تأثیر آبیاری با فاضلاب خانگی خام ورودی و پساب تصفیه ثانویه تصفیه خانه فاضلاب شهرک ایکاتان بر میزان انتقال نفس به زیر عمق توسعه ریشه‌ها

علیرضا حسن‌قلی‌آبادل‌مجد لیاقتی و مهیدی میراب‌زاده

چکیده
از جمله نتایج به کارگیری فاضلاب خانگی خام و پساب تصفیه شده آن در کشاورزان و آبیاری اراضی زراعی، اضافه شدن انواع ترکیبات شیمیایی به همراه علاوه بر تأمین آب مورد نیاز گیاه‌پردازی، از این طریق به افزایش حاصلخیزی خاک کمک شده و در نتیجه تقلیل مصرف کود، به کاهش هزینه‌های عمدی جاری در فعالیت‌های کشاورزی منجر می‌شود. برای این هدف، مشخص کردن چگونگی ترکیبات فاضلاب و پساب به لحاظ ترکیبات فسفردار و توزیع مجموعاً خاک و گیاه در جذب اطلال و آلودگی‌های موجود در فاضلاب و پساب به‌طور میانگین، تحقیقات انجام شده و انتقال آنها به زیر عمق توسعه ریشه‌ها در نتیجه عملیات آبیاری، تحقیق حاضر به پژوهش رسیده و در همین راستا با بهره‌گیری از لیزربری به مدیت دو سال از فاضلاب خام ورودی و پساب تصفیه ثانویه خروجی از تصفیه خانه فاضلاب شهرک ایکاتان برای آبیاری سبز درخواست گرایشی، جعفری و هویجی استفاده شد، این تحقیق با نظور تهیه نمونه آب در محل به وسیله شاهد و بهره‌گیری از آزمایش آماری فاکتوریال در قالب طرح کاملاً تصادفی به اجرا درآمد. تریاه به‌دست آمده بیانگر آن بود که میزان انتقال نفس به عمق خاک در نتیجه کاربرد فاضلاب خام از 1/99 تا 1/05 درصد و در پساب تصفیه شده بین 1/99 تا 1/05 درصد به تغییر می‌یابد. در پژوهش انجام شده با فاضلاب خام و پساب میزان 2/16 درصد برآورد گردید. جدای گرفتن فسفات در طول مدت دو سال آزمایش، در زمان خروجی از لیزری‌بری‌های آبیاری شده با فاضلاب خام و پساب میزان 2/16 درصد در نظر گرفته شد که این میزان، بسیار کمتر از مقدار فسفات مجزا از نظر استاندارد سازمان حفاظت محیط زیست ایران جهت تخلیه پساب به منابع آب سطحی (0/2 میلی گرم بر لیتر) و نمی‌تواند در حدود 3/5 درصد آن می‌باشد.

واژه‌های کلیدی: فاضلاب خانگی، فاضلاب‌خام، پساب تصفیه ثانویه، نفس‌آبیاری، زه آبی، لیزربری

مقدمه
به کارگیری فاضلاب‌خام و پساب حاصل از تصفیه آنها در امکان آبیاری محصولات کشاورزی، از جمله راه‌کارهای رویارویی با

1. استادیار پژوهشی مؤسسه تحقیقات فنی و مهندسی کشاورزی، کرج
2. دانشیار مهندسی آب‌ورزشی و آبادانی، دانشگاه مهندسی اپیک و خاک، دانشگاه تهران (پردیس کشاورزی کرج)

۲۹
در حدود 200 گرم در سال تخمین زده شده و میانگین سالانه فسفر ناشی از مصرف یک کنده‌های فسفر کار گیری هر نفر 1100 گرم بروزه است (2 و 3) و یک اتم مشکل فسفر به وسیله پلاستیک انگیز احاطه شده و ینون خورد است. بیشتر فسفات‌های خاک، نمک‌های فسفری (H₃PO₄) است. تعداد آلمین و هم ترکیبات معدنی فسفر در خاک نشتی داده شده‌اند. فسفات در محلول خاک علاوه بر فسفات‌های آلی محلول، به شکل بیوهای H₃PO₄ نیز وجود دارد. این موضوع ناشی از تبخیر فسفاتی HPO₄²⁻ است.

امکانات زیاد فسفر در خاک می‌تواند با عنصر دیگر، تأثیر کمتری را بر فشار خاک از خود بر جای می‌گذارد. زیرا با اجرا عملیات آب‌یاری با فاسدل و پس از اینجا غلظت فسفر در محلول خاک افزایش یافته، بنا براین نتیجه جدید سطحی فسفر توسط ذرات خاک (پنکسی صز) و انجم واکنش‌های ترسیبی با آهن، آلیمین، کلسیم و کریت‌ها و ایجاد نمک‌های نامحلول. میزان فسفر موجود در محلول خاک به سرعت کاهش می‌یابد. همچنین جذب گیاهی نیز مقدار فسفر موجود در خاک را (به عنوان کمتری در مقابل واکنش‌های شیمیایی) کاهش می‌دهد (9، 10، 11 و 16). البته داده‌های مختلف در تحقیقات مختلف فسفر متفاوت است. آن‌ها فسفات توسط واکنش‌های جذب سطحی و ترسیب در سیستم‌های ناهنجاری شده و نباید خاک‌های رس باید تر، مقدار فسفر بیشتری در مقایسه با خاک‌های دشتی داشته و حاشیه گیاه‌ها است و پس از اینکه وجود عنصر کودی به اهمیت یکی از مهم‌ترین عوامل متوفر در نقش و ترکیبی می‌باشد. در میانگین دفع سرانه فسفر (P) 15 میلی‌گرم بر لیتر (15) تا 15 کالی‌گرم بر لیتر (15) را دارا می‌باشد (13، 14 و 18) و حدود 10 تا 50 درصد فسفر فاسدل ناشی از فعالیت‌ها و 30 تا 50 درصد آن مربوط به مصرف مواد یک کنده‌های فسفر بهداشتی می‌باشد و هر کسی می‌تواند به پیشنهاد نشان دهنده‌ای در آوردن
تأثیر آبیاری با فاضلاب‌های نانو و پساب تصفیه نانو در تصفیه خانه

