مدل‌سازی توانان جرمی عناصر کادمیوم و سرب در زمین‌های زراعی منطقه اصفهان

موجهر امینی، مجد افیونی و حسین خادمی

چکیده
عناصر سنگین از جمله کادمیوم و سرب از مسیر‌های مختلف و عمده‌ای تحت تأثیر فعالیت‌های انسان وارد زمین‌های کشاورزی شده و به دلیل تحرک کم در طول زمان در خاک این انتقال می‌شود. انتقال کادمیوم و سرب در خاک در نهایت باعث ورود آنها به چرخه غذایی و تهدید سلامت انسان و سایر حیوانات می‌شود. بنابراین بررسی روند انتقال عناصر سنگین برای پیشگیری از آلودگی خاک و حفظ کیست محیط زست ضروری بوده و یافته‌ها محققین و برنامه‌ریزی در سطوح مختلف مدیریت قرار گیرد. این مطالعه با منظور مدل‌سازی روند انتقال کادمیوم و سرب در زمین‌های زراعی شهرستان اصفهان برخوردار، خمینی شهر، لنگرود، فلاورجان، مارکه و نجف آباد صورت گرفت. روند انتقال عناصر در زمین‌های زراعی منطقه به شکل روش تصادفی میان بر توانا جرمی و با استفاده از تکیه‌گاه روش لاکین هایبر کیوب و شبیه‌سازی مونت کارلو محاسبه گردید. به این منظور از اطلاعات زراعی (نوع، مساحت، بهره‌گیری جمعیت و معکورد محصولات). اطلاعات مرتبط با استخراج (انواع و تعداد). آمار مربوط به میزان تعادل کوده‌های شیمیایی. کمبودات و لجنس فاضلاب و همین‌طور اطلاعات مربوط به مقادیر عناصر در گیاهان و مواد اصلی کشت در هر کیلوگرم عناصر اساسی در سطح انتقال کادمیوم و کربن به ترتیب، (300 گ ha⁻¹yr⁻¹) و (18 گ ha⁻¹yr⁻¹) از سه‌شنبه شهرستان اصفهان و کمترین ترخ انتقال کادمیوم و سرب به ترتیب، (3 گ ha⁻¹yr⁻¹) و (20 گ ha⁻¹yr⁻¹) در شهرستان لنگرود و مارکه دیده شد. صرف‌نظر از رژیم‌های جوی، مهم ترین مسیر ورود کادمیوم به زمین‌های کشاورزی باید توجه شود. در مقایسه شهرستان کوده‌های شیرازی است. در صورتی که در مورد سرب کوده‌های جویانی نقش مهم‌تری را در شهرستان‌های مورد مطالعه به چند اصل به اشتراک گذارند. و چاو سرب از طریق کوده‌های جویانی به طور عمده‌ای از رژیم جوی سرب و سرب روز سطح گیاهان و انتقال آن به زنده‌گی، غذایی حیوانات می‌باشد. در شهرستان اصفهان کمبودات مهم ترین مسیر ورود سرب به زمین‌های کشاورزی است زیرا پیشرفت مقدار کمبودات در این شهرستان استفاده می‌شود.

واژه‌های کلیدی: توانان جرمی، مدل‌سازی تصادفی، روند انتقال، سرب، کادمیوم

مقدمه
استفاده از کوده‌های شیمیایی و حیوانی، کمبودات، لجن فاضلاب و آفت هی‌کشا به خاک وارد می‌شوند. در مقابل جذب توسط عناصر سنگین از مسیر‌های مختلف مانند ریزش‌های جوی، ۱ به ترتیب دانشجوی سابق دکتری و دانشیاران خاک‌سنجی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

77
در این مقاله ترکیبی از پروت آکسیژن سطحی (PROTERRA) در همراهی با ترکیب شیمیایی سطحی (PROTERRA-S) که شامل ترکیب‌های شیمیایی سطحی و پروت آکسیژن سطحی است از طریق آزمون‌های مختلفی از جمله آزمون‌های فیزیکی و شیمیایی بررسی شد. در این مطالعه، تأثیرات آنها بر روی رشد و ساختار گیاهی و تأثیرات آنها بر روی محیط را بررسی کردند.

نتایج نشان داد که ترکیب‌های پروت آکسیژن سطحی و ترکیب شیمیایی سطحی با هم می‌توانند بهبودی رشد و ساختار گیاهی را در نتیجه داشته باشند. در علاوه بر این، آنها می‌توانند بهبودی محیط را در نتیجه داشته باشند.

