اثر میزان شوری آب آبیاری بر ارقام چمن آفریقایی (Cynodon spp.)
در شرایط خاک شور در اصفهان

چکیده

به منظور بررسی اثر میزان مختلف شوری آب آبیاری بر رشد و کیفیت ارقام چمن آفریقایی در خاک شور (دسی ژیمنس برم ECE=18/2 محصولات از نظر خیز و ارتفاع) به صورت تصادفی در قالب طرح بلوکی شامل 3 تکرار در دانشگاه صنعتی اصفهان در سال‌های 1381 و 1382 بر اساس روش متفاوتی اکتشافاتی و روش مشاهده‌ای 3 تا 9 بهترین و سطح
برگ، وزن خشک بخش هوايي و ريشت طول و تعداد استون (دسک) در ارقام گيري شد. تأثیر آزمایش نشان داده که شوری آب آبیاری
برای رنگ ارقام مختلف تأثیر متفاوت به طوری که با افزایش سطح شوری درجه رنگ کاهش یافت. براساس میانگین ماهیانه
در ماه‌های مرداد و دی، به رتبه‌گری‌های مختلف نمایندگی مشاهده گردید. میانگین سالانه، نشان داد ارقام Tifdwarf ISF2 به رتبه
یک، و کمترین رنگ را داشتند. همچنین با افزایش شوری آب آبیاری سطح برگ، وزن خشک قسمت‌هایی، طول و تعداد استون
کاهش یافت. با افزایش شوری آب آبیاری از 3/300 متر وزن خشک ریشه‌های آبیاری و پس از آن کاهش یافت. به
دنبال اثر متقابل معنی‌دار شوری و ارقام برای بیشتر صفات، واکنش ارقام نسبت به شوری معنی‌دار بود. در بر ارقام مورد مطالعه در این
آزمایش از نظر کلیه صفات مورد اندازه‌گیری اختلاف معنی‌داری مشاهده شد که حاکی از نوع زنیکی‌نگاره نسبت به ارقام چمن آفریقایی مورد
ارقام 4-18 و 3200W18-4 Tifway و ISF1 از نظر وزن خشک برگ‌های سبز، ارقام 4-18 و 3200W18-4 Tifway و ISF1
به ترتیب‌واتری داشتند.

واژه‌های کلیدی: استون (دسک) چمن آفریقایی، رشد، رنگ

1. به رتبه‌گری دانشجوی سابق کارشناسی ارشد و دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

2. دانشیار علوم گیاهی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

3. مربی آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۷۷. اکروسون و بانگرث (۱۱۱) گراش شکند که با افزایش
غلظت نمک، وزن خشک اندام‌های هموایی برودوگراس
از 0.29 گرم به 0.29 گرم در گیاه کاهش، در صورتی که وزن
خشک ریشه از 0.29 گرم به 0.29 گرم در گیاه افزایش نشان
داد. اگر رطوبت بذر و پتانسیل اسمی کاهش یافته
در بررسی های دوک و همکاران (۱۵۳) اختلاف رشدی بین
بخته دار فوتوگیا و ریشه دار برودوگراس مشاهده گردید.
و گراش شکند که رشد بخش هواپیمایی در بالاترین میزان شوری
0.29 دسمی زیستی بر متر به 0.29 دسمی می‌باشد.
در حالی که رشد ریشه در فاصله 0.29 دسمی می‌باشد. آن‌ها
علی گلرک عنصر عمل برودوگراس را موجز زندگی می‌دادند. همچنین دوک و پیکونک (Seashore paspalum)
۷۸. گراش نمودند که ارقام مختلف
واکنشی مختلفی از نظر میزان رشد با غلظت‌های مختلف
از ترکیب آب درآب با آب شیرین نشان دادند. و با یک یک
در اثر نشک شوری ترکیب گیاه آسیب نمی‌بیند ولی رشد بخش
هواپیمایی به تدریج در میزان شوری 0.29 دسمی زیستی
بر مترا به 0.29 دسمی زیستی رشد ریشه‌ها با افزایش
رشد نشان داده‌کننده 0.29 دسمی زیستی بر متر افزایش
می‌باشد. همچنین مارکوم (۲۰۰۲) این تحقیق، نشان دهنده که
برودوگراس را «خیلی خوب» گراش نمود.

