تأثیر فسفر و روي بر رشد و تركيب شيميايی ذرت

عباس هادی روشن، ابراهیم احمدی و نجف‌علی کریمیان

چکیده
قابلیت جذب عناصر کم مصرف، از جمله روی و فسفر از جذبه گیاهان حائز اهمیت است. قابلیت جذب روي در خاکهای آمریکای ایران، به دلیل وجود فشار زیاد کربنات کلسیم و اعیان بالا، نسبتاً کم است. کاربرد زیاد فسفر ممکن است سبب بروز کمبود روی در گیاهان شود. هدف از این آزمایش است تأثیر فسفر و روی بر رشد و تركیب شیمیایی ذرت (Zea mays L) در خاک فاکوریل، شامل پنج سطح فسفر (صفر، 20، 100 و 200 میکروگرم فسفر در گرم خاک) از منبع فسفات دیده‌روزن پاناسیم، و سه سطح روی (صفر، 5 و 10 میکروگرم روی در گرم خاک از منبع سولفات روی) در چارچوب طرح کاملاً تصادفی با سه تکرار بررسی شد.

شکل طول دوره رشد 20 روز بود و در پایان آن گیاهان از نقطه‌گیری سطح خاک برداشت شدند. نتایج نشان داد که وزن ماده خشک پنج مواد فسفر و روی افزایش یافته، کاربرد فسفر و روزن موجب افزایش رشد گیاهان و گل‌گذاری کل فسفر را در گیاه آغاز می‌کند. ولی غلظت روی با کاهش داده و بر جذب کل روی تأثیر گذشت. مصرف روی، غلظت فسفر و در قسمت‌هایی به خاک کمیته، ولی غلظت روی و جذب کل روی افزایش داد. لیست فسفر به روی کاربرد فسفر انرژی و با مصرف روی کاهش یافت. مصرف روی و روی سبب افزایش غلظت آن در گیاه شد و لیست غلظت مصرف روی به تأخیر می‌خورد. پیش از این که نوسی به کمپوزیت به ارزیابی نتایج خاک در شرایط مزرعه‌ای نیاز می‌باشد.

واژه‌های کلیدی: فسفر، روی، تغذیه گیاهی، ذرت

مقدمه
فسفر از عناصر غذایی پرسترس و روی از عناصر کم مصرف غذای گیاهان است. غلظت فسفر از 0 تا 0.5 درصد و غلظت بهینه روی از 20 تا 100 میکروگرم در گرم ماده خشک گیاه ذکر شده است (59). به ترتیب استادان، دانشجوی سابق کارشناسی ارشد و استاد حاکم‌نامه، دانشگاه شیراز

قبری (4) دریافت که مصرف 50، 100 و 200 میکروگرم فسفر در گرم خاک، وزن ماده خشک ذرت را افزایش می‌دهد. ولی در خاکهای که فسفر بیش از زیاد بوده است کاربرد فسفر تأثیری بر رشد گیاه نداشته است. کمیته و گنبری (34) سطح بالینی فسفر را به روی اولین، در خاکهای آمریکای 18 میکروگرم در

105
روی را به روش درت میثاق گزارش نمودند.
پژوهشهای بسیاری نشان مده که مصروف زیاد فسفر
سپید کرده و در گیاهان گواناکون شود (14، 31، 43، 44 و 45). دریافتی (5) مشاهده کرده که مصروف 1000 یا 400 میکروگرم فسفر در گرم خاک گزارش نمود. این نتایج نشان می‌دهد روند تهاجمی توسط روند و سیگن (45) غلظت شدید اورانی و همکاران (45) افزایش و یا خشکی در تأثیر مصرف 50 میکروگرم فسفر در گرم خاک گزارش کرده. با مصرف بیشین فسفر تغییری در ویژه در در تغییر نکرد.
شارما و همکاران (45) افزایش و یا خشکی در تأثیر مصرف 50 و 50 میکروگرم فسفر در گرم خاک گزارش نمودند، وی کاربرد بیشین فسفر مصرف کننده غلظت را در آب و آن درخت را با اضافه کردند و 50 و 50 میکروگرم فسفر در گرم خاک گزارش نمودند، وی کاربرد بیشین فسفر مصرف کننده غلظت را در آب و آن درخت را با اضافه کردند.

