ارزیابی تحمّل به یخ زدگی زنوتیپ‌های نخود (Cicer arietinum L.) در شرایط کنترل شده

احمد نظامی، عبدالارضا باقری، حمید رحیمیان، محمد کافی و مهدی نصری محققان

چکیده
این آزمایش با هدف بررسی امکان ارزیابی تحمّل به یخ زدگی گیاه نخود در شرایط کنترل شده با استفاده از دو زنوتیپ متحمل به سرمای شدید. ترکیب زنوتیپ و خورسماپی (خورسماپی و عدم (MCCصو و MCCصو در بیت‌های حرارت‌های صفر در شرایط کنترل شده با استفاده از دو زنوتیپ متحمل به سرمای شدید. این آزمایش نشان می‌دهد که در شرایط کنترل شده با استفاده از دو زنوتیپ متحمل به سرمای شدید، بهترین گیاه‌ها در شرایط سخت زمستان مورد نیاز دارند. مقدمة

حمّل گیاهان به شرایط سخت زمستان ترکیبی از تحمّل به تنش یافته مختلف از جمله تحمّل به یخ زدگی، گرخاب، پسایدگی و بیماری‌ها می‌باشد و لذا این تحمّل صفت پیچیده‌ای است که ممکن استیل و از پیش روی گراخواندن متعدد عناصری.

1. به ترتیب استادان، دانشجویان زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2. استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران

فیزیولوژیکی و مورفولوژیکی در گیاه‌های استیل (12) در آزمایش‌های بررسی تحمّل به سرمای در شرایط مزرو، مشخصات به یخ زدگی در محیط‌های سخت زمستان را به عنوان معيار ارزیابی تحمّل گیاهان به شرایط سخت زمستان مورد تأکید قرار داده‌اند (7 و 14). علی رغم مریزت آزمایش‌های مزروی، واقعیت این
است که به دلیل تغییر مکانی و زمانی وقوع سرمای در شرایط مزرعه، در این گونه ازایندگی‌ها مشکلات خاصی از جمله امکان عدم وجود زمستان‌های مطلوب از نظر شرایط به گزینه یا سردرد هوا در مرکز گیاهان و ایجاد اختلال در بی گزینی و جویدار در (11). بررسی‌های انجام شده به توسط ایکارترا در مناطق است (16). در شرایط کشت زمستان‌های دوره رشد روانی ارقام متحمل به سرمای مورد استفاده بهره‌بردار اقدام به تعامل متحمل به نشان (سرما) اولین قدم بررسی تحمیل به نشان در زنوتیپ‌های گیاه مورد نظر می‌باشد که به دلیل تعادل زیادی وایستگی به میزان پوشش برف، دما و رطوبت خاک و سایر عوامل محیطی است (9). علاوه بر این در تولید ازایندگی متحمل به نشان در زنوتیپ‌های گیاه مورد نظر می‌باشد که به دلیل تعادل زیادی وایستگی به میزان پوشش برف، دما و رطوبت خاک و سایر عوامل محیطی است (9). علاوه بر این در تولید

شرایط کنتل شده استفاده می‌کنند. در این روش گیاهان در (Cold acclimation) شرایط کنتل شده به سرما خورشین‌میایی (یک مدل گیاهان در) پیدا می‌کند و در مرحله با قراردادن آنها در معرض دماهای مختلف پیش دادگی. دمایی را که سبب مرکز ۵۰ درصد از گیاهان می‌شود محاسبه می‌کند. نتایج به دست آمده از اغلب آزمایش‌های انجام شده به روی مذرک، بر روی گیاهان دیگری به‌جز تخود، هم‌شیکتی خویش، با بهبود گیاه در مزرعه نشان داده‌اند (3) و (7) به عنوان مثال دوم همکاران (3) با بررسی تحمیل به سرمای زنوتیپ‌های تخود فرگنگ در شرایط مزرعه و شرایط کنتل شده مشاهده کردند که با کاهش دمای نخود فرگنگ در هر دو محیط کاهش یافته. در آزمایش ایشان ضرایب همبستگی درصد قبایل ۱۹ لاین تخود فرگنگ در آزمایش‌های افزایش یافته بود چیزی که با کاهش دمای نخود فرگنگ در هر دو محیط کاهش یافته. در آزمایش‌های افزایش یافته بود چیزی که با کاهش دمای نخود فرگنگ در هر دو محیط کاهش یافته. در آزمایش‌های افزایش یافته بود چیزی که با کاهش D-9 درجه سانتی‌گراد می‌توان گیاهان غیر مقاوم به بی‌خ

زدگی را حذف کرد.