۷۹. رزموجر و همکاران (۲۲) برای نمودن که از میان
بیست و نه تنها ارقام در تیفگرین و Tifdwarf
برودوگراس و در و در دارای کم‌ترین و
یکی از اصل حالت متوسط بودند. در بررسی دیگر
رزموجر و همکاران (۲۵۳) اقام برای تحقیق در شوری برودوگراس را بالاتر از
0.29 دسمی زیستی بر متراه تخمین زده است. دارای مطالعه
St. Augustinegrass, Seashore paspalum, Bermudagrass
متداول به شوری و سایر
گونه‌ها در حالت متوسط بودند. همچنین رزموجر (۲۱۶)
در تحقیق برودوگراس (۷) رقم و 9 آکوپی از نواحی مختلفی (را به مظور

۸۰. همکنون حداقل سرعت فضای شیری در نسبتاً بین
۵ تا ۵ متر مربع
منجر می‌شود. استاندارد تعریف شده برای ایران
۵ تا ۵ متر مربع
است. در هیچ کدام از شهروندی بردنگ کشور امکان توسعه
فضای سبز در حد استانداردهای مطابق جهان وجود ندارد.
زاپاس منبجی مایل آب یک‌یک از عناصر محدود کننده در
توسعه فضای سبز است. این مشکل در استان‌های جنوبی و
مکزیک کشور به دلیل خشکسالی و محدودیت شدید منابع آب
شیرین، جدیتر می‌باشد (۴).

۸۱. برای اکثر جنوب، این نتایی‌ها حاصل شده که استدی یا
اختلاس یا به‌طور معمول و زیستی در ایران است. به جر
فضایهای محدود کازی کشور (بعضی شما کشور)، بیهک
قسمت‌های جنوب مناطق خشک و نیمه خشک و محصول شوند.
از این نتایی‌ها با توجه به بایی به خود مانند و بی‌درمانگی
یرای و سایر عوامل، زیمنه مساعد برای تشکیل و
گسترش خاک‌های خشک و نیمه خشک کشور فراهم است. در بیماری از موارد امکان اجتناب فضای سبز
با گونه‌های مختلف چنین می‌باشد. اما استفاده از
گراش‌های گرمسیری مقاوم به شوری یکی از راه‌کارهای مهم و
اساسی در این زمینه‌ها می‌باشد (۲۳). از این نتایی
(Bermudagrass, Cydonon spp.) برودوگراس
توقیف یا مکاشفه و در کلاً بی‌عفونی هوای و چمن کاری
است. باید یکی بین مواد و دارای خاصیت خودنده
بیماری و سرعت استقرار خوب است. آن‌ها ربات مصرف
آب بالایی داشته و مقاومت خیلی زیاد به شکست نشان
می‌دهند. همچنین غلظت‌های بالایی شوری خاک و ایستایی
غرقی (غرقی) را تحقیق نموده و به‌واسطه فرآیند استریت‌ها
(Rhizomes) و سلولوی (Stolon) نشان می‌دهد (۲۱۶، ۲۰ و ۲۷).
۸۲. مکانیست سریع به‌پایه
عالی بر استفاده در مناطق گرم، در مناطقی که کاربرد
گراش‌های چمن سردسیری به خاطر تنش خشکسالی و شوری
محدودیت دارد، این چنین‌ها سازگاری خوبی نشان داده‌اند
۱۸۰
قندن‌های مختلف چنین دارای طبیعت خاصیت عضوی نیز نمی‌باشند که به‌طور مستقیم سبب نوکول‌نشدن یا نگهداری در محیط بوده و افزایش در یکی از این گروه‌ها نیز نمی‌باشد.

مواد و روش‌ها

به‌منظور بررسی تحمل به‌طور قسمت ۱۰ رقم چنین آزمایشی شامل JP2 JPI JSF2 JSFJ Tifway Tifgreen Tifdwarf Midlawn صورت فاکتوریل ۱۰ (۵+۵) بر روی سطح زیر بوده و در سه کمپین‌های کامل مناسبانه با به‌کارگیری طرح بلوک‌های کاملاً تصادفی با تکرار در سال ۱۳۸۱ انجام گرفته. در این آزمایش مورد استفاده هر گونه دارای لدوم را بررسی کننده‌ای با میانگین رصد پایه P10 و چهار حاصل در کیلوگرم و K=78.4 میلی‌گرم در کیلوگرم بود.