در جهت حفاظت روی محلول در دی‌تی‌پرای حساب میکروگرم
در خاک توسط درجه (3/8، ساکان و همکاران (37) شام و لی (78، و رهبر و گروه (81) گزارش شده است.

درجه (3) افزایش و یا خشکی در تأثیر مصرف 50 و 50 میکروگرم روي در گرم خاک گزارش نموده است.

گزارش کرد که کاربرد مصرف سپید کرده غلظت زاده فسفر در گیاه در حد
سپید می‌شود (14 و 18). پارکر (38) عقیده دارد برازیرت
تأثیر روی بر جذب عناصر غذایی مربوط به گیاه فسفر و
انباشتی زیاد فسفر در گیاه است. کریمیان (24) گزارش نمود
که کاربرد مصرف سپید کرده غلظت کل فسفر در درخت
نداشت، ولی پارکر و همکاران (39) غلظت مسی و مسی از در حد
سپید فسفر را در برگ درت با کاربرد 1/2 و 1/5 میکروگرم
روی گزارش کرده. کاربرد 40 میکروگرم روی در محلول
غلاظت نسبت به سطح استاندارد (12 میکروگرم) هرند بغلاظت
افراش غلظت مناسبه، ولی بر غلاظت مسی و آهن تاثیری
نداشتند. این در حالتی که نشریات (45) افراد غلاظت آهن را
تا گفت باید در برگ درت تحت کمربند روی گزارش می‌کند.
کریمیان (45) گزارش کرد که اضافه کردن تومار 20 میکروگرم
روی و 50 میکروگرم فسفر در گرم خاک غلاظت روی در گیاه
را در مقایسه با کاربرد روی به تنهایی کاهش داده، ولی گزارش خاک گزارش کردن. کریمیان (24) افزایش و یا خشکی در تأثیر مصرف 50 میکروگرم فسفر در گرم خاک گزارش کرده. درجه (3) افزایش و یا خشکی در تأثیر مصرف 50 و 50 میکروگرم فسفر در گرم خاک گزارش نمودند، وی کاربرد بیشین فسفر مصرف کننده غلظت را در آب و آن درخت را با اضافه کردند و 50 و 50 میکروگرم فسفر در گرم خاک گزارش نمودند، وی کاربرد بیشین فسفر مصرف کننده غلظت را در آب و آن درخت را با اضافه کردند.

106
تأثیر فسفر و روغن بر رشد و تکریک شیمیایی ذرت

کل روی افزایش یافته است. صفا (26) نشان داد که کاربرد
فسفر به تنها گلخته سی سبب کاهش داشته و به مصرف
25 میکروگرم فسفر در گرم خاک آن را افزایش داده است.
کریستنسن و چکسون (14) گزارش کردند که در سطح
میلی‌مولار فسفر در محلول غذایی، گلخته فسفر در قسمت
هوایی ذرت 275 درصد بوده ولی با مصرف 140 درصد
میکروگرم روی فسفر در مصرف گیاهی این عدده به 124 درصد
کاهش یافته است. با توجه به گزارش‌های منتقد از مورف
تأثیر فسفر و روی یوزه حاضر می‌باشد که نمودار تأثیر فسفر
و روی یوزه حاضر شکستگی، گلخته و بی‌کریک کل فسفر
روی آهن، نمک و گیاه در روش‌های آن‌ها ایران انجام
شد.

