بهینه‌سازی کاربری اراضی در حوزه‌های آبیزی به منظور کمیته‌سازی فرسایش‌خاک با استفاده
از برنامه‌ریزی خطی (مطالعه موردی حوزه آبیزی بربوند، استان کرمانشاه)

خلیل چلیلی، سید حمیدرضا صادقی و داوود نیک کامی

چکیده

با توجه به مدیریت صحیح استفاده از اراضی در یک حوزه آبیزی، تأثیرات نانوسبی بر منابع موجود در آن دارد. بهینه‌سازی کاربری اراضی یکی از راه‌های مناسب برای دست‌یابی به تومه‌پایی و کاهش هدرفت منابع می‌باشد. تحقیق حاضر در حوزه آبیزی بربوند به مدت 962 هکتار در استان کرمانشاه به منظور تعیین منابع گلیم‌سنجی ترکیب کاربری اراضی شامل باغ، گندم و مرتع جهت کمیته‌سازی فرسایش‌خاک و بهینه‌سازی سود صورت گرفت. برای انجام تحقیق حاضر، مفاد فرسایش، سود خالص و نیز نقشه‌های نقشه‌های طبق استانداردهای استفاده از اراضی به عنوان ورودی تجویز هدف و محدودیت‌های مدل بهینه‌سازی کاربری اراضی استفاده شد. مدل برنامه ریزی خطی چند هدفی سه اهداف از روش سیمپلکس در نرم‌افزار ADBASE حل شد. نتایج به دست آمده از تحقیق، ضمن معرفی کاربری بهینه حوزه آبیزی بربوند، میزان کاهش فرسایش‌خاک و انفراش سود سالانه را به ترتیب 78/8 درصد و 118/6 درصد ارائه نمود. بهینه‌سازی انجام شده بر گنجایش اراضی در ناحیه استانی تأکید دارد. نتایج به دست آمده از تحلیل حساسیت نیز نمایانگر تأثیر پذیرای زیاد توابع هدف از حداکثر سطح اراضی کشاورزی آبی و باگی است.

واژه‌های کلیدی: بهینه‌سازی، کاربری اراضی، فرسایش‌خاک، برنامه‌ریزی خطی، بربوند، کرمانشاه

مقدمه

یکی از مشکلات بشر در استانان قرن 21، بحران زیست محیطی و تخریب منابع طبیعی است. منابع موجود به لحاظ محدودیت، بشر را به چاره اندازی برای مبارزه با این روند، وادار نموده است. بنابراین جهت بهبود بارداری با صرف اقتصادی و مصرف از

1. پژوهشگر گروه هیدرولوژی و منابع آب جهاد دانشگاهی استان کرمانشاه
2. استاد مهندس آبخزیاری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
3. استاد مهندس آبخزیاری مرکز تحقیقات حفاظت‌های خاک و آبخزیاری تهران

15
بهبومهای کاربری در واقع دستیابی به مناسب‌ترین مقدار خروجی یک سامانه به تعیین محدودیت‌های حاکم بر آن می‌باشد. می‌توان تجربه گرفت بهبود مناسبترین کاربری اساسی یکی از راه‌های مناسب برای حفاظت خاک است که به مدیران آبخز و تصمیم‌گیران این اختیار را می‌دهد از بین گزینه‌های مختلف کاربری اراضی بهترین تصمیم را اتخاذ کند (22).

تحقیقات فراوانی برای بهبود نمودن منابع موجود در جویزه‌های آبخزی وجود دارد که این روش‌ها از این سو برای پیشبرد (Linear programming) است. بررسی‌های بسیاری به عمل آمده نشان می‌دهد کاربرد برنامه‌ریزی خطی در راستای بهبود مناسب‌ترین جویزه‌های آبخزی به‌درد مورد استفاده قرار گرفته است. در این میان توان از تکنیک‌های تکنیکی (15) در خصوص بهبود مناسب‌ترین جویزه‌های آبخزی بهره‌برداری و فراهم کردن منابع مورد نیاز برای اراضی کشاورزی و منابع طبیعی استفاده از این روش به‌منظور برنامه‌ریزی در زمینه‌ها توسط برنامه‌ریزی بهبود و پایدار اراضی به‌وسیله در قالب طرح‌های حفاظت اراضی آبخزی‌دار، آگاهی از وضعیت و روند فراهم کردن منابع مورد نیاز برای جویزه‌های آبخزی که یکی از مهم‌ترین ابزارهای تصمیم‌گیری برای برنامه‌ریزی‌های مورد نظر تأثیرگذار است (1).