اجرا آزمایش

آزمایش به‌صورت گلستانی و در چهار آزاد به مدت ۳۵ ماه بر روی ۱۵۰ گلدنان با کاریکایی به قطع دهه‌های ۲۵ و ارتقاء ۲۰ سانتی‌متر به همراه بسته نهایی و ابتدا جهت سه‌ولدت در
جهت آبیاری اصلاح نیز در هر نیت آبیاری متوسط گرفته شد. آب موردنیاز جهت آبیاری اصلاح با استفاده از رابطه زیر محاسبه گردید:

\[L_R = \frac{ECiw}{ECc - ECiw} \times 100 \]

که در این رابطه:

\[L_R = \text{درصد آبیاری مورد نیاز} \]

\[EH = \text{هیدايت الکتریکی آب آبیاری} \]

\[ECe = \text{هیدايت الکتریکی عصاره اشباع خاک} \]

که مقدار 10 درصد کاهش محصول رعایی و با استفاده از جداول تحلیل به شوری گیاهان رعایی و علوفه‌ای تعیین گردید. بنابراین با توجه به درصد آبیاری به دست آمده از رابطه فوق برای تیمارهای مختلف شوری در هر نیت آبیاری مقدار آب به آب آبیاری اضافه گردید (19).

\[\text{صدات مورد انتخاب} = \text{در این آزمایش صفات و پارامترهای زیر مورد بررسی و اندازه گیری قرار گرفتند:} \]

\(\text{(The National Turfgrass Evaluation Program) NTEP) Evaluation Program} \)

این پارامتر به روش مشاهده‌ای صورت گرفت و به ارقام بر نتیجه‌گیری از 200 کیلوگرم در هکتار کود سفته‌ای آموزش می‌گیرد و قبل از کاشت به هر گلدان اضافه گردید. در طی دوره رشد نیز ماهانه مقدار 50 کیلوگرم در هکتار کود افزوده به نیت برای هر گلدان محاسبه و به صورت کود مراکز اعمال گردید.

\[\text{حسب نوع رنگ از 1 تا 9 امتیاز داده شد (21). به طوری که عدد 1 بینانگر عالی، عدد 8 بیمار خوب، عدد 7 خوب، عدد 6 خوب و عدد 10 آبیاری خوب و 16 آبیاری خوب و 8 جدید هر گلدان می‌باشد.} \]

شما به اندازه‌گیری زیست‌محیطی و تیمارهای مختلف شوری از تیمارهای مختلف آبیاری همراه می‌باشید.
جدول 1. خصوصیات شیمیایی آب آبیاری با پنج سطح شوری مختلف

<table>
<thead>
<tr>
<th>ترکیبات (میلی آکی والان بر لیتر)</th>
<th>ECE*</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCO₃⁻</td>
<td>SO₄²⁻</td>
<td>CL⁻</td>
</tr>
<tr>
<td>0/2</td>
<td>0/4</td>
<td>0/6</td>
</tr>
<tr>
<td>5/2</td>
<td>5/4</td>
<td>5/6</td>
</tr>
<tr>
<td>7/2</td>
<td>7/4</td>
<td>7/6</td>
</tr>
</tbody>
</table>

منابع آب آبیاری (تیمار شوری)

<table>
<thead>
<tr>
<th>ECE*</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/3</td>
<td>6/3</td>
</tr>
<tr>
<td>6/3</td>
<td>5/3</td>
</tr>
<tr>
<td>5/3</td>
<td>4/3</td>
</tr>
<tr>
<td>4/3</td>
<td>3/3</td>
</tr>
</tbody>
</table>

نصبگی خوب، عدد 5 با کمتر مناسبی و عدد 1، زرد رنگ بود. شروع اندام‌گیری این پاکرات بعد از پوشش کامل بود و به صورت ماهبه‌ای انجام گرفت. از پاییز به بعد شروع خواب چمن در اثر درد کامل از رنگ به دلیل بارش هوا و عمل 3-4 زن در فصول داغ می‌گرفت و میانگین آنها برای هر ماه در نتیجه نهایی ۴ گرادی. میزان سطح بارگ (Leaf Area Meter, ظنوازه‌ای سطح بارگ Delta-T Scan Image Analysis System)

اجزای آمیاری

به منظور تجزیه و تحلیل داده‌ها از نرم‌افزارهای SAS و MSTATC چند دانه دانک انجم گرفت.

نتایج و بحث

رنگ ارقام در طول ماه‌های ۱۳۸۱-۱۳۸۲ میانگین‌سنج رنگ چمن در یک تیمارهای مختلف شوری (جدول ۱) نشان می‌دهد که افزایش چسب شوری رنگ ارقام چمن در کلیه ماه‌های مختلف کاهش می‌یابد. در مجموع
جدول 2 مقایسه میانگین رنگ گچ در تیمراه‌های مختلف شوری برای هر ماه**

