ارتباط قارچ‌های همیست اندوفایت با زودرسی و صفات وابسته به آن در گیاه فسکیوی بلند

(Festuca pratensis Huds.) و فسکیوی مرتعی (Festuca arundinacea Schreb.)

آقایخر میلوزی، محمد رضا سعیدی‌خان و محمد حسن اهتمام

چکیده

به منظور بررسی نقش قارچ‌های همیست اندوفایت (Neotyphodium coenophialum) در اثر زودرسی چهار زنویع فسکیوی بلند و دو زنویع فسکیوی مرتعی در این آزمایش استفاده گردید. پس از انتخاب گیاهان سازگار با قارچ همیست اندوفایت، پنج همان هزینه به دو قسمت تقسیم شد و قارچ اندوفایت در یک بخش از پنجه‌ها با استفاده از مخلوط قارچ پروبیکونژول و فولیکول حذف گردید. پنجه‌ها جدید از گیاهان حاوی اندوفایت و بدون اندوفایت مورد زنویع، در قالب یک طرح بالا کننده روش تکرار در مهی‌شده کشت گردیدند. صفات تعداد روژ تا ظهور اولین خوشه، تعداد روزها تا 30 درصد گردشگانی، تعداد روز دارد تا شروع نیز آلات فستوکیویک، تعداد خوشه در هر هفته، وزن کل بذر تولید شده، وزن بذر خالص و وزن بذر پوک در هر دو هفته یک بار روی این گیاهان اندازه‌گیری شدند. نتایج نشان داد که قارچ‌های همیست اندوفایت قادمنه در هر هفته، جریان سیدی و سیستم عاملی مرحله‌ای‌ی با در گیاه فسکیوی بلند و فسکیوی مرتعی افزایش دهند. قارچ‌های اندوفایت به طور متوسط ظهور اولین خوشه را 2 روز قبل از ندارند. همچنین قارچ‌های همیست اندوفایت تعداد زیادی اندوفایت را کاهش داده و اندوفایت میزان حاوی اندوفایت 6/ 2 روز حذف می‌شود. فسکیوی بلند و دو زنویع فسکیوی مرتعی آزمایش داده شدند. قارچ‌های اندوفایت به طور متوسط ظهور اولین خوشه را 2 روز قبل از ندارند. همچنین قارچ‌های همیست اندوفایت تعداد زیادی اندوفایت را کاهش داده و اندوفایت میزان حاوی اندوفایت 6/ 2 روز حذف می‌شود. فسکیوی بلند و دو زنویع فسکیوی مرتعی آزمایش داده شدند. قارچ‌های اندوفایت به طور متوسط ظهور اولین خوشه را 2 روز قبل از ندارند. همچنین قارچ‌های همیست اندوفایت تعداد زیادی اندوفایت را کاهش داده و اندوفایت میزان حاوی اندوفایت 6/ 2 روز حذف می‌شود. فسکیوی بلند و دو زنویع فسکیوی مرتعی آزمایش داده شدند. قارچ‌های اندوفایت به طور متوسط ظهور اولین خوشه را 2 روز قبل از ندارند. همچنین قارچ‌های همیست اندوفایت تعداد زیادی اندوفایت را کاهش داده و اندوفایت میزان حاوی اندوفایت 6/ 2 روز حذف می‌شود. فسکیوی بلند و دو زنویع فسکیوی مرتعی آزمایش داده شدند. قارچ‌های اندوفایت به طور متوسط ظهور اولین خوشه را 2 روز قبل از ندارند. همچنین قارچ‌های همیست اندوفایت

واژه‌های کلیدی: اندوفایت، زودرسی، فسکیوی بلند، فسکیوی مرتعی

مقدمه

همیستی لگوم-رازوریمی شناخته شده‌ترین رابطه همیستی گیاه-میکروگانیسم است. همیستی دیگری بین گیاه و

1. به ترتیب دانشیار، دانشجوی دکتری و مربی زراعت و اصلاح نباتات. دانشکده کشاورزی، دانشگاه صنعتی اصفهان