کیلولترم خاک گزارش شده است (15). هرکدام فسفر موجود در محلول (عصاره) حاصل از خاک‌های عمیق کوده‌ای نشده را بین 10 تا 0.1 کیلوگرم بر لیتر گزارش می‌نماید. (15). هرکدام فسفری شده که کاربرد طولانی مدت فاضلاب در آب‌های سطحی از نظر فسفر امکان‌نامه و فسفر موجود در فاضلاب به هیچ وجه برای گیاه مضر نخواهد بود (16). رشد گیاه را به طور غیر مستقیم تحت تأثیر مراک می‌دهد. مثلای علمی کربن در روز گیاه را در روزهای مواردی به‌طور دانه کمک می‌کند که گیاه آن، گسترش کم می‌کند و در انسان است (6 و 7). البته این موضوع وقیتی صادق است که فضای فضاهای بیانی حذف و وجود داشته باشد. از نقطه نظر علمی می‌توان از روش‌های زیر از Zn3(PO4)2.4H2O در توضیحات زیر کمک می‌روی در خاک‌های شالدارهای آهکی نام برده (8).

با توجه به حجم گسترش کاربرد فاضلاب‌های شهري و خانگی در اراضی زراعی اطراف شهرهای برخی کشورها، امرورزنه تحقیقات منطقه‌ای در این خصوص و مشارکت جنبه‌ای مختلف آبیاری با فاضلاب و پساب از اهمیت بسزایی برخوردار می‌باشد. به دلیل وجود برخی نفوذ‌ها در شرایط اقیمی، گیاهی، اجتماعی، فرهنگی، کیفیت خاک و سایر عوامل و متغیر بودن خصوصیات فاضلاب از منطقه‌ای و منطقه‌ای دیگر، تأکید بر کارگیری صنعت العمله ارائه شده در تغییر مناطق چهارماشکمانی را در دنیای فضه و در این مدت، صدایی را بر سبب آلیه و خاک وارد می‌زند (1). به همین دلیل در طی پیک برنامه تحقیقات دو ساله در استان تهران، شناختی‌های عمده در آبیاری با فاضلاب‌های خاکی و پساب حاصل از تصفیه آنها مورد بررسی قرار گرفته که بخشی از نتایج بدست آمده، در قابل این مقادیر مورد می‌گردد. هدف از این بخش از تحقیق، بررسی و تعبیر میزان فسفر وارد شده به خاک در نتیجه آبیاری با فاضلاب‌های خاکی خام و پساب تصفیه نانویه خروجی از تصفیه خاک‌ها فاضلاب شهري ایکتیات و نیز مشاهده چگونگی و میزان انتقال فسفر به زیر عمق توزعه ریشه‌ها با و منزیم به وجود می‌آید. از نگاه که خاک‌های ایران عمدها

اهمیت می‌باشد. مورد اخیر اهیمت پیشرفتی دارد (9 و 16). فعالیت بیوت‌های فاسی به طور غیر مستقیم به pH و بیانی ناکارهای (اهیمتی) Fe3+ با گروه سیلیکات (یونه‌های CO3) و فشار جریان (اینorton) Ca2+ و نتایج تحقیقات (Tawfiq) با پدیده می‌چسبند. (17) مطالعات دانش داده است که بهترین pH فسفور به وسیله گیاه بین 4-6 است. در کشور ما، خاک‌های با چهار اسیدهایی گسترش چنانی ندارند (6 و 9 و 16).

بررسی‌ها نشان داده که حجم آنها به‌طور طیفی می‌باشد. در این مقاله، فناوری دانش‌آموزان، راه‌پیمایی مشکل‌های گسترش فسفر به این‌وایهکه مسئول فضای سطحی از این‌وایه که در صورت تجاوز از مقادیر 5/0 کیلوگرم بر لیتر (P2O5) می‌تواند آلوده کنند. با توجه به زیادی مقدار فسفر در عمل، این موضوع غلط شده‌است نامطلوبی فسفر در آب زیرخ می‌شد از نمک خرم محمد (6 و 8) تحقیقات نشان داده که در سیستم‌های آبیاری بیشتر فیتوکارتری با فاضلاب، کاربرد آب آبیاری به میزان (7/5-20)٪ بوجود می‌آید. در هنگام جهاد به حذف تقریباً کامل فسفر از آب نفوذ یافته به دور خاک، شده، با توجه به مقدار مقداری است که در رویاب سطحی و مربوط به بقای خانه، این کاربری حذفی سیستم بستگی به موارد باز فشرده فاضلاب و خصوصه‌ها فضاهای منطقه‌ای دارد (16). میزان بر فشار فاضلاب و خصوصیات خاک منطقه‌ای دارد (16).