مواد و روش‌ها
نمونه‌برداری از خاک‌های مختلف مطالعه انجام گردید.
آزمایشگاه انتقال یافته در تشبیه مون‌های فسفر به روی یوزه‌بی‌کریک
سیلیم (27) و روی گلول جذب توسط دی‌تی‌پی (21) عصاره‌گیری، و به ترتیب با روی یوزه مورفی و رایلی (24) و
دستگاه چند میکرو‌نموا گیری شد. از میان نمونه‌ها، خاک
سیری کوسک که مطابق با تراکن‌های خاک (55) به نام
لایه‌قلی و تاکسونومی خاک (55) به نام
نام (Fine-loamy, mixed, xeric, Typic Calciairexpts).

شده انتخاب گردید. سپس مقدار کافی از خاک این نمونه از
عمق 80 سانتی‌متری جمع‌آوری و روی یوزه کردن
در معرض هوا و عبرت از اندازه‌های فیزیکی و شیمیایی
فکری و شیمیایی آن شیمی با به روش هیدروالتر
به‌عنوان دستگاه آهی، گرانیت کلیمی معادل به روش
ختی با استفاده کاربردی (10) گزارش کرده‌اند که به
روش جانشینی کاتیون‌ها با استفاده سدیم (13)، گرانیت آلی به
روش واک و بلات (25)، فسفر قابل جذب به روش اولسن
عناصر کم‌صرف کاتیون‌ها با عصاره‌گیری توسط دی‌تی‌پی و
پناه از عصاره‌گیری شده با استاندارد آموزی (26) اندازه‌گیری شد.
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>شماره</th>
<th>ویژگی</th>
<th>ارزیابی</th>
<th>نتایج</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>نسبت فسفر در گرم خاک</td>
<td>متوسط</td>
<td>0.04</td>
<td>نسبت بین 0.01 و 0.07 است.</td>
</tr>
<tr>
<td>2</td>
<td>ظرفیت تبادل کاتیونی</td>
<td>متوسط</td>
<td>0.06</td>
<td>ظرفیت تبادل کاتیونی بین 0.05 و 0.10 است.</td>
</tr>
<tr>
<td>3</td>
<td>توده بیشتر ایجاد شده</td>
<td>متوسط</td>
<td>0.05</td>
<td>توده بیشتر ایجاد شده بین 0.04 و 0.06 است.</td>
</tr>
</tbody>
</table>

آزمایش 31 میکروگرم در گرم خاک بوده که برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش...

غلظت فسفر و روی در گرم خاک، گلدنان (حالت غلظت فسفر و روی در گرم خاک)، نسبت فسفر به روی غلظت آهن، مس و منگنز با داشتن نسبت و با استفاده از روش‌های کامپیوتری COSTAT و MSTATC تجزیه و تحلیل می‌شود. میانگین مربوط به آن اصلی فسفر روی و بروز مشکلات آن تبعیض و با آزمون دانکن مقایسه شد.

نتایج و بحث

میانگین زن خشک در گرم خاک متوسط می‌باشد که برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش...

108
جدول 2 تأثیر سطوح فسفر و روی بر وزن خشک ذرت (گرم در گلدان)

<table>
<thead>
<tr>
<th>میانگین سطوح روی (میکروگرم در گرم خاک)</th>
<th>میانگین سطوح فسفر (میکروگرم در گرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/7V</td>
<td>18/7/6f</td>
</tr>
<tr>
<td>22/4C</td>
<td>22/6d</td>
</tr>
<tr>
<td>20/8d</td>
<td>20/2/6d</td>
</tr>
<tr>
<td>20/19A</td>
<td>29/5/6f</td>
</tr>
<tr>
<td>20/0A</td>
<td>24/8/6h</td>
</tr>
</tbody>
</table>

دیانه هایی که در رنگ یا ستون در یک حرف بزرگ، با در میان جدول در یک حرف کوچک مشترک هستند، بین آزمون دانکن در سطح پنج درصد تفاوت معنی‌داری ندارند.