دخواه زمستان‌های نخود فرگنگ در هر دو محیط کاهش یافته. در آزمایش‌های افزایش یافته بود چیزی که با کاهش D-9 درجه سانتی‌گراد می‌توان گیاهان غیر مقاوم به بی‌خ

زدگی را حذف کرد.

مواد و روش‌ها

مواد گیاهی

در این مطالعه که در دانشکده کشاورزی-دانشگاه فردوسی مشهد در سال ۱۳۸۰ انجام شد، دو زنوتیپ متحمل به سرمای تخود شامل ۱۴۴ (ILC ۴۲۸) MCC۲۵۲ و ۲۴۶ و MCC۲۵۲ و ۲۴۶ و ILC ۴۲۸ و MCC۵۴۶ و پلاک Zn2+ (MCC۵۴۶ Zn2+ حساس به سرما ۵۰5 و مورد بررسی MCC۵۴۶ و پلاک Zn2+ حساس به سرما ۵۰5 و مورد بررسی MCC۵۴۶ و پلاک Zn2+ حساس به سرما ۵۰5 و مورد بررسی MCC۵۴۶ و پلاک Zn2+ حساس به سرما ۵۰5 و مورد بررسی MCC۵۴۶ و پلاک Zn2+ حساس به سرما ۵۰5 و مورد بررسی MCC۵۴۶ و پلاک Zn2+ حساس به سرما ۵۰5 و مورد بررسی MCC۵۴۶ و پلاک Zn2+ حساس به سرما ۵۰5 و مورد بررسی MCC۵۴۶ و پلاک Zn2+ حساس به سرما ۵۰5 و M
ازیبایی نجات به بیخ زدگی زنگیبیه نخود (Cicer arietinum L.) در شرایط کنترل شده. در اکارادا غالب از نواحی پست تا نیمه مربع مناطق مدیریتی که معمولاً زمستان بدون بر فر دارد و حداقل دما نیز بالاتر از 100 گرادیوس می‌پاسید، انگیزه شده است (15 و 16)، زنگیبیه 266‌0 در حامل به گروهی از توده بومی قروین ما‌پی‌بپی‌که در آزمایش‌های انجام شده در شرایط مرتعه جریان ارقام بسیار متحمل به سرماء درجه بندی شده است (1).

شرایط رشد در گلخانه

اینها با غبار گروهی در اتاق ۷۵ درصد به مدت ۳۰ ثانیه ضد عفونیت و سیسزا گروه دادن آنها بین دو لاشه با پرچم خنک عفونیت شده مرقط در شرایط آزمایشگاه جوانه دار شدند. در محلول بعد در گلخانه ۹۰ جوانه در گلخانه گری بیه به ابعاد ۱۲×۱۲×۱۲ سانتی‌متر و در جریان سانتی‌متر دما، ۲۶/۱۵ درجه سانتی‌گراد (شب/روز) و فتو پروژود ۱۶ ساعت در نظر گرفته شد. گیاهان تا مرحله ۵-۳ برگی در شرایط فوق نگهداری شدند. پس از مرحله گلخانه یا با لافاصله مورد تیمار بیخ زدگی قرار گرفتند. تیمار عدم خورسمرایی و یا به شرایط خورسمرایی متفاوت شدند.