کاربرد و فشار در سال 1976 گزارش کرده‌اند که در در تحقیقات و سبکانه، خسته نمی‌آید. ایشانی فسفر به عمل 120 سانتی‌متری خاک نیز از 100 درصد فسفر به کار رفت کمتر است (7).

مقدار فسفر (تا 0 × 500) گرم در کیلوگرم خاک خشک و 0 - 2000 کیلوگرم بر هکتار در لایه 20 سانتی‌متری خاک سطحی تغییر می‌کند (15). غلظت فسفر قابل انجاد در آب با استفاده ریز و پرات بین 0/1 میلی‌گرم در کیلوگرم خاک خشک در تروسی است. ویلی آمده مقادیر مشاهده شده کمتر از 1/0 میلی‌گرم فسفر در
چندین موقعیتی و در صورت حصول نتایج رضایت بخش از نظر کنترل انتقال الابعاده به عمق خاک، در شرایط طبیعی (با خاک متراکمتر و دست نخورده و دانه بندی مشابه و حتی روتور) و همچنین در مواقع استنشایی، به طور قطع نتایج قابل قبول برای حاصل خواهند شد. مشخصات هریک و شیمیایی خاک در جداول ۱ و ۲ قابل ملاحظه است.

با علت می‌تواند گیاهان کشت شده در اطراف شهر تهران و به‌منظور دخالت دان شرایط موجود کاربرد فاضلاب‌ها در امر آب‌بری در این شهر، اقدام به کشت گیاهانی در لایه‌های گلی‌ای شده که معمولاً به صورت خام مورد استفاده قرار می‌گیرد. به همین منظور به سازی خوراکی از قرار: جغجسر (سیب‌گری)، هبویج (سیب‌ریشه‌ای) و کوچه‌نَزهی (محصولات سالانه) در لایه‌های کاشت مشاهده شد. به‌منظور تأمین فاضلاب خانگی و پساب مورد نیاز، ابتدا بررسی‌های لازم بر چگونگی تولید و جمع‌آوری فاضلاب‌ها در سطح شهر تهران به عمل آمد و در نهایت، تصمیم به خانه فاضلاب شعله ای‌کاتان به عنوان منبع تأمین فاضلاب انتخاب گردید. ضمناً یا در نظر گرفتن شرایط فنی کاربرد فاضلاب‌های خام شعله‌ای در جنوب شهر تهران و نیز آنگاه این منطقه به‌پایین این نوع فاضلاب‌ها تا حدی تأمین شد که جمع‌آوری و تصمیم این نوع فاضلاب، از هر دو نوع فاضلاب‌های خام و ورودی و پساب

گذشته زمان و در مقایسه با تیمار شاهد (آب چاه) می‌باشد.

مواد و روش‌ها

جهت اجرای این تحقیق، تعدادی لایه‌پذیر زهکش دار طراحی و ساخته شد. لایه‌پذیرها به شکل استوانه‌ای و از جنس چلبی ایمنی ضخیم با ارتفاع ۱۰۰ سانتی‌متر و قطر ۶۰ سانتی‌متر بودند. یکی از پر نمودن لایه‌پذیرها از خاک، پک لوله‌زهکش از جنس PVC در بخش تحتانی هم‌یک از لایه‌پذیرها تعبیه شد و PVC جهت اجتناب از ورود ذرات خاک به درون لوله زهکش، از یک لاپ‌سابی پانکسیل مناسب در اطراف آن استفاده گردید.

شکل ۱ مجموعه لایه‌پذیرهای آماده به‌پایداری را نشان می‌دهد.

لایه‌پذیرهای از خاک‌زراعی منطقه‌ی بافت لوم رسی و بدون اجرای عملیات تراکمی خاص و نه پس (Clay loam) از عبور دادن خاک از لک با قطر روزنه‌های یک سانتی‌متر (به منظور حصول یک‌نواختی بیشتر) پر شدند. لازم به ذکر است که عدم اجرای عملیات تراکمی روی خاک مورد استفاده، به نوعی در جهت اطمینان خاظی از نظر عملکرد مناسب مجموعه خاک -گیاه در حذف آلاینده‌ها در نتیجه ایجاد شرایط محاسباتی در اجرای عملیات آبیاری با فاضلاب و پساب می‌باشد. در یک
جدول 1 - مشخصات فیزیکی خاک مورد استفاده

<table>
<thead>
<tr>
<th>درصد رطوبت زنی</th>
<th>درصد ذرات خاک</th>
<th>جرم مخلوط (g/cm³)</th>
<th>تخلخل</th>
<th>نفوذ‌پذیری متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWP</td>
<td>FC</td>
<td>شریفی</td>
<td>0/30</td>
<td>2/32</td>
</tr>
<tr>
<td>رس</td>
<td>سیلت</td>
<td>ماسه</td>
<td>1/16</td>
<td>6/20</td>
</tr>
<tr>
<td>مائه</td>
<td>37/5</td>
<td>37/6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* متوسط نفوذ‌پذیری خاک پیش از شروع تحقیق، اندازه‌گیری شده بود.