امروز جهت کاهش برداشت و یا مصرف منابع در اراضی کاربردی به‌شکل مناسبیست که سمتی می‌تواند بر اراضی شرکت داشته باشد. بنابراین برای نوبت بهبود در کاربری اراضی در حوزه‌های آبخزی باید به نوبت بهبود کاربری در اراضی کشاورزی و منابع طبیعی بپردازد.

با وجود مناسب‌ترین تصمیم نیاز برخی تحلیل‌ها در مباحث طبیعی صورت می‌گیرد از جمله فراخوانی ما فراوانی زمین‌شناسی خاک که تحت تأثیر فیزیکی زمین اثرات انسانی باید نیامده و از کنترل انسان نیز خارج است (28). اگرچه متوقف نمودن کمال فراخوانی تا حد شرایط طبیعی امکان‌پذیر نیست ولی مقابله با فراخوانی خاک به‌مثابه کاهش آن تا حد شرایط طبیعی به اتخاذ تداوم مناسبی در طرح‌های بهره‌برداری از آب و خاک نیازبیست و یک راهبرد اساسی محصور می‌شود (15).

استفاده از اراضی بر حسب استفاده و قابلیت آنها در چارچوب یک برنامه ریزی مناسب‌ترین نمودار از شناخت تجزیه و تحلیل منابع که‌بکاهد (30، 31). از نجاة که فراخوانی خاک یکی از منابع مهم برای دستیابی به توسعه پایدار کشاورزی و منابع طبیعی است، از این رو به‌منظور برنامه‌ریزی در زمینه‌ها توسط برنامه‌ریزی بهبود و پایدار اراضی به‌وسیله در قالب طرح‌های حفاظت اراضی آبخزی‌دار، آگاهی از وضعیت و روند فراهم کردن منابع مورد نیاز برای جویزه‌های آبخزی که یکی از مهم‌ترین ابزارهای تصمیم‌گیری برای برنامه‌ریزی‌های مورد نظر تأثیرگذار است (1).
طرح مذکور دارد. به ویژه در نگاه (29) الگوریتم برنامه‌ریزی خطی را جهت تعیین استراتژی‌های مدیریت کاریاری اراضی در مناطق ساحلی تاوان با کار گرفته و نتایجی وارد شده که آب‌های زیرزمینی برای استفاده در مزارع پرورش ماهی بکار نروند و در منطقه، مناطق بروز برپارس ماهی می‌تواند به استفاده‌های ديگری برتری شود. کارلرینگ و یک استن (17) بهبود سازی‌چند منظوره کاریاری اراضی را با استفاده از شبکه‌های عصبی مصنوعی (Artificial Neural Network) در کشور آلمان مورد اصلاح توجه مدیریت کاریاری مورد استفاده قرار گرفت. بنویسند (18) کاربرد سامانه‌های تصمیم‌گیری (Decision Support System) در مدیریت منابع طبیعی را در انرژی‌اصلی جنبه‌های ارتباطی قرار دادن. مدل DSS طراحی شده به این تحقیق، یک روش کارا و مؤثر برای تصمیم‌گیری تحت منظوره در مدیریت منابع طبیعی با استفاده از آنالیز و تحلیل تابعی و استفاده از ویژه درکه نام‌های است.

در ایران نیز در خصوص کاربرد مدل‌های یونه‌سازی در مدیریت کاریاری اراضی جویه‌ای عبارت برجا می‌گیم. (16) می‌توان به تحقیق انجام شده توسط محسن ساروی و همکاران (17) با استفاده از برنامه‌ریزی هدف‌گذاری در زیر‌جزوه‌های متعددی در مورد تحقیق می‌باشد (13).