خورسمرایی، تیمار بیخ زدگی و پایینگرفت

به منظور اج苍 خورسمرایی، گیاهان به شرایط دمایی ±۵ درجه سانتی‌گراد (تاریکی/روشنایی) متفاوت شدند. در این شرایط فتوپروژود متوسط ۱۰/۵ ساعت و شدت تشعشع فعال فتوسنتزی در ۸۰ میلی‌متری سطح خاک متوسط ۷۵-۸۵ میکرومول اینشینی بستر انتخابی در نظر گرفته شد. روش‌بایی از طریق نور لامپ لیزری ۴۰ وات و تنش ۱۰۰ وات به نسبت به سه بک فراهم گردید. تیمار خاموش به‌طور تک گلخانه و یک دفعه عملی می‌شود. طول مدت خورسمرایی به‌طور متوسط تیمار بیخ زدگی آبی‌آرایی شدند. بوته‌ها ۲۴ ساعت قبل از تیمار بیخ زدگی آبی‌آرایی شدند.

259
شاخ‌ها، طول ساقه و طول و عضویت شاخه‌ها اندکی بیشتر و زیاد تری است. این مطالعه به صورت آزمایش فاکتوریل اسپلیت‌بلات و در قالب طرح کلی تصادفی با سه تکرار انجام گرفت. زنبور و خورسمرایی به صورت فاکتوریل در پلاک‌ها و درجه حرارت به عنوان پایه فرعی در نظر گرفته شدند. در مورد داده‌های درصدی و در مواردی که به دلیل عدم بیان‌بودن شماره‌ها، داداهای حاصل توسط نمود. تبدیل آماری مناسب انجام شد. درجه حرارت کشنده برای 50 درصد زنبورخوارها (LTM50) و نیز درجه حرارتی که سپر می‌گردد درصد کاهش در وزن خشک کیهان می‌شود (DMT50) 9 درصد کاهش در وزن خشک آنها به داده‌های رویکرد محاسبه و سپس به صورت فاکتوریل تجزیه شدند. آنالیز واریانس با استفاده از نرم افزار MSTAT-C صورت گرفت و حالت مقیاسی Mبانگین داده‌ها از آزمون LSD استفاده شد.

نتایج و بحث

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها از نظر درصد بقا و لطمه‌های گزارش و داده‌های (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا در 먼저 ارقام 41 و 24 درصد بیشتر از رقم 0.5 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارها (DMLT50) نقدینگی داشتند (جدول 1). بررسی میانگین‌ها داده‌های حاصل از آزمون‌های ارقام 246 و 1 درصد بقا و دمای حرارت بقا در مرحله 2 و درصد بقا بروز

جدول 1

درصد بقا و درجه حرارت کشنده برای 50 درصد (LTM50) زنبورخوارنا...
جدول ۱. منابع تغییر در جزئیات آزادی و میانگین مجدورات درصد بقا و وزن خشک (گیاه، ساقه و شاخه)، طول (ساقه و شاخه) و تعداد شاخه در گیاه نخود

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>درصد بقا</th>
<th>وزن خشک</th>
<th>طول</th>
<th>تعداد شاخه در گیاه</th>
<th>میانگین مجدورات</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزادی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>زنوتیپ ۵</td>
<td>۲۸.۰/۸</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>خورسماهی ۱</td>
<td>۵۰.۰/۵</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>زنوتیپ × خورسماهی ۲</td>
<td>۲۰.۸/۵</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>خطای اصلی</td>
<td>۴۱/۷</td>
<td>۱۲</td>
<td>**</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>دما ۵</td>
<td>۳۰.۶/۸</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>زنوتیپ × دما</td>
<td>۹۳/۹</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>خورسماهی × دما ۵</td>
<td>۱۵۴/۱۵</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>زنوتیپ ۱۰</td>
<td>۸۰/۴/۱۰</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>خطای فرعی</td>
<td>۶۰</td>
<td>۱۰۷</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

(Cicer arietinum L.)
جدول 2. منابع تغییر درجات آزادی و میانگین مجدورات DMT50 و LT50 در زنوتیب های نخود مورد مطالعه