بحری میانگین غلظت و بجذب کل فسفر (جدول 3) نشان می‌دهد که افزایش سطوح فسفر باعث افزایش غلظت و بجذب کل فسفر شده است. این نتایج با گزارش‌های دیگران (2، 4، 7، 12، 14، 16، 17 و 22) خوشه دارد. ولی کاربرد روی بهبود کاهش میانگین غلظت فسفر شده این وجدان می‌شود. در این جدول، میانگین سطوح روی مصرفی تفاوت معنی‌داری در محیط غلظت فسفر مشاهده نشد. بجذب کل فسفر در ذرت با افزایش میزان روی افزایش یافت.

خبر پژوهش‌ها نشان می‌دهد که در گیاه دارای کمبود روی، مصرف پروره فسفر می‌تواند منجر به مسمومیت فسفر در گیاه شود (14، 28 و 59). پارکر (68) گزارش می‌کند که غلظت فسفر در ذرت، در میانگین 12 میکروگرم/روی در محلول غلیظ به چهار میلی گرم در سطح 12 میکروگرم/روی در محلول غلیظ به 15 میلی گرم در گرم کاهش یافته است. وی همچنین این نتایج را در شرایط گیاه سیروآزیمی می‌آید. با این نتایج روی تأثیر ویژه‌ای بر کنترل غلظت و بجذب فسفر در گیاهان کوتاکون دارد، بینی معمولاً بجذب فسفر در شرایط کمبود روی در گیاه افزایش می‌یابد. نتایج مشابهی به وسیله شارما و همکاران (68) و مورگان (29) گزارش شده است.

با توجه به این نتایج، کمبود فسفر به تنهایی افزایش معنی‌دار وزن خشک ذرت نشد، ولی با مصرف 5 یا 10 میکروگرم روی در گرم خاک، کاربرد فسفر تا سطح 100 میکروگرم در گرم خاک بسیار افزایش و وزن خشک ذرت می‌شود. به‌طور کلی با بهره‌گیری از فسفر و روی پر وزن خشک ذرت می‌شود. حال آن که کاربرد روی درکلیه سطوح مصرفی فسفر بر این پارامتر رشد معنی‌دار بوده است (جدول 2). شارما و همکاران (68) گزارش کرده‌اند که وزن خشک قطعی افزایش گیاهان افزایش فسفر تا سطح 400 میکروگرم در گرم خاک به تنهایی چهار گرم گلدان بوده، ولی همراه با کاربرد پنجمیکروگرم روی در گرم خاک به 15 گرم در گلدان افزایش یافت. نتایج مشابهی نیز به وسیله دیگران گزارش شده است (6، 14 و 61).
جدول 3 تأثیر سطوح فسفر و روی بر غلظت (میکروگرم در گرم ماده، اکسکس گیاه) و چربی کل فسفر (میکروگرم در گرم ماده) در جذب

<table>
<thead>
<tr>
<th>سطوح روی (میکروگرم در گرم خاک)</th>
<th>سطوح فسفر (میکروگرم در گرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>میانگین</td>
</tr>
<tr>
<td>1/1^D</td>
<td>1/1^f</td>
</tr>
<tr>
<td>1/1^D</td>
<td>1/1^f</td>
</tr>
<tr>
<td>1/1^C</td>
<td>1/1^f</td>
</tr>
<tr>
<td>1/1^B</td>
<td>1/1^f</td>
</tr>
<tr>
<td>3/1^B</td>
<td>3/1^f</td>
</tr>
</tbody>
</table>

در سطح پنج درصد فاوت متنی دانست.

سیب‌زمینی را تحت کمبوس روی به افزایش انتقال فسفر از ریشه به قسمت هواپی و افزایش جذب کل فسفر نسبت می‌دهند. لوئرگان و همکاران (۸۲) دریافتند که کمبوس روی سبز کاهش غلظت فسفر در ریشه بایمه، ولی سبز افزایش غلظت در قسمت هواپی و همچنین افزایش جذب کل فسفر توسط قسمت‌های مختلف گیاه شده است، و نتیجه‌گیری کردند که کمبوس روی به صورت مشخص سبز افزایش جذب فسفر توسط ریشه‌ها افزایش انتقال آن به قسمت‌های وایی و در نتیجه سبز این اتیپیشن شدید نیم بر گیاه می‌گردد.