<table>
<thead>
<tr>
<th>ماه</th>
<th>17/08</th>
<th>18/08</th>
<th>19/08</th>
<th>20/08</th>
<th>21/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرداد</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
<tr>
<td>شهریور</td>
<td>8/3c</td>
<td>8/4c</td>
<td>8/6c</td>
<td>8/7c</td>
<td>8/8c</td>
</tr>
<tr>
<td>مهر</td>
<td>8/3c</td>
<td>8/4c</td>
<td>8/6c</td>
<td>8/7c</td>
<td>8/8c</td>
</tr>
<tr>
<td>آبان</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
<tr>
<td>آذر</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
<tr>
<td>دی</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
<tr>
<td>فوروردین</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
<tr>
<td>خرداد</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
<tr>
<td>تیر</td>
<td>8/2a</td>
<td>8/3b</td>
<td>8/5b</td>
<td>8/6**</td>
<td>8/8a</td>
</tr>
</tbody>
</table>

* دم‌های فیزیکی متغیر
** در هر رشته میانگین‌های که حداکثر دارای یک حرف مشترک هستند بر اساس آزمون چند دامنه‌ای دانک در سطح احتمال 5 درصد اختلاف معنی‌داری ندارند.
*** عدد 9 بانک از فاصله عدد 8 بسیار خوب؛ عدد 7 خوب، عدد 6 نسبتاً خوب، عدد 5 یا کمتر ناماسب و عدد 1 زرد رنگ

سالانه نیز به همین نحو است. در مطالعه سایر پژوهشگران نیز با افزایش دارایی ارقام چمن برمادگر در اثر رنگ داده است (17). علم کاهش کیفیت رنگ این بنا بر افزایش شوری میزان کارفکری در برگ‌ها کاهش می‌یابد (18).

جدول 3 مقایسه میانگین رنگ گچ را برای ارقام مختلف در ماه‌های مختلف شنیده می‌شود. نهایی نظر مسردی‌گان عالله بر ماه‌های سرد سال در ماه‌های خرداد و تیر افزایش دما باعث کاهش رنگ می‌شود، پس با توجه به روش NTEP صرف نظر از رقم و تیمراه شوری بررسی میانگین می‌باشد. برگ رنگ در مجموع عامل می‌باشد. در ماه‌های مرداد و شهریور 81، رنگ چمن برمادگر در سیب‌خور و در ماه‌های مهر 81 و اردیبهشت 82 دارای رنگ خوب و در آبان 81 و فوروردین 82 دارای رنگ نسبتاً خوب و در ماه‌های آذر، دی، خرداد 81 و تیر 82 دارای رنگ ناماسب بودند.

سطح برگ

مقایسه میانگین سطح برگ در ارقام مختلف شنیده می‌شود که توسط Tidwafar ارقام 4-5 و 3200W18-4-

نتیجه‌گیری

به یک رابطه مستقیم بین رنگ گچ، تیمراه، و سطح طویری که یک شرایط مستقیم بین شوری آب آبیاری و سطح طوبری مشاهده شد (شکل 2-الف). در مجموع ارقام، شوری 15/02 زیمین برگ با بستگی سنگین برگ به حدود یک دهم شوری 3/6 زیمین برگ، کاهش یابد. بنابراین به
اثر میزان شوری آب ایباری بر ارقام جمن آفیق‌های (Cynodon spp.) در شرایط خاک شور در اصفهان

شکل ۲. روابط بین صفات مختلف اندازه‌گیری شده و سطح شوری آب ایباری: (الف) سطح برگ (ب) وزن ششک قسمت هواپیمایی؛ (ج) وزن ششک ریشه (د) طول متوسط استون (ه) تعداد استون در گلدان.

۱۸۵
جدول ۳ مقایسه میانگین رنگ ارقام مختلف چمن بر موداگراس به طور ماهیانه و سالیانه

<table>
<thead>
<tr>
<th>رنگ</th>
<th>تیر</th>
<th>سالیانه</th>
<th>سال</th>
<th>مرداد</th>
<th>شهریور</th>
<th>مهر</th>
<th>آبان</th>
<th>ذی‌القعده</th>
<th>آذر</th>
<th>دی</th>
<th>فروردین</th>
<th>اردیبهشت</th>
<th>مرداد</th>
<th>مرداد</th>
<th>مرداد</th>
<th>مرداد</th>
<th>مرداد</th>
<th>مرداد</th>
<th>مرداد</th>
<th>مرداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳د</td>
<td>۲/۴ه</td>
<td>۳/۱ه</td>
<td>۴/۱ه</td>
<td>۳/۹ه</td>
<td>۵/۱ب</td>
<td>۸/۱b</td>
<td>۸/۴ب</td>
<td>۸/۱ب</td>
<td>۸/۲ب</td>
<td>۸/۲ب</td>
<td>۸/۱ب</td>
<td>۸/۱ب***</td>
<td>Tfidfward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۴ب</td>
<td>۳/۴ه</td>
<td>۴/۱ه</td>
<td>۵/۳د</td>
<td>۶/۳د</td>
<td>۷/۳د</td>
<td>۵/۴ه</td>
<td>۵/۷ب</td>
<td>۴/۳ه</td>
<td>۴/۳ه</td>
<td>۵/۷ب</td>
<td>۴/۷ب</td>
<td>۴/۷ب</td>
<td>Tifgreen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۳د</td>
<td>۶/۷ب</td>
<td>۵/۲ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۷/۳د</td>
<td>۶/۷ب</td>
<td>۷/۴ب</td>
<td>۷/۴ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۷/۴ب</td>
<td>۷/۴ب</td>
<td>Tifway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۷ب</td>
<td>۵/۳د</td>
<td>۴/۱ه</td>
<td>۶/۷ب</td>
<td>۴/۷ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>۶/۷ب</td>
<td>ISF1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۷ب</td>
<td>۴/۱ه</td>
<td>۵/۷ب</td>
<td>۶/۷ب</td>
<td>ISF2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۷ب</td>
<td>۶/۷ب</td>
<td>JP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۷ب</td>
<td>۶/۷ب</td>
<td>JP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۷ب</td>
<td>۶/۷ب</td>
<td>3200W18-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۷ب</td>
<td>۶/۷ب</td>
<td>3200W19-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین ماهیانه