در نهایت، استفاده از ترکیب‌های پروت آکسیژن سطحی و ترکیب شیمیایی سطحی در بوانان از چندین نظر مفید است. این ترکیب‌ها می‌توانند بهبودی محیط را در نتیجه داشته باشند و می‌توانند بهبودی رشد و ساختار گیاهی را در نتیجه داشته باشند.
عناصر سنگین در نظر می‌گیرد شامل عناصری که افزوده‌های سنتی، مانند اضافه‌های سنتی از کودهای شیمیایی و حیوانی، می‌باشد. افزوده‌های خروج عناصر سنگین در این مدل شامل برداشت محصولات و خروج از طریق آب‌شویی می‌باشد. با توجه به مسیری که مادک در این مدل تغییر می‌کند، میزان جرمی افزوده‌ای را برای محاسبه توافق جرمی عناصر نیاز دارد. در این مدل تغییر می‌کند، افزوده‌های شیمیایی (g ha⁻¹) M، در طول دوره زمانی (yr) Δt به صورت زیر پیان می‌شود:

\[\Delta M_{i} = \Delta t (I_{\text{Agr}} + O_{L} - I_{\text{O}}) \]

در این معادله (\(I_{\text{Agr}}\)، \(I_{\text{O}}\)، \(O_{L}\)) به حساب یک منطقه میزان ورود عناصر از طریق ریزش‌های انتقالی در سطح منطقه. منطقه‌ای میزان ورود عناصر توسط محصولات و میزان خروج عناصر از طریق آب‌شویی، می‌باشد.

برای تولید محصولات در هر لیتر LUS می‌توان به شکل زیر تعریف نمود:

\[I_{\text{Agr}} = I_{\text{Man,i}} + I_{\text{Min,i}} + I_{\text{Se,i}} + I_{\text{Pesi,i}} + I_{\text{Comp,i}} - O_{\text{Crop,i}} \]

در این معادله \(I_{\text{Min,i}}\) به حساب می‌باشد که باید به عنوان شیمیایی با \(I_{\text{Man,i}}\) به حساب کند. \(I_{\text{Se,i}}\) و \(I_{\text{Pesi,i}}\) به حساب کیلوگرم کروم و حساب کیلوگرم سبزیجات و منابع شیمیایی در اثر برداشت گیاه و خارج نمودن از منطقه است. تمام جرمی‌ها یک هر بر حسب گرم بر هکتار بر سال می‌باشد.

\[\Delta M_{i} = \Delta t (I_{\text{Agr}} + O_{L} - I_{\text{O}}) \]

در این مدل Mورد استفاده در این مطالعه بر اساس مدل PROTERRA-S استفاده می‌شود.

ساختمدل

Random variable

با توزیع مشخص پایداری شده است. به منظور در نظر گرفتن جدایی این مدلانش می‌باشد. این مدل‌ها از روش نمونه‌برداری لاتین، استفاده شده است. SAخیبرک (Latin hypercube sampling)

مدل و فرضیات آن در مراجع شماره 6 و 7 تشریح شده است.

داهدهای مورد استفاده

اطلاعات زراعی مورد نیاز شامل نوع محصول، سطح زیر کشت حجم زیرای کمپکس و این منطقه، اندازه و گونه از عناصر سنگین به زمین‌ها کشاورزی وارد شده. با این وجود هیچ گونه مطالعه‌ای در ارتباط با میزان انتقال عناصر کشاورزی صورت نگرفته است. این مطالعه به منظور تعیین روند انتقال عناصر سنگین به منابع، مورد استفاده می‌باشد.

مواد و روش‌ها

میزان مطالعه در زمین‌های خشکی، شرایط کشاورزی، بارش و بهبود دهنده این مطالعات، مورد مرتبه‌اند. این مطالعات به منظور تعیین شرایط کشاورزی، شرایط اطمینان و بهبود در این مطالعات بر اساس مدل PROTERRA-S استفاده می‌شود.