جدول 2 - مشخصات شیمیایی خاک مورد استفاده

<table>
<thead>
<tr>
<th>SAR (meq/L)</th>
<th>CO₃²⁻</th>
<th>HCO₃⁻</th>
<th>Cl⁻</th>
<th>SO₄²⁻</th>
<th>آب‌های محلول</th>
<th>pH</th>
<th>EC (dS/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب‌های همانی</td>
<td>1/08</td>
<td>0/05</td>
<td>0/10</td>
<td>0/16</td>
<td>0/24</td>
<td></td>
<td>1/06</td>
</tr>
</tbody>
</table>

درصد خشخاش 2/2 درصد که در محدوده مجاز حداقل 0/5 درصد (برای مجموع آب‌های همانی) 100-800 meq/L (میکرومس) تعیین می‌گردد. در مقایسه با قابلیت تحقیق، نتایج اکتیویتهای مصرفی تیمارهای موجود عادات بودند از آب آبیاری در سه منبع: فاضلاب، خام، پس از تصفیه نهایی و آب چاه (باعث شدن شیمیایی) و محصول در سه نوع: گره، فیلیچ، هیوگی و غیره، به مثابه حصول شرایط آزمایشی آنلاین درست انجام پذیرفت و در مجموع تعداد 27 عدد لایسیمی طراحی و ساخته شد (طرح آموزهای 3×3) و پس از تنظیم در محل اندازه‌گیری، مورد انتقال گرفتن ضمایر در استفاده مورد مراجعه، عملاً بقای ادبیات ایزومی با دامی استفاده نمی‌گردد. عملکرد آب‌هایی لاکتیکی مربوط به نوع محصول و به‌طور متوسط به دنوازه‌ها مشابه در همه‌ها در دوره حداکثر مصرف آب و یک‌پاره در هفته‌های دوازده‌گهفته در اواخر فصل زراعی، با عمق آب حدود 7-8 سانتی‌متر در هر آبیاری و به روش سطحی- غرافی انجام گرفت. پیش‌بینی حجم آب کاربردی سالانه در لاکتیکی از حدود 1000 لیتر و در کشت...
جدول 3. کیفیت شیمیایی فاضلاب خام و پساب تصفیه شده شهربک اکباتان و آب چاه مورد استفاده در عملیات آبیاری

<table>
<thead>
<tr>
<th>نوع آب آبیاری</th>
<th>فاضلاب خام</th>
<th>پساب</th>
<th>واحد</th>
<th>پارامتر مورد برسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>0.0/00</td>
<td>120/20</td>
<td>mg/L</td>
<td>BOD<sub>5</sub></td>
</tr>
<tr>
<td></td>
<td>0/200</td>
<td>52/70</td>
<td>mg/L</td>
<td>COD</td>
</tr>
<tr>
<td></td>
<td>0/100</td>
<td>72/45</td>
<td>mg/L</td>
<td>TSS</td>
</tr>
<tr>
<td></td>
<td>0/59</td>
<td>7/27</td>
<td>dS/m</td>
<td>EC<sub>w</sub></td>
</tr>
<tr>
<td></td>
<td>5/99</td>
<td>7/27</td>
<td>mg/L</td>
<td>pH</td>
</tr>
<tr>
<td>ناجیر</td>
<td>0/33</td>
<td>12/5</td>
<td>meq/L Na<sup>+</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/24</td>
<td>2/25</td>
<td>meq/L Ca<sup>2+</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/80</td>
<td>4/30</td>
<td>meq/L Mg<sup>2+</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/40</td>
<td>3/30</td>
<td>meq/L K<sup>+</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/91</td>
<td>27/02</td>
<td>mg/L</td>
<td>Total N</td>
</tr>
<tr>
<td></td>
<td>7/91</td>
<td>3/92</td>
<td>mg/L</td>
<td>Total P</td>
</tr>
</tbody>
</table>

نتیجه‌گیری نمود که در حین فرآیند تصفیه فاضلاب در تصفیه شهربک اکباتان، به طور متوسط در حدود 0.5 درصد فسفات و 5 درصد فسفر کل فاضلاب خام از آن جدا می‌شود. عواملی جدی در این کاهش دخالت دارد. بدین طریق که مقادیری از فسفر موجود در فاضلاب در حین فرآیند تصفیه توسط باکتری‌ها به صورت می‌رسد. بخشی از فسفر نیز به همراه سایر مواد و بخصوص مواد آنی در حوضچه‌های تنظیمی رسوب نموده و یا در نتیجه جمع آوری مواد شناور از سطح حوضچه‌ها (به‌صورت فک) از پساب جدا می‌گردد (12 و 18).

مقدار فسفر موجود در فاضلاب خام، پساب تصفیه شده و آب چاه کاربردی مقدار متوسط فسفر کل و فسفر معدنی (بر حسب PO₄P) موجود در فاضلاب خام، پساب تصفیه شده و آب چاه کاربردی در مدت اجرای آزمایش‌ها و دامنه تغییرات هر یک از آنها بر حسب نوع آب آبیاری، در جدول 4 قابل مشاهده است.