روش تحقیق

به منظور انجام تحقیق حاضر در ابتدا کلیه مطالعات موجود شامل مطالعات فیزیوپاتی، خاک‌شناسی، فرسایش و رسواب، زمین‌شناسی و زولومورفولوژی، پوشش گیاهی، هویت‌شناسی، هیبردولوژی و منابع آبی، اقتصادی-اجتماعی از مدیریت آب‌داری اراضی کاملاً (13) جمع آوری و طی پژوهش‌های

مؤلفان این کتاب، به منظور کمیته سازی فرسایش...
صرحایی تکمیل گردد. بر اساس اطلاعات به دست آمده شکل کلی مسائل به صورت روابط ۱ تا ۱۱ است.

راستا ۱ را می‌توان به صورت رابطه ۲ تشریح نمود.

\[
\text{Min}(Z_r) = \sum_{i=1}^{n} C_{Ei}X_i \\
X_1 \leq B_1 \\
X_r \leq B_r \\
X_r \leq B_r \\
X_1 + X_r \leq B_r \\
X_1 + X_r + X_r + X_r = X_2
\]

\[
\text{Max}(Z_r) = \sum_{i=1}^{n} C_{Bi}X_i
\]

\[
\text{Max}(Z_r) = \sum_{i=1}^{n} \left[A_{B1} - (A_{B1} + A_{B1})X_i \right]
\]
برداشت و نیز هزینه خسارت فرسایش خاک، میزان سود خالص محاسبه و به عنوان ضریب در تابع هفی بیشینه سازی سود مورد استفاده قرار گرفت. اراضی محاسبه نیز در سه نوع وضعیت محاسبه خصائص فرسایش (Total Digestible Nutrients)(TDN) و خواص گل‌های کامپل هضم و (Total Digestible Nutrients)(TDN) و خواص گل‌های کامپل هضم و مصرف میزان خاک و مصرف میزان خاک و واحدهای هر یک مشخص گردید. محاسبه خسارت فرسایش مطلق روابط 12 و 13 و با معادل مورد داناد میزان خاک از سطح رفته به سطح اراضی از درست خاک به اساس عمق ریشه دوتن و وزن مخصوص ظاهری خاک در هر یک از کاربردی صورت گرفت.(جدول 1)

$$\text{میزان فرسایش (m2/ha \times \text{عمق ریشه (m)}}$$

$$\text{زون مخصوص خاک از دست (m2/ha \times \text{عمق ریشه (m)}}$$

در شرایط غفل آمکان تغییر در استفاده از اراضی مسکوئی، راه‌ها,

اراضی اولسرای و جمعه تامدار. طبیعی‌ساخت این واحدها از

سطح جوزه آبایی کم شده و مقدار باقی مانده به عنوان سطح

مورد نظر در بهینه سازی کاربری مورد توجه قرار گرفته

است. به منظور تعیین فرسایش سالانه هر یک از کاربردی‌ها,

(MPSIAC) (Modified Pacific Southwest Inter-Agency Committee)

تحت محدودیت رسوب به استفاده از روشن

سیستم سطحی (Simplex method) می‌باشد. (26 و 27)

(25 و 27) کاربردی‌ها بهینه کرده این مدل پیاده شده و در میان

مدیریت آبینه‌زی (13) و نیز بررسی از آب‌شناسی

تهه شد. بر این اساس انگور مهم ترین محصول باقی مانده,

کند، گرم، خالجی، علفن، پنه و باقلا محصولات آبی و کنال،

جو و نخود نیز به عنوان مهم ترین محصولات دیگر در منطقه

محصول دشتی در هر کاربردی به محاسبه میزان سود ناخالص و

کسی نمودن میزان هزینه های سه مرحله کاست. داشت و

$$X_i \geq B_v$$

$$X_i \geq B_v$$

$$X_1, X_2, X_3, X_4 \geq 0$$
جدول 1. نتایج محاسبات برآورده‌ی خاک فرسایشی‌های خاک در کاربری‌های مختلف