داهدهای مورد استفاده

اطلاعات زراعی مورد نیاز شامل نوع محصول، سطح زیر کشت
عکس و نقش کشاورزی و منابع طبیعی / سال دهم / شماره چهارم (الف) / زبان فارسی 1385

(۵) نمونه و چگنگی ۵۰ نمونه به طور تصادفی جمع آوری گردید. نمونه برداری در مراحل برنامه و بر اساس نوع گیاه از پخته‌های که طی مرحله برنامه از مزرعه خارج می‌شود صورت گرفت. نمونه‌های گیاهی به روش سوزاندن تا با استفاده
تیتریک (۱۲) عصاره‌گیری شده و غلظت عنصران در آنها با استفاده از دستگاه جذب اتمی تعیین گردید. علاوه بر این، اطلاعات مربوط به غلظت عنصر در گیاهان موجود در سایر تحقیقات انجام گرفته در منطقه استخراج شده است. غلظت
سرب و کادمیوم در گیاهان مختلف به ترتیب ۰/۵ nga و
۱/۰ میلی گرم بر کیلوگرم می‌باشد.

pH ۶/۵ تا ۷/۵

می‌باشد و بنابراین آسیب فلات سنگین در آنها بسیار کم بوده و در مقابل با سایر ورودی‌ها خروج‌ها قابل غفلت است. بنابراین خروج عنصر از طریق آبسیون در این مطالعه لحاظ نشده است. اگر آفتکشن‌های که در منطقه استفاده می‌شود از نوع آلی بوده و بنابراین غلظت کادمیوم و سرپ در آنها بسیار تاجیر نشده‌است (۶). بنابراین این می‌تواند در محاسبه روند

انباب‌های فلات در خاک لحاظ نشده.

به طور کلی با احتساب نمای داده‌های قابل دسترس برای
سیره‌ها ورس و خروج سرپ و کادمیوم بسته به شهرستان و
نوع نور در ۱۰۰ میلی‌گرم در کیلوگرم می‌باشد.

برای اینکه توزیع‌ها در سیره رود مورد اطلاعات و امکان محاسبه می‌تواند در نهایت توسعه استفاده ارزنده و در صورت وجود حداقل و حداقل توزیع یک‌نواخت و در موجود غلظت عنصر در گیاه‌های کوهدایه‌های زیادی که در کشور فازلاً شده‌اند، به در نظر گرفته شد (البته کامل

فازلاً نتایج نکاربرده در نظر گرفته شد. با استفاده از داده‌های تشریح شده از این انتخاب

عنصر کادمیوم و سرب در منطقه شیب‌سازی گردید. این

می‌توان با استفاده از روش لاین هاپورسکوب ۲۵۰۰ ترکیب

مختلف از داده‌ها در نظر گرفته شد.
جدول 1. میانگین (انحراف استاندارد) ورودی، خروج و نرخ انتقال کادومیوم از سیره‌های مختلف به تفکیک شهرستان

<table>
<thead>
<tr>
<th>شهرستان</th>
<th>نرخ انتقال* (g ha⁻¹ yr⁻¹)</th>
<th>خروجی</th>
<th>ورودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مبارکه</td>
<td>3/18 (1/68)</td>
<td>1/22 (1/81)</td>
<td>3/88 (1/43)</td>
</tr>
<tr>
<td>فلاورجان</td>
<td>2/95 (1/20)</td>
<td>2/16 (1/46)</td>
<td>3/88 (1/56)</td>
</tr>
<tr>
<td>نجف آباد</td>
<td>2/10 (1/24)</td>
<td>2/12 (1/43)</td>
<td>3/88 (1/55)</td>
</tr>
<tr>
<td>اصفهان</td>
<td>2/80 (1/24)</td>
<td>1/20 (1/64)</td>
<td>3/88 (1/55)</td>
</tr>
<tr>
<td>خمین شهر</td>
<td>2/47 (1/18)</td>
<td>1/20 (1/64)</td>
<td>3/88 (1/55)</td>
</tr>
<tr>
<td>برخوار</td>
<td>2/04 (1/27)</td>
<td>1/39 (1/67)</td>
<td>1/80 (1/24)</td>
</tr>
</tbody>
</table>