سازمان کسانی کشاورزی و خاردار جهانی - فائو (FAO) حد میان و حد میان و حد (پاسخ)
جدول 4: دانه‌‌های تغییرات فسفر کل و فسفات موجود در FPAS لایتمه‌های آب‌های آب‌پزشی شهروندان و آب‌های استفاده‌ی طبیعی

<table>
<thead>
<tr>
<th>نوع فسفر</th>
<th>دانه‌‌های تغییرات</th>
<th>دانه‌‌های تغییرات</th>
<th>دانه‌‌های تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>فسفر کل (PO₄-P)</td>
<td>1/2/3/4/5/6/7/8</td>
<td>1/2/3/4/5/6/7/8</td>
<td>1/2/3/4/5/6/7/8</td>
</tr>
<tr>
<td>(Total P)</td>
<td>1/2/3/4/5/6/7/8</td>
<td>1/2/3/4/5/6/7/8</td>
<td>1/2/3/4/5/6/7/8</td>
</tr>
</tbody>
</table>

مقدار زیادی فسفر موجود در درآمدهای آب‌های آب‌پزشی شهروندان و آب‌های استفاده‌ی طبیعی. همکاران گونه که ملاحظه می‌کردند، این مقدار متوسط فسفات‌های بی‌پاگو در فضاهای داخلی و در فضاهای خارجی زندگی انسان را می‌تواند مهیا بپذیرد. در میزان نتوانایی تغییرات فسفات موجود در فضاهای داخلی آب‌های استفاده‌ی طبیعی از حاکمیت این مقدار مصرف قابل احتال است. بنابراین با حرکت آب در نمو و نشست‌های انسان، این مقدار از فسفر (خصوصاً از زرداص و زرگشک) به همراه آب از راه لوله‌های زنگی شبکه‌های داخلی و بیرونی منتقل می‌شود و در انتقال انتقال انتقال سرعت و فشار در不像ه‌های بعدی از زرداص لایتمه‌ها تکرار نشده.

با توازن میزان فسفر در آلیه‌های لایتمه‌ها و مقدار انواع آب مورد استفاده، بدین ترتیب تفاوت‌ها از نظر میزان اندازه‌گیری فسفر به عنوان خاک آشکار شده. ملاحظه می‌شود که در سال‌های مختلف، فسفر موجود در درآمدهای بی‌پاگو در منابع پزشکی و انتقال انتقال سرعت به زیبایی می‌تواند ریشه‌ها را در میان‌های ورودی به خاک ملاحظه شود. میزان فسفر در آلیه‌های لایتمه‌ها و مقدار انواع آب مورد استفاده به دنبال تفاوت‌های از نظر بیماری‌ها و شیمی‌های معنی‌دار به عمق خاک اثر می‌گذارد. ملاحظه می‌شود که در سال‌های مختلف، فسفر موجود در درآمدهای بی‌پاگو در منابع پزشکی و انتقال انتقال سرعت به زیبایی می‌تواند ریشه‌ها را در میان‌های ورودی به خاک ملاحظه شود. بررسی نسبت فسفر به‌بیماری‌ها و میزان انواع آب مورد استفاده به‌دنبال تفاوت‌های از نظر میزان اندازه‌گیری فسفر به عنوان خاک اثر می‌گذارد. ملاحظه می‌شود که در سال‌های مختلف، فسفر موجود در درآمدهای بی‌پاگو در منابع پزشکی و انتقال انتقال سرعت به زیبایی می‌تواند ریشه‌ها را در میان‌های ورودی به خاک ملاحظه شود.
جدول 5: میزان فسفر کل (mg/L) در انواع فاضلاب و آب مورد استفاده جهت آب آوری و متوسط آن در هر آب خروجی از زهکش لایسرمترا طی سالهای اول اجرای تحقیق

<table>
<thead>
<tr>
<th>نوع</th>
<th>کیلومتر</th>
<th>آب a</th>
<th>1379/8/17</th>
<th>1379/5/10</th>
<th>1379/2/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>R To.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>T To.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>N To.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>R Pa.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>T Pa.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>N Pa.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
</tbody>
</table>

نوع گیاه: a = Ca. b = Pa. c = Go. معنی: R = گاز. T = ترکیب گاز. N = آب چاه (مصرف) (b) نوع آب آب آشامیدنی: نام پساب تصفیه شده: N = آب چاه (مصرف) (b) میزان فسفر کل ورودی: mg/L (c) در نتیجه با کارگیری انواع آب آب آشامیدنی. (d) میزان فسفر کل خروجی، mg/L، اندازه گیری شده در هر آب لایسرمترا (e) در صورت انتقال نشان دهنده مقادیر فسفر کل مشاهده شده در هر آب زهکشها هستند.}

جدول 6: میزان فسفر کل (mg/L) در انواع فاضلاب و آب مورد استفاده جهت آب آوری و متوسط آن در هر آب خروجی از زهکش لایسرمترا طی سالهای دوم اجرای تحقیق

<table>
<thead>
<tr>
<th>نوع</th>
<th>کیلومتر</th>
<th>آب a</th>
<th>1379/8/11</th>
<th>1379/5/8</th>
<th>1379/2/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>R To.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>T To.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>N To.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>R Pa.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>T Pa.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
<tr>
<td>N Pa.</td>
<td>0.75</td>
<td>10</td>
<td>0.75</td>
<td>1.1</td>
<td>1.16</td>
</tr>
</tbody>
</table>

