پیست برگ‌ها و در انتهای زیبایی سه‌گانه متصرف شده و شروع به نازی‌گردی می‌کنند. پوره‌های سن دوم نیز غالباً در زیر برگ‌ها متصرف بودند. جمعیت شیپک در سطح روی برگ‌ها ناچیز بود و به‌ندرت روی میوه‌ها مشاهده شد. شیپک‌ها از سمن سوم به بعد عموماً به شاخ‌های قطورت و تنه درختان حمله کرده و تا پایان عمر در این مکان‌ها باقی مانده. در تیپه در انتهای سه‌گانه نسل ابتدایی شیپک‌های بالغی که هم درخت را سفیدی‌بود کردند مشاهده گردید. همچنین پوره‌های سن سوم به تنه درختان نیز ترشح شدید عملکرد از اواخر خرداد ماه شروع شده و در ادامه به اوج حاوی رسید. از

ب) نهال مركبات

میانگین (+خطای معیار) طول یک نسل شیپک در دمای 17±1 درجه سانتی‌گراد 7/8±2/2 روز و تعداد تخم‌گذارده شده بالغین 12±4/2 عدده محسوب گردید. این مقادیر در دمای 17±1 درجه سانتی‌گراد 9/4±2/4 و 77±8/64 درجه سانتی‌گراد 1/53±0/01/71/47 پوره‌های سن یک نطفات شدیدی متحمل شدند و امکان مطالعه میسر گردید.

طول دوره جنینی و سنین اولیه پوره‌کی (1/3) مانند از دما بود ولی طول دوره تولید مثل چندان متأثر از دما تبود. با این حال مجموع طول مدت رشد و نمو شیپک در دو دما مورد مطالعه، اختلاف معنی‌داری از خود نشان داد.

(جدول 2).

۲) زیست شناسی در طبیعت

تغییرات جمعیت شیپک استرالیایی در شکل‌ها ۱ و ۲ نشان داده شد. شیپک زمستانی را در حالات مختلف رشدی سیری نشان و پوره‌های سن دوم پی‌شکتین جمعیت زمستانی‌گذاران را تشكیل دادند (شکل ۱). تخم‌زایی آفت از اواخر اسفندماه آفتاب یافته و در انتهای اسفند ماه به اوج حاوی رسید.
ابن زمان به‌دیوانی جمعیت بالغین بین افراد یافته. زمان بلندی
نسل اول در همه آخر خردالافد و دهه اول نیمباره بود. نسل دوم
شیپک‌های استرالیایی از اولین نیمباره شروع شد و طی شهروندی، و
بعد از دهه اول آن به سر بلند رسد. سپس به‌دیوانی نسل سوم
ظاهر شد که پس از طی سه‌ستون اول و دوم پورگی، در ادرار،
جمعیت‌سن‌های بالغین شاهد نیز تا حدا روز دنیا درختان
ظاهر گردید. تعادلی از پره‌های سن‌سوم نیز با گذشت زمان
بالغ شدند. اما رشد و نمو این بالغین جوان چند یکم‌ها
زمان‌های این زمان کنده و تشکیل کهنه رخ داده آنها یا اول
استفاده‌ها به تأخیر افتاد. بنده ترتیب دوره قبیل از تخم‌گذاری
نیز به طول انجامید.

شکل 1. تغییرات جمعیت مرحله‌های سی (به‌جز تخم) شیپک استرالیایی
روی پرتنل سیاروز L. purchasi طی سال‌های 1382-1383 در شرق آباد دزرفول

شکل 2. روند تخم‌زایی شیپک استرالیایی
روی پرتنل سیاروز طی سال‌های 1382-1383 در شرق آباد دزرفول

از اواخر به‌هم‌اوا لحم پره‌های سن‌سوم و بالغین جوان به
روی شاهدینه قطع و نه درختن پیشی گرفت و تشکیل کم‌دوز
تخم این شیپک‌ها در اواخر استفاده کامل گردید. تخم زیاد
بیشتر زیاد نسل زمان‌های که از اسفند ماه آغاز گردید پیوست
جمعیت تعداد نسل جدید در ابتدای اصل باشند
بند اینهای (زاگوسه) به همین دلیل پیشی گرفت و ثبت آفت
در این زمان دیده شد. تفاوت بین حداقل تعداد تخم
(حدود 3000 عدد) و تخم حداکثر تعداد پره سوینک (حدود
2500 عدد) می‌تواند نشانگر تلفات بالای پره‌های خزندای
بر اثر شرایط نامساعد آب و هوایی و نیز کیفیت گیاه میزان باشد
(زمان‌های (زاگوسه).
یکی از هیات یا پر تن تخم مشاهده گردیده (پیش از ۴۰۰ عدد تخم در یک کیسه روی کوهروک در مرداهام). در مشاهده به عمل آمده از سایر باغ‌ها شدت خارسات شیشک این درخت نارنجی برل، لحم نارنجی، گریپ فروت و برکی و بین نیز تخم جمعیتی کمی از آفت‌های بنا به سایر مراکز دیده شد.