1. میزان خروج و تردد برداشت گیاه

نتایج و بحث

مقیاس شهرستان
الف) کادومیوم

نتایج حاصل از مدل‌سازی نرخ انتقال کادومیوم به تفکیک شهرستان در جدول 1 خلاصه شده است. بر اساس نتایج به‌دست آمده شهرستان اصفهان با میانگین حدود 18 g ha⁻¹ yr⁻¹، بیشترین نرخ انتقال و افزایش بیشترین میانگین حداکثر به شهرستان کمترین نرخ انتقال کادومیوم را در خانه‌های کشاورزی و در اثر فعالیت‌های کشاورزی دارا می‌باشد. سایر شهرستان‌ها دارای میانگین نرخ انتقال کادومیوم حد واسط و لی ریزیکتر به نرخ انتقال شهرستان اصفهان می‌باشند. مقادیر گزارش شده در جدول 1 درواقع میانگین همکاری میانگین شهرستان کادومیوم در کل زمین‌های کشاورزی هر شهرستان می‌باشد. با در نظر گرفت
کادومیوم از لیا شخم از طریق آشوبی پس از بوده و تاثیر باعث شد که در نتیجه گرفت که این‌گونه کادومیوم نزدیک به زمین‌های کشاورزی در شهرستان‌های مورد مطالعه به مراتب بیشتر از منابع گزارش‌های برای زمین‌های کشاورزی در شهرستان‌های اروپایی (0-6) گرم در هفته در سال) می‌باشد (10). منابعی محاسبه شده با مقادیر گزارش شده بود و سیلیک کلر و همکاران (4) برای مقیاس‌گری (1-178) گرم بر هکتار در سال) قابل مقایسه است. بنابراین از گزارش شده به وسیله متغیران حاکی می‌باشد. با توجه به وجود این گزارش‌ها در منطقه انتظاری می‌باشد در نظر گرفته شد و عناوینی از عناصر غذایی و استفاده از کادومیوم فسفور با کیفیت بالا و بر حسب نیاز کشاورزی اروپایی باشد. مقادیر نرسی این انتخاب در برخی از شهرستان‌ها به‌طور اسفهان در مقایسه با مقدار بحرانی پیشنهاد شده توسط کلر و همکاران (4) 4/9 آسیا زیاد است. این مقادیر بحرانی پیشنهاد شده یا نشان دهنده است که در مدت 200 سال باعث افزایش غلظت کادومیوم در محیط انرژی گازهای شرایط محلی به غلظت بحرانی 1/8 mg kg⁻¹ 0/08 mg kg⁻¹ کشور سوئیس و برای خاک‌هایی با منابعی غلظت کادومیوم حداکثر 5/75 mg kg⁻¹ 0/866 باینگر نشان دهنده است (6) با توجه به شرایط حاکم در منطقه مصرف شود جهت و وجود مقادیر زیادی آمک در خاک‌ها و این مقدار بحرانی یا نشانه 7/49 قلمه رودوری 0/866 ناز قلمه رودوری 0/866 0/866 ناز قلمه رودوری 0/866 این مقدار باید اساس مطالعات صورت گرفت و منابعی غلظت کادومیوم در خاک‌های منطقه اسفهان حدود 0/866 است که بیش از دو برابر غلظت بحرانی فوق می‌باشد (6) و (12) علاوه بر آن جانبه دریچه‌های چوبی شده مقایسه شده برای انتخاب کادومیوم اضافه شود و توجه به این نکته که میزان خروج
ورود کادمیوم به زمین‌های کشاورزی در منطقه مورد مطالعه می‌باشد. سهم ورود کادمیوم از طریق کاردود کودهای حیوانی از حدود ۱ تا ۴۵ درصد و در مورد کودهای فسیلی از حدود ۷۵ درصد متفاوت است. سهم ورود کادمیوم از طریق کمپوست و لجن فاضلاب در مقیاس شهرستان نسبت به سایر ورودی‌ها ناچیز است. لازم به ذکر است که این نتیجه‌گیری به معنی به‌‌هم‌بینی بودن ورود کادمیوم از طریق کمپوست و لجن فاضلاب نیست. بلکه به این مفهوم این که کمیت کمتری شهرستان این ورودی‌ها نسبت به سایر ورودی‌ها اهمیت کمتری دارد.

شکل ۱. توزیع مقادیر شیب‌سازی شده ورود و خروج کادمیوم (g ha⁻¹ yr⁻¹) در شهرستان‌های اصفهان، خمینیشهر و لنجان.