<table>
<thead>
<tr>
<th>کاربری</th>
<th>فرسایش ویژه (t/ha)</th>
<th>عمق ریشه (m)</th>
<th>وزن مخصوص ظاهری (t/m^3)</th>
<th>اراضی هدر رفته (m^2/ha)</th>
<th>هرینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>باغ</td>
<td>7.389</td>
<td>1</td>
<td>1396/3</td>
<td>3215/84</td>
<td></td>
</tr>
<tr>
<td>مرتع</td>
<td>8.142</td>
<td>0.15</td>
<td>404/75</td>
<td>687/77</td>
<td></td>
</tr>
<tr>
<td>کشت آبی</td>
<td>7.389</td>
<td>0.15</td>
<td>128/82</td>
<td>662/3</td>
<td></td>
</tr>
<tr>
<td>کشت دیم</td>
<td>21/112</td>
<td>0.15</td>
<td>393/35</td>
<td>349/35</td>
<td></td>
</tr>
</tbody>
</table>

مدل بهینه سازی کاربری اراضی در نظر گرفته شد:

\[X^5_1 \leq 204/44 \]

محصولات 240/44 مربوط به هرینه باعث کشت محصولات مختلف آبی قرار گرفته‌اند و در کاربری اراضی موجود منطقه 204/44 هکتار برآورد گردیده و لی با توجه به شرایط استاندارد مورد نیاز برای کشت آبی و کشت دیم قابلیت‌های دسترسی به آب 204/44 هکتار از منطقه دارای بتنی‌ناپی کشت آبی پرست و به همین دلیل میزان اراضی آبی است. شکل ساختار بهینه سازی حوزه مورد مطالعه به صورت زیر ارائه می‌گردد:

\[Max(Z) = 8/4X1 + 1/45X2 + 2/785X3 + 3/725X4 \]

\[Min(Z) = 7/884X1 + 8/442X2 + 7/785X3 + 2/111X4 \]

به دلیل شباهت حل ساختار به روش سیمپلکس به صورت پیشنهاد مسئله کمیته‌سازی فرسایش را تغییر داده و به صورت پیشنهاد منفی محدود قرار گرفته است. در این ارتباط در مورد ساختار بهینه سازی حوزه آبخیز برمی‌خورد، محصولات‌های زیر جهت شناسایی مؤثرترین محصولات مناسب و هرینه کاربری اراضی در تغییر مقدار تابع هدف از تحلیل حساسیت استفاده شد. برای این منظور میزان درصد تغییرات تابع هدف مرتب‌ب‌‌ا شده‌اند مشخص از تغییرات هر یک از پارامترهای مورد بررسی و در نهایت حساسیت تابع هدف نسبت به آن‌ها مورد ارزیابی قرار گرفت.

نتایج و بحث

نتایج زیر حاصل بهینه‌سازی و سعت انتخاب کاربری اراضی در حوزه آبخیز برمی‌خورد با استفاده از برنامه‌های خطی می‌باشد که بر اساس روش کار ارائه شده در بخش قبلی به دست آمده است.

حل مسئله بهینه سازی حوزه آبخیز برمی‌خورد

شکل مسئله بهینه‌سازی حوزه مورد مطالعه به صورت زیر ارائه می‌گردد:

\[Max(Z) = 8/5X1 + 1/45X2 + 2/785X3 + 3/725X4 \]

\[Min(Z) = 7/884X1 + 8/442X2 + 7/785X3 + 2/111X4 \]

به دلیل شباهت حل مسئله در روش سیمپلکس به صورت پیشنهاد مسئله کمیته‌سازی فرسایش را تغییر داده و به صورت پیشنهاد منفی محدود قرار گرفته است. در این ارتباط در مورد ساختار بهینه سازی حوزه آبخیز برمی‌خورد، محصولات‌های زیر جهت
جهان ۲. جدول سیمپلکس برای حل مساله بهینه‌سازی کاربری اراضی جوزه آبخیز بریمند

<table>
<thead>
<tr>
<th>RHS</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>توابع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/00</td>
<td>Max</td>
<td>032/75</td>
<td>0/162</td>
<td>0/452</td>
<td>8/522</td>
</tr>
<tr>
<td>0/00</td>
<td>Max</td>
<td>21/112</td>
<td>0/759</td>
<td>0/324</td>
<td>8/144</td>
</tr>
<tr>
<td>≤</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≥</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≥</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