* در هر ستون و برابر میانگین‌های ماهیانه میانگین‌های که هدایت دارای یک حرف مشترک هستند بر اساس آزمون چند دانه‌ای دانکن در سطح احتمال ۰/۵ درصد اختلاف معنی‌داری ندارند.

** عدد ۹ بیاکچه عالی، عدد ۸ بیاکچه عالی، عدد ۷ بیاکچه عالی، عدد ۶ نیم‌بیاکچه عالی، عدد ۵ یا کمتر نامناسب و عدد ۱ زرد رنگ.
جدول ۲ اثر میزان شوری، ارقام و اثر منتقابل آنها بر سطح برق (سانتیمتر مربع) در گلدا در پایان آزمایش**

<table>
<thead>
<tr>
<th>میانگین</th>
<th>3200W19-9</th>
<th>3200W18-4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tifdwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>رقم شوری*</td>
<td>149/11 A</td>
<td>144/Vde</td>
<td>257/Va</td>
<td>185/b</td>
<td>170/c</td>
<td>126/Vef</td>
<td>96/bij</td>
<td>101/vdh</td>
<td>78/Vja</td>
<td>101/vdh</td>
</tr>
<tr>
<td>128/16 B</td>
<td>125/Vef</td>
<td>227/b</td>
<td>157/d</td>
<td>187/c</td>
<td>151/d</td>
<td>114/vf</td>
<td>91/bij</td>
<td>71/vmo</td>
<td>65/30</td>
<td>7/53</td>
</tr>
<tr>
<td>95/11 C</td>
<td>80/Ven</td>
<td>191/c</td>
<td>120/f</td>
<td>145/Vdc</td>
<td>133/ef</td>
<td>98/bij</td>
<td>71/88k</td>
<td>50/88l</td>
<td>7/20</td>
<td>10/20</td>
</tr>
<tr>
<td>88/9 D</td>
<td>60/Vno</td>
<td>15/Vbij</td>
<td>77/Vgn</td>
<td>65/Vdo</td>
<td>70/Vdo</td>
<td>47/Vpq</td>
<td>73/Vpq</td>
<td>33/Vpq</td>
<td>33/50</td>
<td>14/80</td>
</tr>
<tr>
<td>15/0 E</td>
<td>1V/Vn</td>
<td>1V/Vn</td>
<td>30/Vpn</td>
<td>25/Vst</td>
<td>19/6</td>
<td>13/mo</td>
<td>11/mo</td>
<td>7/Vmo</td>
<td>7/Vmo</td>
<td>0/1</td>
</tr>
</tbody>
</table>

* : یا زمان برپز
** : میانگین هایی که حداقل دارای یک حرف مشترک هستند بر اساس آزمون چند دامنه دانکن در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.
وزن خشک بخش هواپیما
مطاطه‌های رگرسیون نشان داد که اثر مستقیم مکانیک بسیار درجه‌بندی آب‌هایی و وزن خشک بخش هواپیما دارد. به طوری که ها افرازی، کوهر یا تهیه‌کننده‌ی P2 و P2 متقابل بود. برای یک آب‌هایی در خورشید و 3/2 هببهبه به مقدار P2 و P2 به‌طور ببینم، سطح برگ رنگ صبایی از این لحظه‌ی Midfawn

سایر ارقام کاهش یافته، بنابراین

متحمل ترین برج (جدول 2). در مطالعه رزمجی و همتکانی (22) نیز افرازی شوری، IR 2 UEA رقیم صدر خانه لباس از رنگ P2 و P2 به هنگام شوری آب‌هایی بسیار نشان داد که این مطالعات با گیاه آب‌هایی (16) نشان داد که کاهش پوسته برگ از خود نشان داد مطالعات