<table>
<thead>
<tr>
<th>میانگین مجدورات</th>
<th>درجات آزادی</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMT50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91/6</td>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>37/6</td>
<td></td>
<td>G2</td>
</tr>
<tr>
<td>23/6</td>
<td></td>
<td>G3</td>
</tr>
<tr>
<td>62/6</td>
<td></td>
<td>LSD(0/015)</td>
</tr>
<tr>
<td>LT50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36/6</td>
<td></td>
<td>H1</td>
</tr>
<tr>
<td>20/6</td>
<td></td>
<td>H2</td>
</tr>
<tr>
<td>10/5</td>
<td></td>
<td>LSD(0/015)</td>
</tr>
<tr>
<td>36/5</td>
<td></td>
<td>H1G1</td>
</tr>
<tr>
<td>22/5</td>
<td></td>
<td>G2</td>
</tr>
<tr>
<td>16/3</td>
<td></td>
<td>G3</td>
</tr>
<tr>
<td>8/3</td>
<td></td>
<td>H2G1</td>
</tr>
<tr>
<td>4/3</td>
<td></td>
<td>G2</td>
</tr>
<tr>
<td>2/2</td>
<td></td>
<td>G3</td>
</tr>
<tr>
<td>1/1</td>
<td></td>
<td>LSD(0/015)</td>
</tr>
</tbody>
</table>

1. زنوتیب : G1 = MCC5 25/2 = G3 MCC5 50/5 = G2 MCC5 24/2
2. خورسمایی : H1 = خورسمایی، H2 = عدم خورسمایی

جدول 3. اثرات زنوتیب، خورسمایی و زنوتیب × خورسمایی بر درصد پایه‌های 10 درجه DMT50 و ویژگی‌های رشدی گیاه نخود سه هفته پس از بذاریت در شرایط گلخانه

<table>
<thead>
<tr>
<th>درگاه</th>
<th>تعداد شاخه (سانتی متر)</th>
<th>وزن خلکن (میلی گرم)</th>
<th>DMT50 (درجه سانتی گراد)</th>
<th>LT50 (درجه سانتی گراد)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/4</td>
<td>17/5</td>
<td>9/8</td>
<td>182</td>
<td>233</td>
<td>G1</td>
</tr>
<tr>
<td>0/4</td>
<td>8/3</td>
<td>16</td>
<td>111</td>
<td>177</td>
<td>G2</td>
</tr>
<tr>
<td>0/4</td>
<td>12/8</td>
<td>14</td>
<td>129</td>
<td>255</td>
<td>G3</td>
</tr>
<tr>
<td>0/4</td>
<td>2/2</td>
<td>27/5</td>
<td>13/9</td>
<td>34</td>
<td>LSD(0/015)</td>
</tr>
<tr>
<td>0/4</td>
<td>1/1</td>
<td>2/2</td>
<td>10/4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>8/3</td>
<td>2/2</td>
<td>10/5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>3/2</td>
<td>8/2</td>
<td>11/1</td>
<td>0/5</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>3/2</td>
<td>11/2</td>
<td>19</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>15/2</td>
<td>9/8</td>
<td>141</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>19/2</td>
<td>7/4</td>
<td>146</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>3/2</td>
<td>9/7</td>
<td>97</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>3/2</td>
<td>11/2</td>
<td>96</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>1/1</td>
<td>3/4</td>
<td>34</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

MCC125 = G3 MCC195 = G3 MCC215 = G2 MCC245 = G1
فراهم شده (Cicer arietinum L.) در شرایط کنترل شده

جدول 2. اثرات دماهای بیخ زدهگی و دماهای بیخ زدهگی X خورسماپی بر درصد بقای و وزن شاخه، در شرایط گلخانه