احمال محدودیت اینکه است که سطح اراضی مرتد در منطقه نمی‌تواند از میزان ۴۰۰۰۰/۲۷ هکتار کمتر باشد. در این محدودیت این است که اراضی مرتدی مرطعی ولی بوده و تحت کل مالکیت دولت قرار دارد و بر اساس ماده ۶۱ قانون ملی شدن مراجعه نمی‌توان کاربری این اراضی را نمی‌توان بدین اراضی مرتدی سطح اراضی تبدیل نمی‌توانند.

\[X_1, X_2, X_3, X_4, X_5 \geq 0.23 \]

آخین محدودیت مربوط به غیر منفی بودن مقدار هست. به عنوان مثال، سطح اختصاص یافته به هر کاربری باید برداشت باشد. به حساب جدول ۲ به روش سیمپلکس نتایج به شرح چنین تا ۱۵ سمت راست نشان دهنده مهدی ی هستند که در رده‌های ۲ و ۳ به ترتیب دارای واحدهای جزئی سازی اعمال یکی و صفر داره. در بقیه داده‌ها به ترتیب حضور یا عدم حضور متغیر را در است. چون نمی‌توان به طور قطعی اطمینان نمود که چگونه این عملیات خاک ورزی صحیح و اصولاً را مطابق نظر کارشناسان انجام مشهود، در زمان صحیح به عنوان ادامه قوانین دوستی نمی‌تواند سطح اراضی مرتدی تغییر خاصی را داشته باشد.

\[X_1 + X_2 \leq 40000/27 \]

با توجه به عدم وجود محدودیت مناسب آب در منطقه ویلی با در نظر گرفتن شرایط بیش از اراضی و عملیات به کشف مناسب و کشت دیم از ۴۰۰۰۰/۲۷ هکتار بیشتر شود.

\[X_1 + X_2 + X_3 + X_4 \leq 94000/27 \]

پنجمین محدودیت مساله مربوط به سطح اراضی موجود است که برای چهار کاربری کشاورزی، مرتدی، کشت آبی و کشت دیم از ۴۰۰۰۰/۲۷ هکتار بیشتر نمی‌گردد.

\[X_1, X_2, X_3, X_4, X_5 \geq 0.28/27 \]

با توجه به مطالعه که در محدودیت اول بیان شد، سطح اراضی حکم کشت با حداکثر ۳۸/۳۲ هکتار است که دلیل آن بهره‌داری بودن مناسب و عدم تبادل با دیگران منطقه به کامش سطح این کاربری است.
جدول 3. نتایج بدست آمده از محاساب سود و فرسایش در وضعیت کاربری موجود حوزه آبخیز پرویزند

<table>
<thead>
<tr>
<th>درصد خالص سالانه (10(^{5})R/ha)</th>
<th>درصد خالص در سال (10(^{5})R/ha)</th>
<th>فرسایش کل (t/ha)</th>
<th>فرسایش ویژه (t/ha)</th>
<th>سطح اختصاص</th>
<th>کاربری اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td>225/881</td>
<td>235/423</td>
<td>83/204</td>
<td>87/137</td>
<td>7/359</td>
<td>38/23</td>
</tr>
<tr>
<td>621/498</td>
<td>0/144</td>
<td>24/68</td>
<td>26/79</td>
<td>8/234</td>
<td>200/7</td>
</tr>
<tr>
<td>197/42/21</td>
<td>2/6758</td>
<td>299/0/056</td>
<td>8/239</td>
<td>24/27/7</td>
<td>49/27/7</td>
</tr>
<tr>
<td>350/380</td>
<td>0/3215</td>
<td>20/19/103</td>
<td>11/112</td>
<td>95/24</td>
<td>95/24</td>
</tr>
<tr>
<td>21/69</td>
<td>0/1946</td>
<td>9/041/93</td>
<td>9/041/93</td>
<td>9/041/93</td>
<td>9/041/93</td>
</tr>
</tbody>
</table>