دارند ویل در مقیاس‌های کرچک‌نریناند مقیاس مزرعه می‌توانند از اهمیت بیشتری برخوردار باشند. علاوه بر آن با این نکته در نظر گرفته شود که کمپوست و لجن فلزکاتور وارد شده به شهرستان تنها در بخشی از زمین‌های کشاورزی مورد استفاده قرار می‌گیرد. تأثیر توزیع غیرگنگ و کمک از لجن فلزکاتور و کمپوست را می‌توان بر حسب درصدی از زمین‌های کشاورزی که در هر شهرستان کمپوست و لجن فلزکاتور درب‌خیمه شیب‌سازی نموده‌اند در این مطالعه ۱۰ متربرد در مورد توزیع کمپوست و لجن فلزکاتور در شهرستان اصفهان، خمینیشهر و لنجان فلزکاتور با میزان

83
جدول 2. ورود کادمیوم از منیزهای مختلف نسبت به کل ورود کادمیوم

<table>
<thead>
<tr>
<th>محله تمام</th>
<th>کمیسیون</th>
<th>بارش</th>
<th>شرکت</th>
<th>نسبت ورود از هر منبع به کل ورود کادمیوم (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مارکه</td>
<td>75/54</td>
<td>24/24</td>
<td>22/22</td>
<td></td>
</tr>
<tr>
<td>فلاورجان</td>
<td>75/75</td>
<td>24/24</td>
<td>22/22</td>
<td></td>
</tr>
<tr>
<td>لنجف باد</td>
<td>35/27</td>
<td>15/15</td>
<td>10/10</td>
<td></td>
</tr>
<tr>
<td>اصفهان</td>
<td>65/55</td>
<td>30/30</td>
<td>15/15</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>65/55</td>
<td>30/30</td>
<td>15/15</td>
<td></td>
</tr>
<tr>
<td>برلشوار</td>
<td>65/55</td>
<td>30/30</td>
<td>15/15</td>
<td></td>
</tr>
</tbody>
</table>

![نمودار 2] توزیع لنج فاضلاب و کمیسیون در نظر اباتش کادمیوم در زمینه کشاورزی اصفهان

گردید. در این سالروزها فراض شد که تمام کمیسیون و لجن فاضلاب وارد شده به شهرستان اصفهان به ترتیب در ۰/۲۰، ۱/۵۰ و ۰/۳۰ درصد از زمینهای کشاورزی این شهرستان مورد استفاده قرار گرفته است. نرخ اباتش کادمیوم محسوب شده برای این سالروزها در نمودار ۲ مبنا داده شده است. همان‌گونه که ملاحظه می‌شود تأثیر کمیسیون و لجن فاضلاب در مقیاس های کوچکتر (کمتر از ۰/۳۰ درصد (زیم‌ها)) به مرتبه بسیر از سایر ورودی‌ها است. علاوه بر کمیسیون و لجن فاضلاب توزیع ناهمگن در مورد سایر ورودی‌ها مانند کودهای
جدول 3. میانگین (انحراف استاندارد) نرخ انبشته سرب در شهروستان‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شهروستان</th>
<th>کوده‌های</th>
<th>احتدام</th>
<th>فرخ</th>
<th>لجن فاضلاب</th>
<th>کمپوست</th>
</tr>
</thead>
<tbody>
<tr>
<td>مبارکه</td>
<td>12/26(3/28)</td>
<td>0/001</td>
<td>11/004</td>
<td>0/025</td>
<td>0/011</td>
</tr>
<tr>
<td>فلاورجان</td>
<td>32/04(6/08)</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
</tr>
<tr>
<td>نجف آباد</td>
<td>32/01(8/04)</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
</tr>
<tr>
<td>لنجان</td>
<td>32/18(8/09)</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
</tr>
<tr>
<td>خمینی شهر</td>
<td>32/55(1/96)</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
</tr>
<tr>
<td>برخوار</td>
<td>32/16(4/24)</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
</tr>
</tbody>
</table>

1: متوسط از گیاه میزان خروج عنصر از طریق برداشت گیاه می باشد. 2. متوسط از احتدام ورود عنصر از طریق استفاده از کوده‌های حیوانی

است. 8. نرخ انبشته بر اساس اختلاف میزان ورودی و میزان خروجی است. اعداد داخل پرانتز میزان انحراف استاندارد می باشد.

بدون احتساب ریزش‌های جوی در شهروستان‌های مورد مطالعه از حدود 10 تا حدود 270 (گ ha⁻¹ yr⁻¹) (میترمی باشد. در بین شهروستان‌ها، مبارکه دارای کمترین و اصفهان دارای بیشترین نرخ انبشته می باشد. انبشته سرب در زمین‌های کشاورزی اصفهان با سابر شهرها تفاوت بسیار زیادی دارد. علت این امر برود مقدار زیادی سرب از طریق کمپوست و لجن فاضلاب می باشد. استفاده از کمپوست در اصفهان باعث ورود حدود 180 گ ha⁻¹ yr⁻¹ Sرب به زمین‌های کشاورزی می گردد.