<table>
<thead>
<tr>
<th>بقای</th>
<th>وزن شاخه (میلی کرم)</th>
<th>تعداد شاخه در کیه</th>
<th>طول شاخه (سانتی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>247</td>
<td>103</td>
<td>182</td>
</tr>
<tr>
<td>1000</td>
<td>235</td>
<td>90</td>
<td>173</td>
</tr>
<tr>
<td>1000</td>
<td>222</td>
<td>77</td>
<td>163</td>
</tr>
<tr>
<td>1000</td>
<td>209</td>
<td>60</td>
<td>152</td>
</tr>
<tr>
<td>1000</td>
<td>197</td>
<td>45</td>
<td>142</td>
</tr>
<tr>
<td>1000</td>
<td>186</td>
<td>30</td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>تیمار</th>
<th>صفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>338</td>
</tr>
<tr>
<td>1/8</td>
<td>334</td>
</tr>
<tr>
<td>2/6</td>
<td>330</td>
</tr>
<tr>
<td>2/3</td>
<td>326</td>
</tr>
<tr>
<td>1/1</td>
<td>322</td>
</tr>
<tr>
<td>1/1</td>
<td>318</td>
</tr>
<tr>
<td>2/0</td>
<td>314</td>
</tr>
<tr>
<td>1/0</td>
<td>310</td>
</tr>
<tr>
<td>0/0</td>
<td>306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>تیمار</th>
<th>صفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>419</td>
</tr>
<tr>
<td>1/8</td>
<td>415</td>
</tr>
<tr>
<td>2/6</td>
<td>81</td>
</tr>
<tr>
<td>2/3</td>
<td>194</td>
</tr>
<tr>
<td>1/1</td>
<td>189</td>
</tr>
<tr>
<td>1/1</td>
<td>184</td>
</tr>
<tr>
<td>2/0</td>
<td>179</td>
</tr>
<tr>
<td>1/0</td>
<td>174</td>
</tr>
<tr>
<td>0/0</td>
<td>169</td>
</tr>
</tbody>
</table>

این مطالعه می‌تواند در دسترسی بقای گیاهان بالا به عنوان یک تأمین کننده از درمان‌های گیاهی در بیماری‌های جهانی، با وجود کاهش درصدی بقای گیاهان در محاکمه (جدول 3) با وجود کاهش درصدی بقای گیاهان بالا با توجه به بقای گیاهان روند‌های درمان‌های گیاهی در این تحقیق چهار برابر بیشتر از شرایط عدم خورسماپی بوده است.

پایان نیازمندی بر (جدول 4). با وجود کاهش درصدی بقای گیاهان بالا با توجه به بقای گیاهان روند‌های درمان‌های گیاهی در این تحقیق چهار برابر بیشتر از شرایط عدم خورسماپی بوده است.

<table>
<thead>
<tr>
<th>محصول</th>
<th>تیمار</th>
<th>صفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>349</td>
<td>320</td>
</tr>
<tr>
<td>1/8</td>
<td>345</td>
<td>316</td>
</tr>
<tr>
<td>2/6</td>
<td>242</td>
<td>193</td>
</tr>
<tr>
<td>2/3</td>
<td>189</td>
<td>180</td>
</tr>
<tr>
<td>1/1</td>
<td>179</td>
<td>170</td>
</tr>
<tr>
<td>1/1</td>
<td>169</td>
<td>160</td>
</tr>
<tr>
<td>2/0</td>
<td>159</td>
<td>150</td>
</tr>
<tr>
<td>1/0</td>
<td>149</td>
<td>140</td>
</tr>
<tr>
<td>0/0</td>
<td>139</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محصول</th>
<th>تیمار</th>
<th>صفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>429</td>
<td>410</td>
</tr>
<tr>
<td>1/8</td>
<td>425</td>
<td>415</td>
</tr>
<tr>
<td>2/6</td>
<td>119</td>
<td>109</td>
</tr>
<tr>
<td>2/3</td>
<td>114</td>
<td>105</td>
</tr>
<tr>
<td>1/1</td>
<td>104</td>
<td>95</td>
</tr>
<tr>
<td>1/1</td>
<td>95</td>
<td>86</td>
</tr>
<tr>
<td>2/0</td>
<td>86</td>
<td>77</td>
</tr>
<tr>
<td>1/0</td>
<td>77</td>
<td>68</td>
</tr>
<tr>
<td>0/0</td>
<td>68</td>
<td>59</td>
</tr>
</tbody>
</table>
جدول 5: اثرات متقابل دما × زنوتیپ بر درصد بی‌پای و وزن خشک یگهای رشدی یگه تخوده سه هفته پس از بازپایت در شرایط گلخانه