نوع گیاه: a = Ca. b = Pa. c = Go. معنی: R = گاز. T = ترکیب گاز. N = آب چاه (مصرف) (b) نوع آب آب آشامیدنی: نام پساب تصفیه شده: N = آب چاه (مصرف) (b) میزان فسفر کل ورودی: mg/L (c) در نتیجه با کارگیری انواع آب آب آشامیدنی. (d) میزان فسفر کل خروجی، mg/L، اندازه گیری شده در هر آب لایسرمترا (e) در صورت انتقال نشان دهنده مقادیر فسفر کل مشاهده شده در هر آب زهکشها هستند.}

می‌باشد.
تأثیر آبیاری با فاضلاب خانگی خام و پساب تصفیه نانوهای تصفیه خانه...

فاصلاب خام و پساب افزایش یافته، ولی با نزدیک شدن به انتهای فصل زراعی تا حدودی از میزان آن کاسته شد. دلیل اصلی این امر را می‌توان در کاهش دفعات و حجم آب آبیاری کاربردی و توزیع سیستم ریش‌های و جذب گیاهی جستجو نمود. در آب چاهی یک رود ناتوان بودن پیوسته از اینجا تا انتهای فصل، گاهی بهتر شده بود در بخش‌های بودن مقدار فسفر موجود در آب چاهی و نگهداری آن از خاک و مصرف کیاهی به‌وجود بود.

در اولین نمونه برداری انجام شده از زه لاپیمترها در سال دوم، افزایش ناچیزی در میزان فسفر اندوزه‌گیری شده در زه آبها، در مقایسه با آب‌های نمونه برداری سال اول مشاهده شد. این می‌تواند با دلیل تجزیه یا گیاهی بنا شود از سال اول در خاک و نیز تجویز و تدوین مقدار فسفر آلی از زه افزوده شده بود خاک به عنوان تیپ آبیاری برای فاضلاب و پساب به فسفر معدنی و انتقال آن می‌تواند نتیجه گرفت که مجموعه خاک و گیاهی از قابلیت یافته در تغذیه فسفر و حذف آن از آب آبیاری و فرار و نشیب‌های آن هم‌ماند سال اول اراره آزمایش‌ها بود و مقادیر بدست آمده، تفاوت‌های چشمه‌گری را از خود نشان نمی‌داد. بنابراین می‌توان نتیجه گرفت که مجموعه خاک و گیاهی از قابلیت یافته در تغذیه فسفر و حذف آن از آب آبیاری اراق فسفر اندوزه‌گیری شده در زه آب حاصل از لاپیمترها تحت آبیاری با فاضلاب‌های خام و تصفیه شده و دامنه تغییرات آنها نشان می‌دهد که حداکثر و حداقل میزان فسفر در زه‌های حاصل از آب‌های با فاضلاب خام پروبیستی و یرون خاک در مرحله پیش‌بینی داده از آب‌های با فاضلاب خام و پساب تصفیه شده، توزیع مجموعه خاک و گیاهی از آنها جدا می‌شود. در این خصوص نتایج تحقیقات دیگر نیز نشان از قابلیت سیستم خاک - گیاه در حذف فسفر از فاضلاب‌های تیپ است. بر طبق مشاهده‌ها یکی از نتایج گاهی فسفر و نگهداری داشت آن در خاک کاربردی از آب‌های با فاضلاب موجود در فاضلاب‌های خام و پساب تصفیه شده، توزیع مجموعه خاک و گیاهی از آنها جدا می‌شود. در این خصوص نتایج تحقیقات دیگر نیز نشان از قابلیت سیستم خاک - گیاه در حذف فسفر از فاضلاب‌های تیپ است. بر طبق مشاهده‌ها یکی از نتایج گاهی فسفر و نگهداری داشت آن در خاک کاربردی از آب‌های با فاضلاب موجود در فاضلاب‌های خام و پساب تصفیه شده توزیع مجموعه خاک و گیاهی از آنها جدا می‌شود. در این...
چهار به ترتیب برای ۱۹۷۲ و ۱۹۷۷ نیز از آبیاری یک بند مدت علائم‌های مربوط دائمی ایجاد کننده ایجاد کننده تابع مشابهی دست یافته‌اند. این نتایج نشان می‌دهد که مکانیسم بیوند نشان‌های سخت در خاک از تنوع و شکستن چند سطحی و روش تحلیل شده است. پس کاربردهای ممانعتی و پیش‌بینیایندگی سطحی از خدمات جدیدهای برای جدیدهای خرید و خروج نشان‌های از این افزایش در زمان غربال بیش از میانه. هم‌چنین مقدار کل فسفر که در دو دراز مدت می‌باشد آن اولین مقدمات قابل استفاده برای روش فسفر به عنوان فاز های علتی پسندی درد (۸).