در نمونه‌های جمعیت آویشده بخصوص نمونه‌های نگهداری شده در شرایط حفاظتی ملاحظه می‌شود که تخم مشاهده گردیده در تعداد اندکی مراکز کمیکه تخم‌های جمعیتی‌های کمی از آفت‌های بی‌شکا و متناسب تخم‌های شیک این درخت نارنجی برل، لحم نارنجی، گریپ فروت و برکی و بین نیز تخم جمعیتی کمی از آفت‌های بنا به سایر مراکز دیده شد.

نمونه‌های نگهداری شده در شرایط حفاظتی ملاحظه می‌شود که تخم مشاهده گردیده در تعداد اندکی مراکز کمیکه تخم‌های جمعیتی‌های کمی از آفت‌های بی‌شکا و متناسب تخم‌های شیک این درخت نارنجی برل، لحم نارنجی، گریپ فروت و برکی و بین نیز تخم جمعیتی کمی از آفت‌های بنا به سایر مراکز دیده شد.

نتایج به دست آمده نشان داد که در سطح ۵ درصد ارتباط معمولی داری بین تراکم جمعیت‌های شیشک و عوامل محیطی ذکر شده و جودش نتایج (۰/۵۷۵۶، P = ۰/۷۷، df = ۳) نشان داد. لذا تصور بر این است که تغییرات در تغییرات آب و هوا، ضریب تغییرات احتمالی کیفی و کیفیتی میزان در تغییرات تراکم جمعیت آفتهای نشان داده خواهد که با این حال تغییرات دما ممکن است طول مدت زندگی و نمایانگر مسئولیت چنانچه در پایِز و درختن تخمدان نیز سوم شیشک یک زمان‌بندی به طول انجامید.

نتایج حاصل از نهایت‌های تحت نوشته‌های زمان آغاز و پایان نسیم شیشک استرالیایی را مشخص نمود که با نمونه برداری‌های انجام شده از تخم‌های نیز مطالعات دارد (جدول ۲). به‌دلیل شدت خارسات آفتهای نشان داد که در آنها تمایلی برای تخم‌زایی شیشک استرالیایی در نوارهای گردیده. با وجود اینکه تخم‌زایی در روی تخم‌های درخت مورد نظر برداری می‌شود ولی با افزایش سه‌گانه جمعیت شیشک استرالیایی آفت را در باغ روی تخم‌های درخت مورد نظر برداری کاهش داد. چنانچه این‌ها آفت از اواست تیرمه به صورت رسید و پس از آن نیز در همین حدود نوسان داشت، بنابراین با وجود انجام نمونه‌برداری در ۱۵ شیش‌هورم ادامه نمودار رسم تگردیده است (شکل‌های ۱ و ۲).

در موارد باقی مرداهام (با حداکثر ۵۰ درجه سانتی‌گراد در سه‌گانه تیرمه ۴۱ مرداهام) بوجود مهیا شدند آفت مشاهده‌شده در باغهای ۱۳۸۹ (شکل‌های ۳) و سایر باغ‌های به سیستمی نمایانگر خودرو درختن می‌کانند و در این زمان روز‌های سایر باغ‌ها، بخصوص علف‌های هرز، شیشکهای بالغ‌با
جدول ۲. میانگین تعداد تخم و طول کیسه تخم (به میلی‌متر) شبیه‌سازی استرالیایی در سال ۱۳۸۳ در دزفول

<table>
<thead>
<tr>
<th>طول کیسه تخم (خطرای معماری‌مانگین) (mm)</th>
<th>تعداد تخم (خطرای معماری‌مانگین)</th>
<th>ارقام مراکبات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۱ ± ۰/۱۸</td>
<td>۲۶۶ ± ۲۰/۴۹</td>
<td>نارنج</td>
</tr>
<tr>
<td>۹/۱ ± ۰/۳۷</td>
<td>۲۳۰ ± ۲۱/۸۵</td>
<td>پرتقال سیاپوز</td>
</tr>
<tr>
<td>۹/۲ ± ۰/۳۷</td>
<td>۲۰۲ ± ۲۵/۴۵</td>
<td>نارنجی پرل</td>
</tr>
<tr>
<td>۸/۹ ± ۰/۳۳</td>
<td>۲۰۴ ± ۲۱/۰۲</td>
<td>گریپ فروت</td>
</tr>
</tbody>
</table>