<table>
<thead>
<tr>
<th>درصد بی‌پای</th>
<th>طول (سانتی‌متر)</th>
<th>وزن خشک (میلی‌گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخه‌ها</td>
<td>شاخه‌ها</td>
<td>شاخه‌ها</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>میانگین</td>
</tr>
<tr>
<td>MCC 446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>صفر (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/3</td>
<td>19/3</td>
<td>248</td>
</tr>
<tr>
<td>2/7</td>
<td>16/4</td>
<td>366</td>
</tr>
<tr>
<td>3/1</td>
<td>13/5</td>
<td>544</td>
</tr>
<tr>
<td>5/5</td>
<td>9/5</td>
<td>384</td>
</tr>
<tr>
<td>4/2</td>
<td>7/2</td>
<td>36</td>
</tr>
<tr>
<td>5/5</td>
<td>2/2</td>
<td>33</td>
</tr>
<tr>
<td>4/2</td>
<td>1/7</td>
<td>5</td>
</tr>
<tr>
<td>3/3</td>
<td>3/3</td>
<td>39</td>
</tr>
<tr>
<td>MCC 505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>صفر (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5</td>
<td>19/3</td>
<td>318</td>
</tr>
<tr>
<td>0/5</td>
<td>2/5</td>
<td>228</td>
</tr>
<tr>
<td>0/5</td>
<td>6/4</td>
<td>244</td>
</tr>
<tr>
<td>5/5</td>
<td>3/2</td>
<td>66</td>
</tr>
<tr>
<td>0/5</td>
<td>0/5</td>
<td>17</td>
</tr>
<tr>
<td>0/5</td>
<td>0/5</td>
<td>33</td>
</tr>
<tr>
<td>MCC 252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>صفر (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5</td>
<td>18/0</td>
<td>275</td>
</tr>
<tr>
<td>5/5</td>
<td>17/0</td>
<td>246</td>
</tr>
<tr>
<td>3/1</td>
<td>11/2</td>
<td>156</td>
</tr>
<tr>
<td>3/8</td>
<td>7/5</td>
<td>81</td>
</tr>
<tr>
<td>3/6</td>
<td>10/5</td>
<td>3</td>
</tr>
<tr>
<td>3/6</td>
<td>0/5</td>
<td>0</td>
</tr>
<tr>
<td>0/5</td>
<td>0/5</td>
<td>35</td>
</tr>
<tr>
<td>0/5</td>
<td>0/5</td>
<td>79</td>
</tr>
<tr>
<td>LSD(0/05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. درجه سانتی‌گراد

بررسی اثر تصادفی دما × زنوتیپ نشان داد که باقیه دو زنوتیپ متحمل به سرما تا دمای -۸ درجه سانتی‌گراد چندان تحت تأثیر قرار نگرفتند. درصد بی‌پای هر دو زنوتیپ در این دما حدود دو برابر نمونه خسارت به درجه (5). در صورتی که تیمار دمایی -۱۲ درجه سانتی‌گراد بیش از ۸۸ درصد تلفات در زنوتیپ ۵/۵ و به ترتیب ۰/۵ و ۵/۷ درصد تلفات در زنوتیپ‌های MCC۵۰۵ و MCC۲۵۲۴۶ ۲۴۶ به شدت است. بیان و پایت و رشد مجدد یگاه پس از بی‌پایت

اثر زنوتیپ بر وزن خشک یگه در پایان دوره بازپایت (۲۱ روز پس از اعمال تیمار بی‌پایت) منعی دار بود (جدول ۱). وزن خشک یگاه در زنوتیپ MCC۵/۰۵ (حسسی) در پایان این دوره به ترتیب ۵۰ و ۷۰ درصد کمتر از وزن‌ها MCC۲۵۶ (ارقام متحمل) بود. ضمن اینکه در بررسی MCC۲۴۶ زنوتیپ‌ها مشاهده شد که در زنوتیپ‌ها متحمل به DMT۵۰ بزرگ‌ترین اثر داشت.
ارزیابی تحلیل به بیخ زدگی زنوتیب‌های نخود (Cicer arietinum L.) در شرایط کنترل شده

سرما این شاخص ۲ درجه سانتی‌گراد پایین‌تر از زنوتیب حساس به سرمایه است (جدول ۳).