گیرنده و فضاهای بین سولول برگ دارد. سپس کاهش سطح برگ می‌گردد و با

کاهش پوسته برگ کاهش می‌باشد. چهار مطالعه با گیاه سویا (10) نشان داد که با

افرازی شوری میزان توسه برگ به طور معنی‌داری کاهش می‌باشد که این کاهش ناشی از ریشه تعدادی از برگ‌های

من و فتوپسته و رشد برگ می‌باشد. با توجه به این

که یکی از آثار شوری در گیاه جلکیری از جدید آب و

ایجاد نشان کاهش است به این غلبه پسندی آب جهت آماس

سولول کاهش می‌باشد و در ترتیب وزن برگ و توسه برگ

نیز تولید و در طرفین در غلظت‌های بالایی نمک

یونهای گیاه کلر باید با توجه تولید سوخت‌های گیاهی و فعالیت

فتوپسته آن را مختل می‌کند. بنابراین تریپ خوایی لازم

برای رشد و کشت برگ سولول‌ها فراهم نشده و توسه برگ‌ها به

کنندی صورت گیرد.

لاهوی و رحمی زاده (9) گزارش داده‌اندکه با افرازی

شوری میزان کارفویل و P2 که افرازی می‌باشد و با توجه به این که

میزان کارفویل P2 تأثیر شوری پیامدهای می‌گیرد و نیز

کارفویل P2 مهم ترین نسبت به سایر رنگ‌های کاکتی‌ها در کل

کارفویل برگ دارد و از آنجا که تولید ماده خشک کیهان (برگ و

ساختمان) با کارفویل مرطب است، پس کاهش وزن خشک

کیهان در تیم‌های شوری می‌تواند ناشی از کاهش صورت کارفویل

و نهایتاً فتوپسته باشد.
جدول 5. اثر میزان شوری، ارقام و اثر متقابل آنها بر وزن خشک (گرم در هر مترمربع) فضاهای هوایی که بین پایان آزمایش **

<table>
<thead>
<tr>
<th>میانگین</th>
<th>میزان شوری</th>
<th>3200W19-9</th>
<th>3200W18-4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tifdwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>رنگ</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>43/43</td>
<td>58/58a</td>
<td>68/68d</td>
<td>58/58b</td>
<td>45/45bc</td>
<td>43/43ef</td>
<td>35/35kl</td>
<td>37/37jk</td>
<td>19/19jkl</td>
<td>30/30jkl</td>
<td>30/30jkl</td>
</tr>
<tr>
<td>B</td>
<td>33/33</td>
<td>51/51bc</td>
<td>47/47jk</td>
<td>50/50bc</td>
<td>39/39j</td>
<td>37/37jk</td>
<td>35/35kl</td>
<td>14/14jkl</td>
<td>4/4jkl</td>
<td>4/4jkl</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>27/27</td>
<td>33/33m</td>
<td>41/41e</td>
<td>31/31m</td>
<td>26/26a</td>
<td>23/23m</td>
<td>24/24m</td>
<td>14/14jkl</td>
<td>10/10jkl</td>
<td>10/10jkl</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>14/14</td>
<td>22/22m</td>
<td>18/18m</td>
<td>22/22mp</td>
<td>15/15su</td>
<td>12/12y</td>
<td>11/11y</td>
<td>19/19jkl</td>
<td>14/14jkl</td>
<td>14/14jkl</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4/4</td>
<td>4/4m</td>
<td>3/3m</td>
<td>4/4m</td>
<td>3/3m</td>
<td>5/5m</td>
<td>4/4m</td>
<td>10/10jkl</td>
<td>3/3jkl</td>
<td>3/3jkl</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>27/27</td>
<td>30/30A</td>
<td>28/28B</td>
<td>35/35v</td>
<td>24/24v</td>
<td>20/20v</td>
<td>11/11v</td>
<td>15/15v</td>
<td>7/7v</td>
<td>7/7v</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>27/27</td>
<td>30/30A</td>
<td>28/28B</td>
<td>35/35v</td>
<td>24/24v</td>
<td>20/20v</td>
<td>11/11v</td>
<td>15/15v</td>
<td>7/7v</td>
<td>7/7v</td>
<td></td>
</tr>
</tbody>
</table>

راه رسانی: هر عدد در دو زبان انگلیسی و فارسی مشابه است.