277
کنتکی مورد بررسی قرار داده. نتایج و داده‌ها برای یک سال بیانگر تأثیر مثبت نظام زراعی Epichloë typhina برکنار کردن. معکوره‌های Epichloë typhina در جنس Acremonium افزایش داده. در طی تحقیقات بعدی منشأ Neotyphodium شد که هر دوی این جفت در کاهش میزان از نوع نفع متقابل بوده، قرار هر دوی متقابل به‌صورت است. با این عامل که به‌صورت رشد کیسه‌ها، باشند و تغذیه حشرات و حیوانات از گیاه و تحمیل به خشکی گیاه مواد غذایی را از گیاه دیفانت می‌کند. در دوران گیاه توسعه می‌یابد و از طریق بذر نسل بعدی کیسه‌ها را می‌تواند تمایز در آن ناحیه و تولید بذر را نیز تحت تأثیر قرار دهد. همچنین اثر متقابل قارچ اندوفایا بر گیاه مواد غذایی از نظر صفات مختلف، قفت و توجیه بیشتری را در تحقیقات منطقی، بین فهمه‌ها و حاصل‌های اندوفایا متناسب به‌پردازی گیاهان آلوده نسبت به گیاهان غیر آلوده نمی‌شود. به نظر من رشد تأثیر مثبت قارچ‌های اندوفایا با توجه به زننده مواد و زننده اثر متقابل با میزان دارد. بیکن به نقل از آراچوئی (1) در مزرعه مثال‌ها نشان داد که گیاهان حاوی اندوفایا در همه تعداد نسبت به کلون‌های بدون اندوفایا زودرس داشته‌اند. بنابراین به نظر می‌رسد که قارچ اندوفایا می‌تواند با تأثیر بر بخش خاصی‌سازی‌های نموی گیاه فرایند گیاهی را به‌طور تغییر دهد که منجر به تظیم زمان‌ها و القای زمان رشدی و کوتاه کردن دوره رشد گیاهی گردد.

 conheci-am em um mundo de fazer e fazer. Em um mundo de fazer, é difícil encontrar alguém que seja capaz de entender a importância do que faço. No entanto, há pessoas que valorizam o meu trabalho e me apoiam em minha jornada. É isso que me mantém motivado e fazendo o que amo.

Entre as coisas que faço, uma das mais prazerosas é o trabalho em equipa. Através da cooperação e do intercâmbio, podemos alcançar resultados superiores e aprimorar nossos processos. É um prazer trabalhar com pessoas que compartilham de um mesmo objetivo e que estão dispostas a colaborar para o alcance de nossos objetivos.

Além disso, adoro me desafiar constantemente e buscar novas formas de melhorar o que faço. A aprendizagem é uma parte integrante de meus dias e é um dos motivos que me mantêm motivado.

Por fim, gostaria de frisar que o meu trabalho não é apenas sobre a realização de tarefas, mas também sobre a criação de valor e contribuição para o bem-estar das pessoas. É isso que me move e me empenho para fazer a diferença.