در بررسی اجراز وزن خشک گیاه (وزن خشک ساقه و شاخه) مشاهده شد (جدول ۴) که وزن خشک شاخه (شامل وزن خشک شاخه‌ها و برگ‌های شاخه) در رقم حساس به زنوتیب متوسط مقدار ملکار MCC246 به ترتیب متوسط ۶۶ درصد وزن زنوتیب‌های مزدک و بی‌زمین است، در بررسی وزن خشک ساقه در رقم ملکار MCC246 به ترتیب متوسط ۳۴ و ۲۴ درصد وزن زنوتیب‌های مزدک و بی‌زمین است.

برای مقایسه سایر اجرازی روشنگی گیاه شامل طول ساقه و طول شاخه در گیاه نیز نشان داد (جدول ۳) که از بین صفات MCC505 بسیار کمتر از رقم دیگر بوده است. به عنوان مثال در حالت که طول ساقه در مزدک ملکار به ترتیب متوسط ۹۴ و ۴۵ درصد زنوتیب MCC246 و MCC257 بوده و در مزرعه زنوتیب MCC505 در رقم ۱۹ و ۱۴ درصد تعداد گیاه شاخه زنوتیب‌های فوق رشدی است.

در مورد اغلب صفات مورد بررسی اثر خورشماری و اثر مقایسه زنوتیب × خورشماری بر شرط مجدد گیاه پس از اعمال تیمارهای بیخ زدگی مصنوعی دار (جدول ۱)، براساس میانگین داده‌های حاصل از سه رقم خورشماری سبب بهبود ملکار MCC505 و دیگر بوده است. در بررسی DMT50 صفات مورد بررسی MCC246 وضعیت زنوتیب‌ها مشاهده شد که در زنوتیب MCC505 در صورتی که در زنوتیب MCC257 در بوده است (جدول ۳) و در بررسی اثر مقایسه زنوتیب × خورشماری مشاهده کرد که در بررسی اثر خورشماری بر اجرازی روشنگی بی‌زمین به رقم مقایسه بوده است. به عنوان مثال درباره خورشماری بی‌زمین نیز در مزرعه MCC505 وزن خشک ساقه و وزن خشک آن در رقم ۵۰۵ و ۲۲ درصد بوده است.
جدول 6: درصد و مقدار کاهش اجزای رشدی گیاه نخود (بانگنی سه زنوتیپ) به آراز هر درجه سانتی‌گراد کاهش دما در محدوده دماهای آزمایش

<table>
<thead>
<tr>
<th>کاهش طول ساقه</th>
<th>کاهش وزن ساقه</th>
<th>محدوده دماهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخه ها</td>
<td>درصد سانتی‌گرم</td>
<td>درصد سانتی‌گرم</td>
</tr>
<tr>
<td>درصد سانتی‌گرم</td>
<td>درصد سانتی‌گرم</td>
<td>درصد سانتی‌گرم</td>
</tr>
<tr>
<td>9/8</td>
<td>17/2</td>
<td>6/8</td>
</tr>
<tr>
<td>10/7</td>
<td>13/6</td>
<td>9/6</td>
</tr>
<tr>
<td>11/6</td>
<td>14/7</td>
<td>10/7</td>
</tr>
<tr>
<td>12/6</td>
<td>15/8</td>
<td>11/6</td>
</tr>
<tr>
<td>13/7</td>
<td>16/9</td>
<td>12/6</td>
</tr>
</tbody>
</table>

از دماهای 8-10 درجه سانتی‌گراد سبب کاهش 20 درصدی رشد مجدد اندازه‌های هوایی گندم (رشد یافته در گلدان به مدت 30 روزه و سه هفته پس از اعمال یخ زدگی) نسبت به تیمار شاهد عدم یخ زدگی شده، در درجه 8 و 12 درجه سانتی‌گراد رشد مجدد اندازه‌های هوایی گندم نسبت به تیمار شاهد عدم یخ زدگی به ترتیب 40 و 60 درصد کاهش یافته.

شما و وزن خشک ساقه از وزن خشک کل گیاه در تیمارهای دمایی صفر و درجه سانتی‌گراد به ترتیب 4 درصد و 68 درصد بود، درحالی که در تیمارهای دماهای 8-12 درجه سانتی‌گراد به ترتیب 64 و 49 درصد کاهش یافته. به عبارت دیگر با افزایش شدت نشان می‌دهد سهم اعضا جانین در بازیافت گیاه و رشد مجدد آن افزایش یافته است.