جدول 4. نتایج بدهست آمده از مدله بهینه سازی کاربری اراضی حوزه آبخیز پرویزند

<table>
<thead>
<tr>
<th>درصد خالص سالانه (10(^{5})R/ha)</th>
<th>درصد خالص در سال (10(^{5})R/ha)</th>
<th>فرسایش کل (t/ha)</th>
<th>فرسایش ویژه (t/ha)</th>
<th>سطح</th>
<th>کاربری اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td>441/86</td>
<td>85/24</td>
<td>438/29/87</td>
<td>7/359</td>
<td>5/184</td>
<td>2/07/2</td>
</tr>
<tr>
<td>624/498</td>
<td>0/154</td>
<td>25/84/43</td>
<td>8/234</td>
<td>200/7</td>
<td></td>
</tr>
<tr>
<td>197/24/24</td>
<td>2/6758</td>
<td>298/5/52</td>
<td>8/239</td>
<td>24/27/7</td>
<td></td>
</tr>
<tr>
<td>153/41</td>
<td>0/3215</td>
<td>10/02/43</td>
<td>12/112</td>
<td>27/19</td>
<td></td>
</tr>
<tr>
<td>249/0/95</td>
<td>61/26/4</td>
<td>9/041/93</td>
<td>9/041/93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقدار فرسایش از 81/48 به 76/28 در سال (78/02) کاهش یافته است. نتایج می‌تواند در بهینه سازی کاربری اراضی یکی از زیر‌بخش‌های مادوند با نتایج مشابه سطح 275/5 درصدی در سطح اراضی باغی و کاهش 100 درصد سطح اراضی دیم را پیشنهاد نموده. این تغییرات منجر به کاهش 5 درصدی میزان رسوب تولیدی سالانه در منطقه مورد تحلیل گردیده و افزایش 124 درصدی در سودآوری کاربری‌های حوزه آبخیز را به دنبال داشته است.

مقداری نشان می‌دهد. رديف‌های 2 و 3 این جدول در ستون 6 مشخص کننده نوع معادله هدف از نظر بیشینه کیفیت نمودن است در حالی که رندول‌ها با عدم شناسایی طرفین معادلات محدودیت‌را مشخص می‌سازند. در ستون RHS از مقدار سمت راست معادلات محدودیت ملاحظه می‌شود که نمایندگان مقدار در اختیار گون سطح اراضی است.

دقت در جداول 3 و 4 مقایسه و سهم کاربری، میزان سود و فرسایش بدهست آمده از هر کاربری و کل منطقه در قلب و بعد از بهینه سازی نشان می‌دهد که به بهینه‌سازی کاربری اراضی میزان اراضی کشاورزی آبی و مرتفع و غیر اراضی ندانش و سطح اراضی باقی 125 درصد اراضی و سطح اراضی دیم 50 درصد کاهش یافته است. در نتیجه این تغییرات، میزان سوددهی سالانه کاربری‌های مختلف منطقه از 1000/95 میلیون ریال (19 درصد) افزایش داشته در حالی که

22
شکل ۲: تحلیل تابع کمیته سازی فرسایش خاک نسبت به تغییرات منابع اراضی

شکل ۳: تحلیل تابع پیشنهاد سازی سود نسبت به تغییرات منابع اراضی
ساده‌ترین حساسیت‌ها را نسبت به کاهش بیشترین سطح اراضی آبی و باغی داشته، حال آنکه افزایش سود، بیشترین حساسیت خود را نسبت به افزایش بیشترین سطح اراضی باغی نمایان مانده است (بازار) در B4. در بعضی از جوهرهای کاهش بیشترین سطح اراضی آبی و باغی در مجموع تغییرات بیشترین سطح اراضی آبی و باغی را تأثیر دارند. افزایش اراضی سودرهی و فراشی خاک جوهرهای بیشترین کاهش می‌گردد (بازار) در شکل 2، بیشترین افزایش میزان فراشی را نمایان می‌کند. حال آنکه افزایش کمترین سطح اراضی مرتعی منجر به بیشترین کاهش میزان فراشی خاک جوهرهای B4 را دنبال دارد.