Em suma, o meu trabalho é algo que me faz feliz e me motiva a seguir avançando, descobrindo e criando. Acredito que cada um de nós tem o poder de mudar o mundo e, juntos, podemos fazer um grande impacto.
کشت بذرها حاوی انگورا و تعیین زمان‌گزاری کار بر
گیاهان میزبان برای تعیین حضور قارچ‌های انگورا در پذیر فتوهای گیاهی
جمع‌آوری شده از روش پیش‌بینی توسط ساختارهای میکروسکوپی (19) استفاده
گردیده. بذرها و چربی از گونه استفاده شده با مقدار
به صورت مجوز به دست 10 نت ساخت در محلول
رنگ ریزی کرده و مزک در 20 میلی‌متر هکساینی
داشته، با آب شست و شست و شست گردی و به مدت
6 ساعت در محلول حاکی رنگ کیفیت رنگ آمیزی
کارد. بذرها را تکمیل شده سپس روی لاماسک
گردیده و با عدسی 200 در زیر میکروسکوپ مورد مشاهده
قرار گرفتند. پس از اطمینان از حضور انگورا در توده‌های
مورد نظر، بذرها را به صورت مجزا و در تکرار
کلی در متوسط 20×15 سانتی‌متری حاوی خاک سیک
لوم- وی کشت شدند. مهای پس از رشد گیاهان و تولید
نئچ کافی از غلاف‌های گیاهی به دسته نمونه برداری
صورت گرفت و به روش ساختارهای میکروسکوپی (19) بررسی
برای رنگ انگورا غلاف گر تازه، ایجاد کنار برداشت
شد و روی لام میکروسکوپی دو طرف قرار گرفت
که نت نهایی محلول استاندارد محلول استاندارد حاوی
0.05 گرم رنگ
زنگ رنگ رنگ 160 میلی‌لیتر کلک 5 درصد است) روی نمونه
گذاشته شد و 20×6 ثانیه بعد روی نمونه جذب با غلاف
گردد. نمونه با یک لام‌کاری داخل پوششگری شد. رنگ اضافی با
دسیمال کاغذ جدید گردید و نمونه با زبرمانی
30 در زیر میکروسکوپ مشاهده شدند. قارچ‌های انگورا به صورت
موادی با انگورا غلاف گرک مشاهده شدند. معمولاً قارچ‌های
انگورا فعالیتی که با گیاهان پتیاری سازگاری دارد. تراکم
هیپ آبی در گیاهان نوری و پرخور و در غلاف گرک هستند و
کمترین مقدار حکمت عرضی را در دارد و بر هر برداشت نیز دیده
وان‌ساناتور (21). بیان کرد که تاریخ خوش‌رهیافت
می‌باشد. نمونه‌گیری گردید که کاسه‌بندی تاریخ
گردیده است. باعث سیگنال دیرتر می‌گردیده. به این
از اصل زودرسی هم‌ساخته شده‌اند (21، 22، 23) با
صنافی که راحتی قابل اعمال در گیاهان سیگنال و
تاریخ سابلی می‌تواند راحتی تاریخ کیفی شود. می‌توان
وان‌ساناتور (23) که هم‌ساخته تاریخ سابلی می‌تواند
باشند. با تغییر می‌توان از صفحات تاریخ خوش‌رهیافت
برای قارچ‌های انگورا بر زودرسی گیاهان مشترک‌العمل
بر اثر قارچ‌های انگورا بر زودرسی گیاهان مشترک‌العمل
توجّه به نقش این قارچ‌های هم‌ساخته در تغییرات میکروسکوپی و
فیزیولوژیکی که نتیجه تغییر اثرات هورمونی از جمله
مه‌ترین آنهاست (21). افزایش زودرسی در گیاه بعد به نظر
نمی‌رسد. در اهمیت قارچ هم‌ساخته انگورا در قالب
زودرسی گیاهان افزایش‌دهنده تاریخ‌های از این هم‌ساخته
در گیاهان علف‌های و احتمالاً زراعی باشد.
در تحقیق حاضر، مجموعه‌هایی از صفحات مرتبط با زودرسی
در گیاه فیکسیون بند و فیکسیونی مربوط مانند قرار
گرفته اساس و به همکاری این صفحات از تغییرات میزان بند و تأثیر
قارچ هم‌ساخته انگورا بر افزایش‌های خواهدشده.
مواد و روش‌ها
مواد گیاهی مورد استفاده در این تحقیق شامل سه ژن‌تیپ
گیاهی از توده 75 و 76C و 76B (32)، 384B و 385C
38 و 386B از توده 60 زنیتی بودند. سه ژن‌تیپ می‌توان با بررسی
سازگار، دارای تراکم هیپ آبی در گیاهان نوری و در غلاف گرک هستند و
کمترین مقدار حکمت عرضی را در دارد و بر هر برداشت نیز دیده

229
نمی‌شوند (۷). با توجه به این خصوصیات و بررسی گیاه‌های مختلف از هر گونه، سه زنوتیب از ۲۵۵۵، یک زنوتیب از توده به و یک زنوتیب از توده ۱۸۰ انتخاب گردیدند. زنوتیب‌های انتخاب شده از طریق چندبازاری نقشه‌های در گلدان‌های مجاور و در سه تکرار گلبرگی و در کل‌گله‌های نگهداری شده.