مارشتر و کیمک (۳۷) ثابت دانستند که در بینه کمبوس روی موجب افزایش جذب فسفر می‌شود. در حالی که سرعت جذب عنصر غذایی دیگر نظیر پتاسیم، کلسیم و نیترات با کمبوس روی تغییر نکرده و حتی در مورد منیزیم کاهش نشان داده است.
تأثیر فسفر و روی بر رشد و ترکیب شیمیایی ذرت

قسمت هوایی ذکر می‌نمایند. این‌که از دستون برخی از بروزهگران دیگر نیز پذیرفرنگی شده است (16، 21 و 64). بین پانگال و همکاران (17) مشاهده کردند که مقدار فسفر در محیط رشته می‌تواند بر تووانایی اصلاح (Bounding capacity) روی به دیواره سلول‌های بگذار. روی آزاد شده پتیکتاز در ریشه گیاهی که در محلول غلظت‌دار هشته می‌مولار فسفر رشد کرده، به رضایت گیاهان رشد کرده در محلول غلیظ با غلظت دو میلی‌مولار بوده، که نشان دهنده افزایش روی بی‌پایه طی زمان چکش فسفر و روی در کاهش اندازه روی به قسمت هوایی گیاه است.

صرف روی با انفاسیون غلظت و جذب کل آن در گیاه همره‌بود (جدول 1). کاربرد 10 میکروگرم روی در گرم خاک سبب انفاسیون میزان غلظت روی به میزان 142 درصد و میزان جذب کل روی به میزان 292 درصد نسبت به شاخص شد. همیتمن و همکاران (19) غلظت فسفر روی در درخت یک با کاربرد سوختن ریز گذشته کرده است. نتایج مشابهی توسط مورگان (32)، کریمیان (33)، ناکورق همکاران (67) صفا (46) و شارما و همکاران (68 و 49) گزارش شده است.

مانگنز غلظت روی در ذرت به مقدار میکروگرم در گرم ماده مناسب بوده که کمتر از حد خواصی جاذب می‌باشد. در حالی که کاربرد 10 گرمی فسفر روی در گرم خاک بدن کاربرد ناشی از خواص دارد (جدول 4). از سویی، می‌توان نتیجه گرفت که دلیل کم بودن غلظت روی، مصرف فسفر در توانایی است رشد گیاهی افزایش دهد. از طرفی، گروال (31) در حضور بسیاری روی در ذرت 14 و رشد و فاکس (32) آن را

4 میکروگرم در گرم ماده شکل گیاهی گزارش کرده‌اند.

نسبت فسفر به روی در گیاه به مصرف فسفر افزایش و با مصرف روی کاهش یافته (جدول 5). بان و لزت (7) عقیده دارند برای افزایش بهتر کمربند روی استفاده از نسبت فسفر به نهایتاً غلظت غلظت در گیاه نیاز تغییر کند. بر پایه دنیال بیش، هنوز نتایج یافته روی در کمربند و غلظت فسفر به طور کامل روش نتیجه (39). در پژوهش‌های خاصی، با توجه به این که جذب کل فسفر با مصرف روی در ذرت به رگ کاهش غلظت فسفر، تقسیم‌بندی‌های مناسب و در مواردی حتی افزایش نشان می‌دهد. بنابراین کاهش غلظت فسفر با بسته‌بندی ورنه رفته باشد.