نتیجه‌گیری

این تحقیق به منظور بهینه‌سازی استفاده از جوهرهای آبی برای ساخت، باغ و غربا به مکانیزم‌های فراشی خاک و باغی سازی سود که استفاده‌های پایدار از منابع آب و خاک را به دنبال دارد، انجام گرفته است. به منظور استخراج داشتن به پراکنش منابع کاربردی مطالعه شرایط استاندارد و نیل به اهداف مورد نظر با در نظر گرفتن شرایط استاندارد کاربردی، شرایط مختلف و اعمال محیطی موجود در منطقه مدل متفاوت مورد استفاده قرار گرفته است.

1. ارایه‌ی ی.م. 1380 ارزیابی چهار مدل تجربی برای پرورش رسوب در جوهرهای آبی در قنبرلو دارسین. مجموعه چکیده مقالات همایش ملی مدیریت اراضی، فراشی خاک و توسعه پایدار، اراك.

بهینه سازی کاربری اراضی در حوزه‌های آبخیز به منظور کمیته سازی فرسایش ...

3. برومند، ز. 1374. بهبود و بازاریابی سازمان. نشر هور، تهران.

4. چی، ک. 1377. بررسی نوع و میزان فرسایش در رابطه با مدیریت بهره برداری از اراضی و تحقیق درباره روش‌های منظور بهینه سازی کاربری اراضی با قارچ کارشناسی ارشد مهندسی آبخیزداری، دانشکده منابع طبیعی دانشگاه تربیت مدرس، تهران.

5. حسن زاده، م. 1380. نقش اطلاع رسانی مؤثر در مدیریت اراضی. فرسایش خاک و توسه. یک مجموعه مقالات همایش ملی مدیریت اراضی، فرسایش خاک و توسه پایدار، بهمن 1380، صفحات 85-82 اراک.

6. رابطع، ع. 1380. نقش عملیات آبخیزداری در ایجاد جاهایی سیاسی و تفرجگاهی (نمونه مردم آبخیز شمال و جنوب شهر زنجان). مجموعه مقالات همایش ملی مدیریت اراضی، فرسایش خاک و توسه پایدار، صفحات 78-82 اراک.

7. رستگار، م. 1371. انتشارات تهران.

8. شبایی طریح، ح. 1373. استفاده بهینه از منابع آب و خاک یک ضرورت مناسب برای توسعه کشاورزی پایدار. مجموعه مقالات اولین کنگره برنامه ریزی و سیاست گذاری امور زیربنایی (آب و خاک) در بخش کشاورزی، 2007، شهریور، تهران.

9. فرشی، ع. ا. م. شریعتمی، ر. جرجاللهی، م. ر. قائمی. م. شهابی فر و م. تولایی. 1376. برآوردآب مورد نیاز گیاهان رعایی و باغی کشور. جلد اول، گیاهان رعایی، نشر آموزش کشاورزی، کرمان.

10. فرشی، ع. ا. م. شریعتمی. ر. جرجاللهی، م. ر. قائمی. م. شهابی فر و م. تولایی. 1376. برآوردآب مورد نیاز گیاهان رعایی و باغی کشور. جلد دوم، گیاهان باغی، نشر آموزش کشاورزی، کرمان.

11. کریستوفر، ج. ب. 1380. اصول و روشهای مدیریت زیست حیاتی (درخور: م. اندروی). نشر گانه، تهران.

12. مهندس ساروی، م. م. فرزالان، م. کوپایی و م. خلفی. 1381. تغییرات آبی بهره برداری از منابع حوزه‌های آبخیز با استفاده از برنامه ریزی هدف. منابع طبیعی ایران (15) و (2): 13-16.

13. مدیریت آبخیزداری کرمانشاه. 1379. مطالعات تطلق حوزه آب‌انبارهای برمودن. شرکت مهندسی جهاد، تهران.

14. موسوی، ج. و. ر. زکی زاده. 1373. بررسی دیدگاه‌های موجود در بهره برداری از منابع آب و خاک و نقش ارزیابی منابع اراضی در بهره برداری بهینه از آب و خاک. مجموعه مقالات اولین کنگره برنامه ریزی و سیاست‌گذاری امور زیربنایی (آب و خاک) در بخش کشاورزی. صفحات 299-317، تهران.

15. نیک کامی، د. 1381. بهینه سازی مدیریت فرسایش خاک در حوزه‌های آبخیز درمان. پژوهش و سازندگی: 26-82.