تکنیک‌های حاوی انواع‌های اندازه‌گیری و بدون اندازه‌گیری
برای تولید گیاهان حاوی انواع‌های اندازه‌گیری و بدون اندازه‌گیری از یک زنوتیب گیاه یکسان، لازم بود به طریقی، با استفاده از اندازه‌گیری از یک دسته از گل‌های یک زنوتیب حذف گردید. بدین منظور ابتدا پنج گونه‌های موجود در گلدان مرمت به یک زنوتیب به دو قسمت تقسیم گردید و سپس یک گونه مورد مخلوط در فضای کش پرپنکولاز و فیلولیک، اسپری گردید. قارچ کش پرپنکولاز و فیلولیک با خلط یک‌میلی‌لیتر در لیتر مخلوط شدند. اسپری کردن پنج گونه مورد نیاز دوباره دو مرحله پنجه‌های مورد نظر در هر هفته و به مدت دو هفته در جدید کردن گیاه و غلظت گیاه نیز به دو هفته پس از آخرين اسپری کردن، گیاهان مورد تیمار مورد بررسی مجدد برای تعیین حضور انواع‌های اندازه‌گیری و مشخص شد که انواع‌های حاوی انواع کنار، حذف شده از ابزارهای مورد استفاده و گیاهان تیمار شده و تیمار نشده هر زنوتیب در کرت‌های مجرب کانه هم در مزرعه کشت گردیدند. خلاک کرت‌ها بود و هنگام کاشت به هر کرت با ابعاد ۱/۵ متر مربع، ۱۰ کیلو گرم کود دامی بپوشید و ۲۵ کیلوگرم ماسه اضافه گردید. نگهداری گیاهان جدید از گیاهان حاوی انواع‌های اندازه‌گیری و بدون اندازه‌گیری هر زنوتیب به گلدان‌های متوسط ۲۰ سانتی‌متری حاوی خلوت‌های سبز کشیده شدند. در بقیه‌ها به گلدان‌های متوسط ۱۵ سانتی‌متری حاوی خلوت‌های سبز کشیده شدند. در زمستان سال ۱۳۸۱، گیاهان حاوی انواع‌های اندازه‌گیری و بدون اندازه‌گیری به صورت آزمایش فاکتوریل در قالب یک طرح بلوک کامل تصادفی در سه تکرار در مزرعه کشید. تیمارهای شامل ۶ زنوتیب و دو حالات حاوی انواع‌های اندازه‌گیری و بدون اندازه‌گیری به جمعاً ۱۲ تیمار ترکیبی زنوتیب-
جدول 1. جدول تجزیه و تحلیل بین دو متغیر به صورت مختلف زودرسی و اثر مانع مختلف

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>منع تغییرات</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاریخ طوره خوش‌های</td>
<td>5</td>
<td>22/82**</td>
</tr>
<tr>
<td>0/8085**</td>
<td>0/2658**</td>
<td>0/176**</td>
</tr>
<tr>
<td>1/0315</td>
<td>1/428**</td>
<td>1/631**</td>
</tr>
<tr>
<td>0/8085**</td>
<td>0/2658**</td>
<td>0/176**</td>
</tr>
<tr>
<td>1/0315</td>
<td>1/428**</td>
<td>1/631**</td>
</tr>
<tr>
<td>0/8085**</td>
<td>0/2658**</td>
<td>0/176**</td>
</tr>
<tr>
<td>1/0315</td>
<td>1/428**</td>
<td>1/631**</td>
</tr>
</tbody>
</table>

مینی دار در سطح احتمال 1 درصد.

** مبنای دار در سطح احتمال 1 درصد.

نکته: دو متغیر زننویب و انگوافیت با مقدار E+ به مقدار بدون انگوافیت E- مرتبط هستند. ساعت در مقاله زننویب‌های 0.5، و 0.7% از این نظاره اختلافی نشان دادند. (جدول 2) با توجه به اینکه قارچ‌های انگوافیت تعادل جهانی گیاه را تغییر می‌دهند(10) به قرار معنی‌دار بین این نشان داده شده. با این حال تحصیلات پیش‌تر و یک‌طرفه درک این موضوع مورد نظر است.