کاربرد فسفر تا ۱۰۰ میکروگرم فسفر در گرم خاک باعث کاهش معادل غلظت روی در ذرت گردیده (جدول 4). ولی تأثیری بر میزانی میانگین جذب کل روی نداشته است. شارما و همکاران (68) بیان می‌کنند که کاربرد 2۵ میکروگرم فسفر در گرم خاک باعث بیشتری کاهش در غلظت روی در ذرت شده است. گزارش‌ها نشان می‌دهد که محلول بالای فسفر می‌تواند سبب کاهش غلظت روی در گیاهان گوناگون شود (4). ۵۰ و ۶۵ تا ۱۳۳ درصد کاهش در فسفر و تأثیر کاهش در حرارت روی بوده، ولی پژوهش‌ها به مدت یافته که حداکثر کم‌تر است. جزییه است (59). افزایش گیاه به روی را تأمین کند. همیتمن و همکاران (68 و 49) تأثیر فسفر بر کاهش غلظت روی در ذرت را به اثر رقم نسبت به دهد.

همیتمن و همکاران (19) برای کاهش که افزایش آلودگی با فسفر می‌یکروپیزارد جذب فسفر می‌باشد. روی افزایش به می‌دهد. سپس نتایج آزمایشاتی این میزان سیگنال خاص جذب که در دسترس ریشه نیستند دسترسی سپیدکنده. افزایش جذب غلظت غلظت در گرم آلودگی از فسفر می‌باشد و همکاران (68) گزارش می‌کنند که مصرف پیش‌گذار

از ۱۵ میکروگرم فسفر در گرم خاک بسیار افزایش جذب کل روی در ذرت می‌تواند تأثیر اصلی فسفر در کاهش غلظت روی را یک اثر بارزتردنگی در نتیجه روی از ریشه بود.
جدول 4: تأثیر سطوح فسفر و روی بر غلظت (میکروگرم در گرم ماده خشک گیاه) و جذب کل روی (میکروگرم در گلدان) در ذرت

<table>
<thead>
<tr>
<th>سطوح فسفر (میکروگرم در گرم خاک)</th>
<th>غلظت</th>
<th>جذب کل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
<td>0</td>
</tr>
<tr>
<td>میکروگرم در گرم خاک</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>میکروگرم در گرم خاک</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>میکروگرم در گرم خاک</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

میکروگرم در گرم خاک	31/4^A	37/6^b	16/0^g
میکروگرم در گرم خاک	21/6^B	32/5^b	11/4^g
میکروگرم در گرم خاک	20/6^B	27/9^c	11/0^g
میکروگرم در گرم خاک	17/1^C	19/1^{def}	13/4^g
میکروگرم در گرم خاک	10/8^C	21/9^{cd}	10/7^g
میکروگرم در گرم خاک	78/8^A	21/9^g	12/3^g

در هر پاسخ گیاهی، میانگین هر که در هر روز یا هر سنته در پیک حرف برخگرز پا در میان جدول در یک حرف کوچک مشترک قرار گرفته و نتایج آزمون دانکین

در سطح پنج درصد می‌توان معنادار تدارکه.

حاضر، نسبت فسفر به روی در گیاهی از 23 تا 130 در ذرت می‌تواند بود (جدول 5). و پیش‌ترین علل‌های ماده خشک، ذرت با نسبت فسفر به روی در برای 100 به دست آمد. در بسیاری موارد، به رغم این که عامل‌های ماده خشک خیلی کمتر از میزان عامل‌های یکی در 100 می‌باشد. (جدول 5).

میانگین غلظت آهن در ذرت با کاربرد 50 میکروگرم فسفر در گرم خاک: انگلیسی می‌باشد (جدول 6). جک‌ویک و همکاران (26) در نمایشند که نماینده در صورت کمبود روی مصرف فسفر می‌تواند غلظت آهن در ذرت را افزایش دهد. و ارتباط

(26) نژ شناسان داده‌های غلظت آهن در بایان خودی که دارای کمبود روی بود با مصرف فسفر انیشی بافت، صفا (46) در بیشتر
جدول 5. تأثیر سطح فسفر روی برنت فسفر روی گیاه