**: اختلاف معناداری در احتمال 5 درصدیexist.
جدول ۶ اثر میزان شوری، ارقام و اثر متقابل آنها بر وزن خشک (گرم در مترمربع) ریشه در پایان آزمایش

الگونگی | 3200W19-9 | 3200W18-4 | Midlawn | JP2 | JP1 | ISF2 | ISF1 | Tifway | Tifgreen | Tifdwarf | رقم
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۳۳/۵۳</td>
<td>۳۲/۴</td>
<td>۳۱/۳</td>
<td>۱۸/۰</td>
<td>۱۸/۴</td>
<td>۲۲/۱۰</td>
<td>۲۱/۵۰</td>
<td>۳۰/۱۵</td>
<td>۲۴/۸</td>
<td>۳۳/۰</td>
</tr>
<tr>
<td>میانگین</td>
<td>۳۳/۵۷</td>
<td>۴/٥٦</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
</tr>
<tr>
<td>میانگین</td>
<td>۳۲/۴</td>
</tr>
<tr>
<td>میانگین</td>
<td>۲۸/۱</td>
</tr>
</tbody>
</table>

دانشجویان به تنهایی که حرف مشترکی هستند بر اساس نمونه‌های دانلک در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.

** میانگین‌هایی که حرف مشترکی هستند بر اساس آزمون‌های دامنه‌ای دانلک در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.
اثر میزان شوری آب آبیاری بر ارقام چمن آفریقایی (Cynodon spp.)

ابن موضوع باشد. به نظر می‌رسد ارقام محتمل به شوری در سطوح مختلف شوری به رشد و تغییر سلول‌های اندازه‌خود ادامه می‌دهند (۱۳).

تعداد استون (دسک): افزایش شوری آب آبیاری نیز باعث کاهش تعداد استون گردیده است (۲). به طوری که در مجموع ارقام شوری ۱۷/۸دسی زیرمستبر در حدود تعداد استون به حدودی به یک‌چهارم شوری ۲/۳دسی زیرمستبر کاهش یافت (جدول ۸). ولی به دلیل وجود اثر متقابل معنی‌دار بین ارقام و شوری و واکنش ارقام متفاوت بود. برای یک مثال با افزایش درجه شوری آب از ۱۷/۸به ۳۷/۳دسی زیرمستبر در حدود تعداد استون گردیده استون کاهش یافت. به دلیل زیست این ISF1 Tifway ۱۷/۸دسی زیرمستبر را به یکی از استون Tifdwarf ISF2 و ISF3 در مجموع ارقام و حداکثر استون به حدود یک‌چهارم شوری ۲/۳دسی زیرمستبر کاهش یافت. ولی به دلیل وجود اثر متقابل معنی‌دار بین ارقام و شوری و واکنش ارقام متفاوت بود. برای یک مثال با افزایش درجه شوری آب از ۱۷/۸به ۳۷/۳دسی زیرمستبر مقدار استون تا حدود ۰/۱۳ درجه شوری آب از ۱۷/۸به ۳۷/۳دسی زیرمستبر کاهش یافت. به دلیل زیست این ISF1 Tifway ۱۷/۸دسی زیرمستبر را به یکی از استون Tifdwarf ISF2

طول استون (دسک): با افزایش شوری آب آبیاری طول استون کاهش یافت (شکل ۳). به طوری که وزن خشک ریشه کاهش یافت. ارقام از ۱۷/۸تسی زیرمستبر به ترتیب بیشترین و کمترین تعداد استون را داشتند (جدول ۸). این ارقام Tifway ISF1 و ISF3 در مجموع ارقام و حداکثر استون به حدود یک‌چهارم شوری ۲/۳دسی زیرمستبر کاهش یافت. ولی به دلیل وجود اثر متقابل معنی‌دار بین ارقام و شوری و واکنش ارقام متفاوت بود. برای یک مثال با افزایش درجه شوری آب از ۱۷/۸به ۳۷/۳دسی زیرمستبر مقدار استون تا حدود ۰/۱۳ درجه شوری آب از ۱۷/۸به ۳۷/۳دسی زیرمستبر کاهش یافت. به دلیل زیست این ISF1 Tifway ۱۷/۸دسی زیرمستبر را به یکی از استون Tifdwarf ISF2

مکانیزم طول استون در ارقام مختلف (جدول ۷) نشان می‌دهد که ارقام Tifdwarf و Tifway به ترتیب بیشترین و کمترین طول استون را داشتند. تحقیقات اخیر و همکاران (۴۳) نشان داد که این میزان تأثیربردی بر
جدول 7. اثر میزان شوری، ارقام و اثر مقابل آنها بر طول متوسط استوان (سانتی متر) در پایان آزمایش **