شکل 1. مقایسه میانگین صفات متغیر با زودرسی در گیاهان خاوی انگوافیت و بدون انگوافیت

منابعی که به زنین مربوط خوش‌های جدول 1 و 0.7% از این نظره اختلافی نشان دادند (جدول 2) با توجه به اینکه قارچ‌های انگوافیت تعادل جهانی گیاه را تغییر می‌دهند(10) به قرار معنی‌دار بین این نشان داده شده. با این حال تحصیلات پیش‌تر و یک‌طرفه درک این موضوع مورد نظر است.

تاریخ 0/5 درصد کاهش انگوافیت

از این نظره اختلافی نشان دادند (جدول 2) با توجه به اینکه قارچ‌های انگوافیت تعادل جهانی گیاه را تغییر می‌دهند(10) به قرار معنی‌دار بین این نشان داده شده. با این حال تحصیلات پیش‌تر و یک‌طرفه درک این موضوع مورد نظر است.

231
جدول ۲: مقایسه میانگین ترکیبات تیماری زنوتیپ انفودافیت در بررسی صفت‌ات کیفیت خوش‌دهی، تاریخ ۵۰ درصد گره‌افشانی و تاریخ شروع سریدگی

<table>
<thead>
<tr>
<th>زنوتیپ انفودافیت</th>
<th>تاریخ خوش‌دهی (روز)</th>
<th>تاریخ ۵۰ درصد گره‌افشانی (روز)</th>
<th>تاریخ شروع سریدگی (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E+</td>
<td>۸۳</td>
<td>۸۹</td>
<td>۸۵</td>
</tr>
<tr>
<td>E-</td>
<td>۸۵.۳</td>
<td>۸۵.۳</td>
<td>۸۵.۳</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حرف مشترک از نظر آماری در سطح ۵ درصد اختلاف معنی‌دار ندارند.

اند که فارل انفودافیت در برخی زنوتیپ‌ها تأثیر مثبتی در خصوصیات زایی‌گیاه نشان داده است.

ترکیبات فیتوژئولوژیک

از نظر تاریخ شروع سریدگی فیتوژئولوژیک برخی اختلافات بین گیاهان حاوی انفودافیت و بدون انفودافیت به طور متوسط کمتر از یک روز بود با این وجود اثر متفاوت بین گیاهان زنوتیپ‌های مختلف و حضور انفودافیت از نظر آماری معنی دار بود (جدول ۱). این اختلافات بین گیاهان حاوی انفودافیت و بدون انفودافیت در زنوتیپ ۷۵C بالا اختلاف ۳ روز بود و در زنوتیپ ۷۵C بر نیز گیاهان بدون انفودافیت مجدداً ۵ روز زودتر به تاریخ شروع سریدگی فیتوژئولوژیک رسیدند (جدول ۲). در میان زنوتیپ‌های مختلف نیز، زنوتیپ ۷۵C با درترین زنوتیپ ۷۵C
ارتباط فشارهای همزمان انفستای با زودرسی و صفات واپسی به آن در...

شکل ۲: تعداد خوشه‌ی گلده گیاهان حاوی انفستای و بدون انفستای در زنوتیپ‌های مختلف

زاویه‌ی از سایر زنوتیپ‌ها به تاریخ شروع رسیدگی فیبرولیزیک رسیدن. با وجود این که هیچ گزارشی از اثر فشارهای انفستای بر رسیدگی فیبرولیزیک نیست، بزرگی در منابع وجود ندارد ولی ممکن است تغییرات هورمونی و تأثیر آن بر انتقال مواد غذایی داشته‌باشد.

تعداد خوشه‌ی گلده به صورت هفته‌ای تجمع

تعداد خوشه‌ی گلده به صورت تجمعی و به صورت هفته‌ای جمعاً ۱۵ هفته شمارش کردند. اثر انفستای در این صفت به‌طور قابل‌توجهی اول شمارش در بقیه هفته‌ها معنی‌دار بود. همانطور که انتظار می‌رود به دلیل اثر تجمعی، تعداد انفستای بیشتر اختلاف بین گیاهان حاوی انفستای و بدون انفستای عدم به صورت یک انفرادی به‌دست آمده.

-header (Enhancer) صفت عمل می‌کند.