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح فسفر (میکروگرم در گرم خاک)</th>
<th>سطح فسفر (میکروگرم در گرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>61^E</td>
<td>22^d</td>
<td>30^d</td>
</tr>
<tr>
<td>71^D</td>
<td>34^d</td>
<td>34^d</td>
</tr>
<tr>
<td>101^C</td>
<td>41^d</td>
<td>44^d</td>
</tr>
<tr>
<td>143^B</td>
<td>10^c</td>
<td>13^c</td>
</tr>
<tr>
<td>219^A</td>
<td>11.3^d</td>
<td>18^b</td>
</tr>
<tr>
<td>23^C</td>
<td>9.2^b</td>
<td>19.4^a</td>
</tr>
</tbody>
</table>

میانگین‌هایی که در رنگ‌های مشابه هم‌دست هستند، تفاوت معنی‌داری ندارند.

جدول 6. تأثیر سطح فسفر و روی بر غلظت آهن، منکنر و مس در گیاه (میکروگرم در گرم ماده خشک گیاه)

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح فسفر (میکروگرم در گرم خاک)</th>
<th>سطح فسفر (میکروگرم در گرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آهن</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61^E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71^D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101^C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143^B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219^A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23^C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منکنر		
4^/4^A		
4^/4^B		
4^/4^C		
4^/4^D		
4^/4^E		

مس		
4^/4^A		
4^/4^B		
4^/4^C		
4^/4^D		
4^/4^E		

در هر پنجره گیاهی، میانگین‌هایی که در رنگ‌های مشابه هم‌دست هستند، تفاوت معنی‌داری ندارند.

داختن در سطح بنچ درصد تفاوت معنی‌داری دارد.

113
روی در گرم خاک سبب کاهش معنی دار غلظت منگنز در گیاه شده است. پارکر (38) در 24 گروه که کمبود روی سبب افزایش غلظت منگنز در سبزه شده است. همچنین، همکاران و همکاران (38) افزایش غلظت منگنز در نبات جهت کاهش کمبود روی گزارش کرده‌اند. نورول و ولی (28) نیز نشان داده که سبب افزایش میزان روی در محلول غذایی، غلظت منگنز در گیاه افزایش یافته است. نتایج مشابهی توسط ولی و نورول (28) در گزارش کردند که تغییرات فسفر و روی تأثیری بر غلظت آهن در گندم نداشته است.

مصروف فسفر تأثیری بر میکروگرمس غلظت مس در درخت نداشت (جدول 7). چاکرالحسینی (1) که در گزارش معنی دار غلظت مس در سبیل و درخت را با افزایش فسفر گزارش نمود و همکاران (38) در ملاحظه کردند که pH بیشتر از 7 افزایش کرده که در مس سبب کاهش غلظت مس در بزرگ، ساقه و ریشه سبیل و نورول ولی (25) می‌داند که در محلول غذایی، غلظت مس در گرم روی میکروگرم در گرم بوده که با افزایش سطح روی به یک میکروگرم در گرم کمتر می‌شود. یعنی میکروگرم در گرم افزایش یافته است.

نتیجه‌گیری

نتایج به دست آمده از این پژوهش نشان می‌دهد که مصرف فسفر بیشتر از 100 میکروگرم در گرم خاک سبب تأثیری بر افزایش غلظت مس در درخت نداشت. کاربرد نسبت به کمبود روی در گرم خاک سبب افزایش مس در درخت گردیده است. این نتایج با این میزان هم پایین و روی قابل استفاده خاک بهتر ترکیب کرده است. برای این روی مانند پنج گیاهی و محصولات مصرفی در رشته‌های آنلاین کامته به روند سولولی در گیاهان دولهای باشد. ولی پاسخ به این پرسش که آیا کمبود روی می‌تواند سبب افزایش ترشح فیتوسیدروفورها و می‌تواند روی سبب افزایش غلظت مس در سبیل و درخت تأثیری داشته باشد (28). پارکر (38) نیز نشان داد که افزایش غلظت مس در سبیل و درخت با افزایش قدرت برخورداری مواد غذایی می‌شود. همچنین، گزارش کرده است که این گیاهان در گندم و درخت، همگی نشان داد که تغییرات فسفر و روی تأثیری بر غلظت آهن در گندم نداشت.