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار شوری</th>
<th>3200W19-9</th>
<th>3200W18-4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tifdwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/82 A</td>
<td>21.33</td>
<td>27.3</td>
<td>33/1</td>
<td>21/1</td>
<td>20/1</td>
<td>18/1</td>
<td>33/1</td>
<td>27/1</td>
<td>10/1</td>
<td>20/1</td>
<td>33/1</td>
</tr>
<tr>
<td>44/77 B</td>
<td>14/2</td>
<td>26</td>
<td>13/2</td>
<td>20/1</td>
<td>17/1</td>
<td>21/1</td>
<td>20/1</td>
<td>8/1</td>
<td>10/1</td>
<td>20/1</td>
<td>14/1</td>
</tr>
<tr>
<td>21/29 C</td>
<td>11/2</td>
<td>25/1</td>
<td>18/1</td>
<td>21/1</td>
<td>16/1</td>
<td>21/1</td>
<td>6/1</td>
<td>11/1</td>
<td>10/1</td>
<td>20/1</td>
<td>17/1</td>
</tr>
<tr>
<td>29/91 D</td>
<td>10/3</td>
<td>20/1</td>
<td>12/1</td>
<td>13/1</td>
<td>17/1</td>
<td>10/1</td>
<td>20/1</td>
<td>5/1</td>
<td>0/1</td>
<td>14/1</td>
<td>17/1</td>
</tr>
<tr>
<td>5/71 E</td>
<td>3/5</td>
<td>3/5</td>
<td>11/1</td>
<td>9/1</td>
<td>3/1</td>
<td>17/1</td>
<td>11/1</td>
<td>0/1</td>
<td>17/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

**: دسی زیمنس برمت

*: میانگین هایی که حداقل دارای یک حرف مشترک هستند بر اساس آزمون جناد دامنه دانکن در سطح احتمال 5 درصد اختلاف معنی داری ندارند.
جدول 8. اثر میزان شوری ارقام و اثر مقابل آنها بر تعداد استولون در گلدان در یاپان آزمایش**

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمار شوری*</th>
<th>مینگکین</th>
<th>320W19.9</th>
<th>320W18.4</th>
<th>Midlawn</th>
<th>JP2</th>
<th>JP1</th>
<th>ISF2</th>
<th>ISF1</th>
<th>Tifway</th>
<th>Tifgreen</th>
<th>Tidwarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10 B</td>
<td>65/13 B</td>
<td></td>
</tr>
<tr>
<td>1/10 C</td>
<td>70/13 C</td>
<td></td>
</tr>
<tr>
<td>1/10 D</td>
<td>75/13 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 E</td>
<td>80/13 E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 F</td>
<td>85/13 F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* دسی زیمتس برمتر
** میانگین هایی که حداقل دارای یک حرف مشترک هستند بر اساس آزمون چند دامنهای دانکن در سطح احتمال 0.05 درصد اختلاف معنی‌داری دارند.
سباسگزاری

بدین وسیله از منابع شیرین مربوط، مهندس‌ها و آقای قانونی مسئولانه، از انجمن‌های انجمن‌های علمی و صنایعی و وبسایت‌های بزرگ این مطالعه، به شرح ذیل استفاده شده است:

2. افینی، ر. مجیدی بوشهری و. ن. نوری‌پور. 1375. خاک‌های شریان‌دار و سرمایه‌ای و اصلاح آنها. نشر اراکان، اصفهان.
3. اینگلزی، ج. 1372. باغبانی نترسیده (ترجمه م. کرکان، خ. فولادی، ن. نارویی)، جلد دوم، سازمان پارک‌ها و فضای سبز شهر تهران، صفحه 374.
4. شاهسوندیسی، ح. 1370. مقاومت به شوری در گیاهی. رشد گیاهشناسی. صفحه 6-19.
5. طولی، ع. 1377. بررسی مقاومت به خشکی درسه غنیترین گونه مرتعی A. desertorum و Agropyron cristatatum و Stipa barbata. پایان نامه کارشناسی ارشد منابع طبیعی، دانشگاه تهران.
6. عسکری، م. و. زارعی، 1381. معرفی ایزوئل‌های جدید از Cynodon dactylon به عنوان چمن شورپسند در استان‌های گیجی.
7. فیض، ن. 1352. تأثیر تجارب مختلف کودی و نوری بر روی رشد و سونج چمن. پایان نامه کارشناسی ارشد باغبانی، دانشگاه تهران.
8. کامی، م. و. همکاری، 1379. مکان‌سوزی‌های کیفی‌های به نشانه‌های محیطی. انتشارات دانشگاه فردوسی مشهد.
9. لاهوتی، م. و. رحمتی، 1371. اصول اربیولوژی گیاهی. انتشارات آستان قدس رضوی، مشهد.