میزان عملاک مرحله‌ای (دو هفته‌ای) بذر

بررسی میزان عملکرد مرحله‌ای بذر گیاهان حاوی انفستای بدون انفستای که برای هر دو هفته به صورت چگالگی انجام شد نشان داد که فشارهای همزمان انفستای همزمان میزان کل بذر در هر مرحله، میزان بذر خالص و میزان بذر بدو با واقعاً را افزایش می‌دهند. این مراحل اندازه‌گیری و محاسبه

233
جدول 3: تجزیه ورایانه مربوط به صفات مانگین بذر پوک، مانگین بذر خالص و مانگین کل بذر در سه مرحله اول، سوم و پنجم نمونه‌گیری و اثر منابع مختلف

<table>
<thead>
<tr>
<th>مانگین مرتعات</th>
<th>درجه</th>
<th>معنی تغییرات آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مانگین بذر پوک</td>
<td>در هفته اول</td>
<td>در هفته سوم</td>
</tr>
<tr>
<td>مانگین بذر خالص</td>
<td>8/32**</td>
<td>7/80**</td>
</tr>
<tr>
<td>مانگین کل بذر</td>
<td>19/80**</td>
<td>5/48**</td>
</tr>
<tr>
<td>و</td>
<td>21/84**</td>
<td>0</td>
</tr>
<tr>
<td>و</td>
<td>20/10**</td>
<td>1/10**</td>
</tr>
<tr>
<td>و</td>
<td>15/10**</td>
<td>10/42**</td>
</tr>
<tr>
<td>و</td>
<td>10/42**</td>
<td>0</td>
</tr>
<tr>
<td>و</td>
<td>10/15**</td>
<td>0</td>
</tr>
<tr>
<td>و</td>
<td>5/12**</td>
<td>0</td>
</tr>
<tr>
<td>و</td>
<td>7/6**</td>
<td>0</td>
</tr>
<tr>
<td>و</td>
<td>3/4**</td>
<td>0</td>
</tr>
<tr>
<td>و</td>
<td>1/55</td>
<td>0</td>
</tr>
<tr>
<td>و</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

زئوتیپ اندوفایت

| و | 0 | 0 | 0 |

زئوتیپ اندوفایت + اندوفایت 5

خطة 22

میزان بذر، قارچ‌های هم‌زیست اندوفایت اثر معنی‌دار در افزایش میزان بذر و میزان بذر خالص داشتند (جدول 3). همچنین بررسی‌های به دست آمده، اگرچه قارچ‌های هم‌زیست اندوفایت به طور هم‌زیست میزان کل بذر پوک، بهبود حاصل از تولید بذر نیز نسبت به گیاهان بدون قارچ هم‌زیست اندوفایت افزایش دادند، ولی زمانی که نسبت میزان بذر پوک، نسبت به کل بذر تولید شده محاسبه گردید، نتایج نشان داد که قارچ‌های هم‌زیست اندوفایت در سرعت بذر و نسبت به کل بذر کاهش داده‌اند (جدول 4). افزایش میزان بذر قارچ‌های حاصل از تولید بذر مناسب بود. افزایش خصوصیات رویشی و رشدگی گیاه در اثر افزایش اندوفایت که به وسیله محیط‌گیری در گیاهان حاوی اندوفایت بهبود یافت. نتایج نشان داد که بهترین اختلاف بین گیاهان حاوی اندوفایت و بدون اندوفایت از نظر صاحب پوکی و بقایای بذر مربوط به مرحله اول براشته بذر استویی. چنانچه ملاحظه می‌شود در این مرحله اختلاف تولید بذر خالص میزان گیاهان حاوی اندوفایت و بدون اندوفایت معنی‌دار نبود و حاکم اختلاف گیاهان حاوی اندوفایت و بدون اندوفایت در مرحله دوم و سوم برداشت بذر بوده است. بنابراین به نظر می‌رسد که کاهش درصد پوکی بذر علت عمده افزایش عملکرد بذر گیاهان حاوی اندوفایت نیست و عوامل افزایشی عامل‌کرد بذر گیاهان حاوی اندوفایت نیست و عوامل
جدول 4: مقایسه گام‌های انفکت و بدون انفکت از نظر صفات میانگین کل بذر، میانگین بذر خالص، میانگین بذر پوک و درصد بذر پوک