انحراف استاندارد محاسبه شده در مورد نرخ انبشته و یا میزان ورود و یا خروج از سایر محیطها ناشی از تغییرات زیاد داده‌های مورد استفاده است. ضریب تغییرات نرخ انبشته در شهروستان‌ها بین 20 درصد در نفعه آبیتارد 60 درصد در لنجان متغیر است. علت وجود تغییرات بیشتر در مورد نرخ انبشته سرب در شهروستان‌های میانه از ساکتار منتقل داده‌های
شکل ۳. توزیع نرخ ورود و خروج سرب از سیستم‌های مختلف به شهرستان‌های اصفهان، خمینی شهر و لنجان

شکل ۴. نرخ اشباع سرب و کادمیوم در مقياس منطقه
جدول 4: سهم ورود سرب از مسيرهای مختلف نسبت به كل سرب ورودی در شهرستان‌های مختلف

<table>
<thead>
<tr>
<th>شهرستان‌ها</th>
<th>کمیتست</th>
<th>نسبت روود از هر مسير به كل ورود سرب (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مبارکه</td>
<td>5/6</td>
<td>0/24</td>
</tr>
<tr>
<td>فلاورجان</td>
<td>0/11</td>
<td>0/15</td>
</tr>
<tr>
<td>نجف‌آباد</td>
<td>0/350</td>
<td>0/13</td>
</tr>
<tr>
<td>لنججان</td>
<td>0/15</td>
<td>0/23</td>
</tr>
<tr>
<td>خمينی شهر</td>
<td>0/17</td>
<td>0/35</td>
</tr>
<tr>
<td>اصفهان</td>
<td>0/75</td>
<td>0/24</td>
</tr>
<tr>
<td>برخوار</td>
<td>0/25</td>
<td>0/66</td>
</tr>
<tr>
<td>مبارکه</td>
<td>0/6</td>
<td>0/24</td>
</tr>
<tr>
<td>فلاورجان</td>
<td>0/11</td>
<td>0/15</td>
</tr>
<tr>
<td>نجف‌آباد</td>
<td>0/350</td>
<td>0/13</td>
</tr>
<tr>
<td>لنججان</td>
<td>0/15</td>
<td>0/23</td>
</tr>
<tr>
<td>خمينی شهر</td>
<td>0/17</td>
<td>0/35</td>
</tr>
<tr>
<td>اصفهان</td>
<td>0/75</td>
<td>0/24</td>
</tr>
<tr>
<td>برخوار</td>
<td>0/25</td>
<td>0/66</td>
</tr>
<tr>
<td>مبارکه</td>
<td>0/6</td>
<td>0/24</td>
</tr>
<tr>
<td>فلاورجان</td>
<td>0/11</td>
<td>0/15</td>
</tr>
<tr>
<td>نجف‌آباد</td>
<td>0/350</td>
<td>0/13</td>
</tr>
<tr>
<td>لنججان</td>
<td>0/15</td>
<td>0/23</td>
</tr>
<tr>
<td>خمينی شهر</td>
<td>0/17</td>
<td>0/35</td>
</tr>
<tr>
<td>اصفهان</td>
<td>0/75</td>
<td>0/24</td>
</tr>
<tr>
<td>برخوار</td>
<td>0/25</td>
<td>0/66</td>
</tr>
</tbody>
</table>

منشور از احتمال ورود عنصر از طريق استفاده از كوده‌ای جهانی است. انبشت در این مطالعه بیشتر به یکی از انواع نشده و همچنین
با در نظر گرفتن این نکته که حدود 10 درصد سرب ورودی به زمین‌های کشاورزی در مقیاس منطقه از طریق ریزش‌های جوی
است (6)، لذا نمی‌توان نتیجه‌گیری نمود که نرخ انبشت واقعی
از حد بحرانی كمتر است. علاوه بر این، نرخ انبشت بحرانی
فوق برای خاک با علت اولیه سرب بسیار کم صادق است.
با توجه به این که علت سرب در ریختنی واژهی بیشتر از
میلی‌گرم تا کیلوگرم می‌رسد (2 و 3) لذا نرخ بحرانی انبشت
محاسبه شده (10) برای مقدار کم‌تر از گزارش شده
است. در نتیجه حداکثر 30 درصد سرب وارد شده به زمین‌های
کشاورزی از طریق کاربرد کوده‌ای جهانی است. سهم کوده‌ای
خورده در سرب ورودی در مقیاس به کیلوگرم بسیار کم است و
از تغییرات شرایط تا حدود 30 درصد در حداکثر 30 درصد در
شهرستان مبارکه معادل می‌باشد.