پراکنش و میزان‌ها

انتشار جغرافیایی آفت علاوه بر مناطق مختلف دزفول در روستای شنک زا تابعی با تغییرات متوسط بر اثر عقبی می‌شود و رشد آن می‌تواند در دزفول تحت تأثیر اقلیمی استفاده مجدد و نگهداری جمع‌های مراکبات شماه‌های وحشی را می‌پذیراند. زیرا آن‌ها در بی‌آبی و گرمسیری قابلیت استفاده می‌کنند. مشاهده گردیده است که به وسیله سیریب‌‌گرمسیری گردد. بنابراین در بهترین موارد به مدت بیش از ۲ ماه در زودن زنبور عسل که در قسمت دوده فعالیت گنجینه شبیه‌سازی شده‌اند و گرمسیری و شاید که به‌شکل جمع‌آوری آن‌ها در نظر گرفته شود به دست آمده‌اند نیز می‌تواند بر اثر استفاده در دزفول. 

شبیه‌سازی (Sessile stages)

نشانه‌های آلوه به مراحل تابش به عنوان میزان گیاهی در نظر گرفته شد و روش تحلیل میزان‌ها ذکر شده میزان بالای و یا بالای مشاهده گردید. انجیر، بید، ناحیه خروش، توق، شیرین بیان و یا رشد و مورد حمله شبیه‌سازی می‌گردد. در این میزان‌ها به عنوان منجر، انجیر، اکز، شبک، چپک، گل سرخ، شیرین بیان و ناحیه خروش، سایر میزان‌ها به‌طور کلی بیش از ایران به عنوان میزان شبیه‌سازی استرالیایی گزارش می‌گردد. این دانه و سعیب میزان

VITACEAE: Vitis vinifera L.


ب) دشمان طبیعی

با بررسی مناطق مختلف استان مشخص گردید که شیپک استرالیایی در استان‌های خوزستان دشمن طبیعی ندارد و برای مبارزه با آن باید از دشمن وارداتی آن کشف‌دوز استرالیایی استفاده شود.

بحث

با توجه به پایین‌تر بودن متوسط دمای سالانه در استان‌های شیپک استرالیایی در فارس نسبت به خوزستان، وقوع نهایی استن در این استان در پایان ۴ نسل در خوزستان مورد آمار گرفته و به عقیده بودن‌هایری بیش از ۳ نسل در سال ندارد. این چنین که در نسبت به هم قابلیت نمی‌باشد. این نشان می‌دهد که جنگل‌های کرم‌باری در بسیاری از ناحیه‌های استان شیپک استرالیایی در کمترین فاصله مقوله هستند.

در مورد ترجیح زیستی این آفت تحقیق صورت نگرفته است. نهایاً بودن‌هایری (۱۲) لیمون‌ریز را نسبت به حساسیت و نیز ذکر کرد که شیپک استرالیایی به درختانهای روی دارای انرژی لیمون‌ریز نسبت به انتهای کوهی بود. در این تحقیق در زیستی و جمعیت کمی از شیپک روی درختان ناحیه مشاهده شد. این باید بررسی ترجیح زیستی نیازمند آزمایش‌های دقیق تا پایان این تحقیق دامنه میزان وسیع این آفت را تاکید می‌نماید که با تفاوت سایر مناطق این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که این آفت در استان‌های غربی و مرکزی از شیپک استرالیایی ندارد. این تحقیق نشان داد که
حقایق و فردوسی روشن زاد به خاطر فراهم آوردن امکانات اقامت در منطقه صمیمانه تحقیق و سپاسگزاری می‌گردد.

مانند مورد استفاده

1. افشار، ج. 1361. آفات میوه در ایران. نشریه اداره کل فلاحت، صفحه ۳۵ تهران.
2. ناحیه، ع. 1357. الفترات و کنترل‌های زیان‌ور محصولات کشاورزی در خاورمیانه (ترجمه: ک. کمالی، و. س. حجت).
3. انتشارات دانشگاه جنوبی شیراز، اهواز.
4. خلفی، ج. 1362. بررسی بیوکولوژی شیشک استرالیایی Icerya purchasi Mask. در استان فارس. خلاصه مقالات هفتمین کنگره کیاییسرک ایران.
5. دواچی، ع. و. ف. نکی زاده. 1333. آفات و بیماری‌های گیاهی در ایران. آفات و بیماری‌های گیاهی ۱۴: ۶۸-۸۸.
6. رجبی، غ. 1368. حشرات زین‌ور در خانه‌های میوه سردسیری/ آبی. جلد سوم جورابالان. انتشارات موسسه تحقیقات آفات و بیماری‌های گیاهی، وزارت کشاورزی، تهران.
7. شجاعی، م. 1357. حشره‌شناسی (انئولوژی، زنبورک، اجتماعی و دندان‌ننگی). جلد سوم، انتشارات دانشگاه تهران.
8. کوثری، م. 1328. شیشه‌کش‌های نباتی درخت‌های میوه در ایران. آفات و بیماری‌های گیاهی ۹: ۱۷-۸۵.