<table>
<thead>
<tr>
<th>انفکت</th>
<th>میانگین کل بذر (گرم)</th>
<th>میانگین بذر خالص (گرم)</th>
<th>میانگین بذر پوک (گرم)</th>
<th>درصد بذر پوک</th>
<th>نمودن گزینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>E+</td>
<td>8/33 a</td>
<td>5/79 b</td>
<td>2/55 a</td>
<td>28 b</td>
<td>دوهمشته اول</td>
</tr>
<tr>
<td>E-</td>
<td>7/17 a</td>
<td>0/91 a</td>
<td>0/28 b</td>
<td>28 a</td>
<td>دوهمشته دوم</td>
</tr>
<tr>
<td>E+</td>
<td>4/56 a</td>
<td>1/15 a</td>
<td>0/41 a</td>
<td>23 b</td>
<td>دوهمشته سوم</td>
</tr>
<tr>
<td>E-</td>
<td>0/55 a</td>
<td>0/24 a</td>
<td>0/55 a</td>
<td>74 a</td>
<td>دوهمشته نقطه</td>
</tr>
<tr>
<td>E+</td>
<td>6/78 a</td>
<td>0/43 a</td>
<td>0/26 a</td>
<td>100 a</td>
<td>دوهمشته نقطه</td>
</tr>
<tr>
<td>E-</td>
<td>0/55 a</td>
<td>0/12 a</td>
<td>0/38 b</td>
<td>100 a</td>
<td>دوهمشته نقطه</td>
</tr>
<tr>
<td></td>
<td>0/22 a</td>
<td>0/57 a</td>
<td>0/95 a</td>
<td>69 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/57 a</td>
<td>0/95 a</td>
<td>0/57 a</td>
<td>74 a</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای حرف مشترک در هر مرحله و هر ستون از نظر آماری در سطح 0/05 درصد اختلاف معنی‌دار دارد.

امکان ساخت میزان کل بذر، میزان بذر خالص و میزان بذر پوک و بقاها در هر مرحله گوی قابلیت یکسانی داشته است. در هفته اول زنوتیپ 75B البانی و زنوتیپ 60 A کمترین بذر تولید شده را داشتند. در هفته هفتم زنوتیپ 75B البانی و زنوتیپ 60 A هم 3/2 کمترین بذر تولید شده را داشتند. در هفته سوم زنوتیپ 60 A هم 2/3 کمترین بذر تولید شده را داشتند. در هفته چهارم زنوتیپ 75B البانی و زنوتیپ 60 A کمترین بذر تولید شده را داشتند. در هفته پنجم زنوتیپ 60 A هم 2/3 کمترین بذر تولید شده را داشتند. در هفته ششم زنوتیپ 75B البانی و زنوتیپ 60 A کمترین بذر تولید شده را داشتند. در هفته هفتم زنوتیپ 60 A هم 2/3 کمترین بذر تولید شده را داشتند. در هفته چهارم زنوتیپ 75B البانی و زنوتیپ 60 A کمترین بذر تولید شده را داشتند. در هفته پنجم زنوتیپ 60 A هم 2/3 کمترین بذر تولید شده را داشتند. در هفته ششم زنوتیپ 75B البانی و زنوتیپ 60 A کمترین بذر تولید شده را داشتند. در هفته هفتم زنوتیپ 60 A هم 2/3 کمترین بذر تولید شده را داشتند.
جدول ۵ مقایسه میانگین ترکیبات تیماری زنرتیپ و اندوفایت برای صفت وزن بذر خالص بر حسب گرم

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زنرتیپ</th>
<th>اندوفایت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>در هفته اوال</td>
<td>در هفته دوم</td>
</tr>
<tr>
<td>A</td>
<td>2/51**</td>
<td>2/57**</td>
</tr>
<tr>
<td>B</td>
<td>2/81**</td>
<td>2/86**</td>
</tr>
<tr>
<td>B</td>
<td>2/65**</td>
<td>2/67**</td>
</tr>
<tr>
<td>C</td>
<td>2/57**</td>
<td>2/58**</td>
</tr>
<tr>
<td>D</td>
<td>2/59**</td>
<td>2/60**</td>
</tr>
</tbody>
</table>

نتیجه‌گیری:

بذر کمتری داشتند و این مطلب اثر مقایل خشکت بخشید. نظر بذر خالص کردن نیز معنی‌دار بود.