اثر مقابل دماهای 8-10 درجه سانتی‌گراد بر افزایش گیاه معنی‌دار بود (جدول 1). در تیمار عدم خوراک‌های وزن خشک گیاه در دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 97 و 36 درصد کاهش داشتند. در حالی که وزن خشک ساقه ها در این رنگ گروهه است، بنا بر این که اثر مقابل دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 73 و 3 درصد کاهش داشتند. در دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 76 و 3 درصد کاهش داشتند. در دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 76 و 3 درصد کاهش داشتند.

اثر مقابل دماهای 8-10 درجه سانتی‌گراد بر افزایش گیاه معنی‌دار بود (جدول 1). در تیمار عدم خوراک‌های وزن خشک گیاه در دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 97 و 36 درصد کاهش داشتند. در حالی که وزن خشک ساقه ها در این رنگ گروهه است، بنا بر این که اثر مقابل دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 73 و 3 درصد کاهش داشتند. در دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 76 و 3 درصد کاهش داشتند. در دماهای 4-8 و 12- درجه سانتی‌گراد به ترتیب 76 و 3 درصد کاهش داشتند.
ارزیابی نجات بی خ ژن‌های زونتیپیهای نخود (Cicer arietinum L.) در شرایط کنترل شده

وژن خشک ساقه و طول آن به ترتیب ۷۸ و ۶۹ درصد کاهش داشتند. بررسی ایبر بر روی نخود فرستگی نیز نشان داد که نجات به یک ژن‌گی شاخه چنان که ساقه بیشتر می‌باشد (۸).

کاهش رشد اغلب اجرای رویش گیاه در رقیم متحمل به سرما در بسیاری از درجه‌های سانتی‌گراد بین ۱۲ تا ۳۳ درصد بود (به جز صفت وزن خشک ساقه که در محدوده دمای ۲ تا ۸ درجه سانتی‌گراد در سرما ۵۲۴ درصد کاهش داشت). در حالی که در زونتیپیهای قد کم (۴۵ درصد) دمای ۱۷ تا ۲۳ درجه سانتی‌گراد بین ۱۰ تا ۳۰ درصد تعداد ژن‌های سانتی‌گراد دار اوگایی رویشی شاخه شامل طول و وزن آن به ترتیب ۲۰ و ۴۶ درصد در دمای ۲۳ درجه سانتی‌گراد بین ۱۰ تا ۳۰ درصد (کاهش اجرای رویشی شاخه شامل طول و وزن کل آن به ترتیب ۲۴ و ۴۲ درصد) بود.

در مجموع مشاهده می‌شود که پایداری‌های زونتیپیهای متحمل به سرما بهتر از زونتیپیهای حساس به سرما بود. رشد مجدد زنوتیپیهای متحمل به سرما بالای‌اًز طریق رشد ساقه و انشعابات جانایی نسبی دارد که در زونتیپیهای حساس به سرما نخود ساقه به بالایی نرسیده است. در زنوتیپیهای حساس به سرما پایین‌ترین شاخه به سرما نسبت به زونتیپیهای متحمل به سرما بوده است.

با توجه به نتایج به دست آمده به نظر می‌رسد که می‌توان در شرایط عدم محدوده دمایی در درجه سانتی‌گراد و در شرایط طبیعی دمایی در درجه سانتی‌گراد را برای تکیهکاری زنوتیپیهای متحمل به سرما نخود مورد استفاده قرار داد.

نتیجه‌گیری

در این آزمایش مشاهده شد که زنوتیپیهای متحمل به سرما کوچکتر از زونتیپیهای حساس به سرما بود. ضمن اینکه

منابع مورد استفاده

۱. نظیری، ا.و.ع. باقری. ۱۳۸۰. ارزیابی کلکسیون نخود مشاهده برای تحمل به سرما در شرایط مزو. علوم و صنایع کشاورزی ۱۵: ۱۶۲-۱۶۷.

۲۶۷