در خصوص آب چهار وضعیت اندکی مقدمات است. زیرا

- رفع حضور مقدار بسیار زنجیری فسفر در زه آب
- ایجاد علامت آفت‌زده در سطح فسفر
- ورودی توسط آب آبیاری به خاک، درصد انکشاف بالاتری
- مشاهده می‌گردد. بجز اولین نمونه اندکی در سال نخست از آب‌های نابینای سطحی مقدار فسفر اندوزانی شده در زه آب‌های نابینای سطحی می‌شود. در حال حاضر می‌شود در زه آب‌های تابع میانه فسفر قابل انحلال موجود در خاک بوده و مستقل از نوع آب آبیاری است. درصد انکشاف در سیار اندازه گیری‌های انجام شده در زه آب این ایجاد علامت‌ها بین ۳۹ تا ۶۸ درصد در توصیه و بره‌کاری نهایی غلظت فسفر اندوزانی از میانه به انجام برداشت یک دنیای زمین می‌گردد. درصد انکشاف در زه آب این ایجاد علامت‌ها می‌باشد. به‌طور متوسط برای ۹۷ درصد نشان‌های در حدود ۳/۰ درصد فسفر آلی می‌باشد. میزان این در پس‌تاب بخشی شده و آب
جلو نتایج تجزیه و تحلیل آماری داده‌های فسفر در مدت دو سال اجرای تحقیق\n
<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>جمع مربوط</th>
<th>درجه آزادی</th>
<th>معنی‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال اجرای نمونه برداری</td>
<td>0.0124</td>
<td>1</td>
<td>اکثر اجرا در مدت دو سال مورد استفاده قرار گرفت و نمونه‌برداری یافته</td>
</tr>
<tr>
<td>نوع گیاه</td>
<td>0.0189</td>
<td>2</td>
<td>نوع گیاه</td>
</tr>
<tr>
<td>نوع اب آبیاری</td>
<td>0.0176</td>
<td>2</td>
<td>نوع اب آبیاری</td>
</tr>
</tbody>
</table>

*؛ اختلاف در سطح پنج درصدی معنی‌دار بوده است. **؛ اختلاف در سطح یک درصد معنی‌دار بوده است.

جلو نتایج آزمون دانکن (میانگین‌ها) مربوط به داده‌های فسفر در مدت دو سال اجرای تحقیق

<table>
<thead>
<tr>
<th>سال اجرای نمونه برداری</th>
<th>نوع گیاه</th>
<th>نوع اب آبیاری</th>
<th>میانگین</th>
<th>دانکن</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال اجرای نمونه برداری</td>
<td>A</td>
<td>Ca.</td>
<td>0.96</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>0.94</td>
<td></td>
<td>T</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>0.93</td>
<td></td>
<td>N</td>
<td>C</td>
</tr>
</tbody>
</table>

نوع گیاه: Ca., نوع اب آبیاری: Pa., مواد اولیه: R, تردیس: T, باعث شد: M. (M = Ca., Pa. = جعفری، R = Ca.)

ب) اثر نوع آب آبیاری
میانگین فسفر موجود در زه آب زکوکشی شده از لاپیسمترهای تحت آبیاری با فاشلاب خانگی خام، بلافاصله از میانگین فسفر در لاپیسمترها در سال دوم بالاتر از میانگین سال اول قرار گرفت و لازم است که نتایج پایان‌نامه را بررسی کنیم.

(ک) اثر نوع گیاه
میانگین فسفر نتایج اکثریت در زه آب لاپیسمترهای تحت کشت گیاه هوریک. بالاتر از میانگین فسفر در زه آب حاصل از لاپیسمترهای دارای کشت گیاه فرگی و هردو آنها در مثبته
روی جدول می‌توان ملاحظه نمود که درصد‌های حدف جرمی یا به حفیظت بازده به حفیظت جرمی فسفر بین ۰/۹ تا ۰/۹ درصد تغییر می‌کند. تعداد می‌تواند از فاصله بالای مجموعه خاک و گیاه در حفیظت فسفر و در تمام انواع آب‌آلایی مورد استفاده در مدت اجرای آزمایش داد.

د) اثر زمان نمونه برداری

میانگین فسفر موجود در آب زکنگی شده به ترتیب روند زیرلویی، از نمونه برداری دوم به سپس اول می‌باشد. میانگین فسفر معمولاً در نمونه برداری دوم، به چنان معنی‌داری از مقدار نمونه اول البته بود، ولی میزان آن در نمونه‌برداری های اول و سوم، نشان می‌دهد. نتایج نشان‌دهنده این است که فشاری و یا انرژی میزان آب‌آلایی جهت آب‌آلایی، مقدار بیشتری از فسفر به عنوان سوخت خاک متقابل می‌گردد.

یلان جرمی فسفر در لیسپری‌ها

انچه تا کنون بیان شد در برگیرنده مقایسه‌ای بین مقادیر فسفر انداده‌گر دری اندی سر و سپس ای گیاهی و زکنگی شده به (مقایسه غفلت‌ها)، یک توجه به این می‌تواند نیز ضروری است که حجم آب خروجی از زکنگی لیسپری‌ها تبدیل از حجم آب ورودی به آنها در تغییر عمليات آب‌آلایی است. نسبت حجم آب خروجی از زکنگی‌ها به حجم آب مورد استفاده جهت آب‌آلایی لیسپری‌ها بین ۰/۵۰ تا ۰/۵۰ (یک بسته) تغییر می‌کند. نتایج حاصله اثر نسبت بین میزان ماده وارد شده به یک لیسپری برگرای گیاهی و خروجی از آن جهت نتیجه‌گیری تکمیلی به‌نوع گرفته‌شود. این دنبال مشخص سایر انواع فسفر ورودی توسط هر کیلوگرم طول فصل کشت (بدون مدیران داشت نوع گیاهی) محاسبه گردید.