کمبود روی افزایش یافته است.

کمبود روی 25 میکروگرم فسفر در گرم خاک معنای دار غلظت منگنز در گیاه شده است. ولی مصرف فسفر نسبت به کمبود روی (جدول 6) نشان داد که تغییرات فسفر بر روی افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی در گندم و درخت، کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه شده است. ولی باعث افزایش غلظت منگنز را در درخت به گونه‌ای معنی دار نمی‌کند که به دلیل کمبود روی سبب افزایش غلظت منگنز در گیاه Sh
تأثیر فسفر و روی بر رشد و ترکیب شیمیایی درخت

زاویه بود، به نظر می‌رسد که استفاده از این نسبت معیار مناسب برای پیش‌بینی حداکثر عملکرد با ازایلایی کمپودی روی در گیاه باشد. استفاده از نسبت فسفر به روی، جانشینی نسیه به نسبت آنها اشاره شود. کافی نیست زیرا اکنون وارد غلظت هر دو عصر در گستره کمپودی باشد ولی نسبت آنها کمپودی را نشان ندهد. به طور کلی مصرف مقدار را کاهش داده و تأثیری بر غلظت آنها در گیاه شد. ولی غلظت منگنز را کاهش داده و تأثیری بر غلظت مس نداشت. بیش از هر گونه نوسیب کودی، به پووهشهای پیشتری در شرایط مزرعه‌ای برای ازایلایی دقیق پاسخ را بد مصرف فسفر و روی، و نیز تأثیر نتایج به دست آمده از این پووهشه نیاز می‌باید.

روی در ذرت غریبه، وی مصرف فسفر بر جذب کل روی گیاه تأثیری نداشت. کاربرد روی باعث افزایش غلظت و جذب کل روی در گیاه شد. نسبت فسفر به روی در گیاه مورد بررسی با مصرف فسفر افزایش و با مصرف فسفر روی کاهش یافت.

مصرف فسفر با کاربرد 10 میکروگرام روی در گرم خاک سبب افزایش غلظت آهن در ذرت شد. مصرف 25 پا 50 میکروگرام فسفر در گرم خاک داشته باشد که کاهش غلظت منگنز در گیاه گردد. مصرف فسفر تأثیری بر غلظت مس در ذرت نداشت، ولی کاربرد پنج میکروگرام روی در گرم خاک سبب کاهش آهن شد. حداکتر عملکرد ماده شکست ذرت در نسبت ارایه 101 فسفر به روی به دست آمد. ولی جون تغییرات این نسبت در پووهشه حاضر

مباحث مورد استفاده

1. چاکرالحسنی، م. ر. 1378. تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی ذرت و سویا. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه تربیت مدرس شیراز.
2. چراغی آرایی، ع. 1378. تأثیر فسفر و ماده آلی بر رشد و گذشته روی به سرلای گیاه جو و شکل‌های شیمیایی روی در ذرت خاک آهنی. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه تربیت مدرس شیراز.
3. درجه، ز. 1378. ارایای پوشش رود قابل استفاده گیاهی به روش‌های آزمایشگاهی و گلخانه‌ای در خاک‌های آهنی‌زار سد درودزن استان فارس. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه علوم تربیتی شیراز.
4. قبی، ع. 1378. کربنی، م. و. متون، 1378. ارایای گلخانه‌ای و آزمایشگاهی چن عصاره جه تغییر قابل قابلیت استفاده ذرت در بعضی از خاک‌های آهنی استان فارس. علوم و فنون کشاورزی و مباحث علمی 4: 41-56.