همان‌طور که از جدول ۵ ملاحظه می‌شود در موارد استثنایی، وزن بذر خالص در گیاهان عواری از اندوفایت بیشتر از گیاهان حاوی اندوفایت، از همان زنرتیپ شده است. رایسب و همکاران (۱۸) نیز مشاهده می‌نمودند که در بذری زنرتیپ‌ها، وزن بذر گیاهان عواری از اندوفایت بیش از گیاهان حاوی اندوفایت است. احتمالاً این موضوع به سازگاری با هم سازگاری گیاه با فارق اندوفایت مربوط می‌شود. در نتیجه تنها زنرتیپ‌های A و B و ۳۸ شریفی‌نافع گیاهان حاوی اندوفایت و بدون اندوفایت را داشتند و زنرتیپ‌های B و C کمترین

منابع:

۲۳۶
جدول 6 مقایسه میانگین ترکیبات تیماری زنوتیپ و اندوفاکت برای صفت نسبت پیوکی

<table>
<thead>
<tr>
<th>زنوتیپ</th>
<th>اندوفاکت</th>
<th>دو هفته اول</th>
<th>دو هفته دوم</th>
<th>دو هفته سوم</th>
<th>دو هفته پنجم*</th>
<th>دو هفته چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>E*</td>
<td>0/29</td>
<td>0/29d</td>
<td>0/29b</td>
<td>0/29b</td>
<td>0/29b</td>
<td>-</td>
</tr>
<tr>
<td>60A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E*</td>
<td>0/33</td>
<td>0/33b</td>
<td>0/33b</td>
<td>0/33b</td>
<td>0/33b</td>
<td>-</td>
</tr>
<tr>
<td>60B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E*</td>
<td>0/34</td>
<td>0/34b</td>
<td>0/34b</td>
<td>0/34b</td>
<td>0/34b</td>
<td>-</td>
</tr>
<tr>
<td>VQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E*</td>
<td>0/16</td>
<td>0/16c</td>
<td>0/16c</td>
<td>0/16c</td>
<td>0/16c</td>
<td>-</td>
</tr>
<tr>
<td>VQB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E*</td>
<td>0/21</td>
<td>0/21d</td>
<td>0/21d</td>
<td>0/21d</td>
<td>0/21d</td>
<td>-</td>
</tr>
<tr>
<td>VQC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E*</td>
<td>0/31</td>
<td>0/31bc</td>
<td>0/31bc</td>
<td>0/31bc</td>
<td>0/31bc</td>
<td>-</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E*</td>
<td>0/28a</td>
<td>0/28a</td>
<td>0/28a</td>
<td>0/28a</td>
<td>0/28a</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های درای حرف مشترک از نظر آماری در سطح 5 درصد اختلاف معنی دار ندارند.

* در دو هفته پنجم بدی ترکیبات نگردید.

نتیجه‌گیری

به طور خلاصه این تحقیق نشان داد که فارگه‌های همی‌سپرینت اندرافاکت قدرت ترکیب انسداد منجر به افزایش بهره‌برداری انسداد در فسکویی باند و فسکویی مرتعی افزایش دهنده. افزایش عملکرد باند در هر مرحله از بیش‌از‌دست می‌تواند ناشی از تعداد افزایش یا تغییرات خونی، افزایش همبستگی و تغییرات در افزایش احتمال تعداد دانه در خونه و افزایش وزن باند که به‌این مورد بررسی قرار گیرد. تغییرات احتمالاً به دلیل تغییر در تعداد هورمون‌های گیاه است که توسط فارگه‌های انسداد اعمال می‌گردد. چنین ارتباطی بخصوص بین زودرس و تولید بخش هورمون‌ها

سیستم‌گرایی

به‌منظور ارزیابی به‌کارگیری در حوزه معاونت پژوهشی دانشگاه صنعتی اصفهان توسط S118 81 را تأیین که بودجه طرح حفظ‌گرایی حاضر تحت کد 8181 نشان دهنده است. در نهایت و فردا را برای می‌گردد. هم‌چنین از آقای رضا محمدی و خانم فاطمه امینی پژوه جهت همکاری در طرح سیستم‌گرایی می‌باشند.

277