و با داشتن حجم آب مورد استفاده در هر هفته آب‌آلایی و حجم آب زکنگی شده از لیسپری‌ها، متوسط جرم ماده ورودی و خروجی به یک لیسپری از حاصل ضرب غفلت فسفر در حجم آب به‌دست آمد. نتایج حاصله در جدول ۹ ارائه شده است. از...
جدول ۹ متوسط مقدار نهایی جرم فسفر ورودی و خروجی در لاپیسمترها

<table>
<thead>
<tr>
<th>سال</th>
<th>آماسیش</th>
<th>آب ورودی به لاپیسمترها</th>
<th>۹های لاپیسمترها</th>
<th>نسبت</th>
<th>درصد</th>
<th>حذف جرمی</th>
<th>جرمی</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰۱۰</td>
<td>۹۹/۹۱</td>
<td>۰/۰/۰۰۰۸۸۳</td>
<td>۳/۳۷۵۱</td>
<td>۰/۰/۰۰۰۸۸۳</td>
<td>۰/۰/۰۰۰۸۸۳</td>
<td>۹۹/۹۱</td>
<td>۰/۰/۰۰۰۸۸۳</td>
<td>۰/۰/۰۰۰۸۸۳</td>
<td>۰/۰/۰۰۰۸۸۳</td>
<td>۰/۰/۰۰۰۸۸۳</td>
</tr>
<tr>
<td>۷۱/۱۶</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۷۱/۱۶</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۰/۰/۰۰۸۳۶۳</td>
<td>۰/۰/۰۰۸۳۶۳</td>
</tr>
<tr>
<td>۹۹/۹۹</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۹۹/۹۹</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۰/۰/۰۰۰۱۴۵</td>
<td>۰/۰/۰۰۰۱۴۵</td>
</tr>
</tbody>
</table>

مباحث مورد استفاده

1. پورسپ، غ. ۱۳۸۱. سیب‌کاری‌ها، جاب‌دوم، انتشارات نشر علوم کشاورزی، گرگان.
2. تولکی، م. و. طباطبایی، ۱۳۸۱. آبیاری با فاصلاب‌های تصفیه‌شده، مجموعه مقالات همایش جنبه‌های زیست‌محیطی استفاده از بی‌سیب‌ها در آبیاری، وزارت شهرسازی، کمیته ملی آبیاری و زکات‌ی ایران، ۱۱ آذر ماه ۱۳۷۸، تهران. صفحات ۱۱-۲۶.
3. حسن‌مرکزی، ع. ۱۳۸۱. استفاده از فاصلاب‌های خانگی و بسیج تصفیه‌شده در آب‌یاری مخاصولات کشاورزی. گزارش پژوهشی نهایی طرح تحقیقاتی مصوب، مؤسسه تحقیقاتی فنی و مهندسی کشاورزی، شهره‌ی آذر ۵/۷۹/۱۳۸۱. صفحه ۲۳۱.
4. حسن‌مرکزی، ع. ۱۳۸۱. استفاده از فاصلاب‌های خانگی و بسیج تصفیه‌شده در آب‌یاری مخاصولات کشاورزی. گزارش پژوهشی نهایی طرح تحقیقاتی مصوب، مؤسسه تحقیقاتی فنی و مهندسی کشاورزی، شهره‌ی آذر ۵/۷۹/۱۳۸۱. صفحه ۲۳۱.
5. روزنامه همشهری. ۱۳۸۱. اراضی کشاورزی ایران به فازهای سلیم آلوهه هستند (مصاحبه با دکتر ملکری، رئیس مؤسسه تحقیقات خاک و آب وزارت جهاد کشاورزی). سال دهم، شماره ۲۶۸۵۱، صفحه ۴۸، مهرماه ۱۳۸۱.
6. شریعتی، م. ۱۳۷۵. ارزیابی کیفیت شیمیایی فاصلاب و استفاده از آن در آبیاری. آب و خاک و محیط زیست ۱۰:۵۱-۵۵.
7. علی‌زاده، ا. 1374. استفاده از پساب تصفیه شده خانگی در آب‌های کشاورزی و فاضلاب شهری. انجمن شرکت‌های مهندسی آب و فاضلاب، تهران.
8. کریمی، ن. 1371. شیمی خاک. مرکز نشر دانشگاهی، تهران.
9. ملکوتی، م. ق. و م. هما. 1373. تحقیقات در زمینه شرکت‌های جهانی (مرکز تحقیقاتی). دانشگاه تربیت مدرس، تهران.
10. ملکوتی، م. ق. و م. نفیسی. 1373. بررسی و تحقیقات در حوزه کشاورزی (مرکز تحقیقاتی). دانشگاه تربیت مدرس، تهران.
11. ملکوتی، م. ق. و س. غ. 1370. مطالعات در زمینه خاک‌های با کودهای سبز. مرکز نشر دانشگاهی، تهران.