میانگین نرخ خروج سرب از طریق برداشت گیاهی از حداکثر
6 g ha⁻¹ yr⁻¹ برای شهرستان لنججان تا حدود
70/5 g ha⁻¹ yr⁻¹ برای شهرستان اصفهان متغیر می‌باشد. تفاوت در نوع و سلسله
زیر کشت گیاهی موجب این تغییرات می‌شود. میزان ورود
سرب به زمین‌های کشاورزی از طریق استفاده از کوده‌ای
(gha⁻¹ yr⁻¹) در شهرستان‌های مختلف بین 10 تا 50 (gha⁻¹ yr⁻¹)
منفتاست. در این مورد شهرستان لنججان بهترین میزان
ورود از طریق کوده‌ای جهانی را دارا می‌باشد. این امر می‌تواند
ناتیجه تراکم بیشتر احتمال در این شهرستان نسبت به سایر
شهرستان‌ها باشد. در ارتباط با کمیتست و لجن فاضلاب میزان
ورود سرب تنا در شهرستان‌های اصفهان قابل ملاحظه است. توزیع
مصرف کودهای فسفری است. لجن فاضلاب و کمیست در
مقیاس شهرستان و با فرض یک خواصی بودن استفاده آنها از
امید کمتری نسبت به کودهای فسفر در ورود کادمیوم به
زمین‌های کشاورزی برخوردارند. لیکن در بخشی از زمین‌ها که
لجن فاضلاب و کمیست در رایانش نمو‌های آنها
توانسته باشند از این دوره می‌تواند قابل
نافذ شدن و لجن فاضلاب تولید شده در بین
شهرستان‌ها و میزان ورود کادمیوم از این طریق در شهرستان
افشان همگونی این یاده با سایر شهرستان‌ها دارد. میانگین کروج
کادمیوم توسط برداشت گیاه به مقاپسی با ورود کادمیوم
کم می‌باشد. ولی توجه به این که ارتباط بین غلظت عنصر در
گیاه و غلظت آن در خاک خلکی نیست، با اندازه‌گیری تدریبی
غلظت کادمیوم در خاک جذب کادمیوم و ورود عنصر به
زنجبیر خذایی در آبده شامل افزایش خواهد بایست. به
صرف نظر از ریز‌های جوی، کودهای حیوانی و لجن
فاضلاب مهم‌ترین مهارتهای ورود سرب به زمین‌های کشاورزی
اصلی شهرستان‌های مورد بررسی است. در شهرستان اصفهان
 مهم‌ترین میزان ورود سرب به زمین‌های کشاورزی استفاده از
کمیست می‌باشد. هرچند نرخ انباشت برای سرب در
شهرستان‌های مورد مطالعه کمتر از نرخ انباشت بحرازی است
با این حال توجه به امید ریزی‌های جوی سرب و همین طور
غلظت نسبتاً بالای سرب در مقطع مورد مطالعه انتظار آلوده
خاک‌های به سرب در آنها وجود دارد.

تأثیرگزار
در بین شهرستان‌های مورد مطالعه، بیشترین نرخ انباشت
کادمیوم و سرب در شهرستان اصفهان دیده شد. کودهای فسفر
 مهم‌ترین میزان ورود کادمیوم به زمین‌های کشاورزی در منطقه
 مورد مطالعه محسوب می‌شوند. به طور مشابه در شهرستان
 استفاده حدود 60 درصد از کل کادمیوم وارد شده به زمین‌های
 کشاورزی، بدون در نظر گرفتن ریز‌های جوی، ناشی از

منابع مورد استفاده
1. امینی، م. 1383. مدل‌سازی روغن تجمع عنصر سنگین در کوستیم‌های زراعی و ارزیابی عدم قطعیت آن در منطقه اصفهان. پایان
نام دکتری خاک‌شناسی. دانشگاه صنعتی اصفهان.
contamination to human health in soils of Central Iran. Sci. of the Total Environ. 374:64-77.

88
recycling agricultural, municipal and industrial residue in agriculture. FAO, Rome.