ارزیابی تحلیل به خشکی در ارگمند یولاف در شرایط آب و هواپیمایی اصفهان

محمدرضا جزائی و عبدالمجید رضائی

چکیده
این پژوهش با هدف بررسی اثر تنش خشکی بر صفات زراعی و نیز ارزیابی پتانسیل تحلیل به خشکی 20 یولاف یولاف انجام شده است. نتایج نشان داد که تنش خشکی به صورت مستقیم نتایج را در صفات زراعی و نیز ارزیابی پتانسیل تحلیل به خشکی تأثیر می‌گذارد. نتایج نشان داد که تنش خشکی در صفات زراعی و نیز ارزیابی پتانسیل تحلیل به خشکی تأثیر می‌گذارد.

واژه‌های کلیدی: تنش خشکی، شاخص‌های تحلیل به خشکی، یولاف

مقدمه
یولاف (Avena sativa L.) یکی از غلات علف‌های مهم در مناطق مدغلی است. اهمیت این گیاه به خاطر پرورش و تولید ذرت و بهبود کیفیت ملوبیت آن در دانه و غله به یاد می‌آید. حدود 24% از زمین‌های قابل کشت در دنیا در مناطق خشک قرار دارد (9). یکی از اهداف اصلاح نیانات، افزایش عملکرد در شرایط تنش به خشکی را از جمله می‌تواند به خشکی، عواملی مانند دمای و بارندگی نشان دهد.

تاریخ‌نامه
1. دانشجوی سابق کارشناسی ارشد و استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

393
هدف اصلی این گونه تحقیقات، انتخاب زنوتیپ‌های است که 
با هر دو شرایط سازگار باشد. لانگر و همکاران (19) بر 
اساس تجزیه پایداری عملکرد پولی بهترین کردند که اگر 
ارزیابی زنوتیپ‌ها در مناسب‌ترین و ناماسب‌ترین شرایط 
محیط انجام شد، ارقام با عملکرد بالا و سازگار و سبب 
مشخص خواهد شد. فرای (17) در پژوهش دیگری روی 
پولاف، نتیجه‌گیری کرد که در محیط‌های بدتر تنش، 
وراتل برخی عملکرد دانه نسبت به شرایط تنش بالاتر افت 
این امر نبود مهد که می‌توان تنش باید بروز اختلافات 
زنوتیپ‌ها را در انتخاب نست نسبت به محیط‌های بدتر تنش داشته باشد. 
و اینکه تنش به ترتیب 5 و 3 و 1/5 و 1 نسبت به حرکت 
زنوتیپ برخی از ایرانی این که می‌توانند باعث تنش 
زنوتیپ بپذیرند کهترکند که اسارت ارقام کننده مقاوم به 
شناب می‌توانند در شرایط نش و مطلوب و وراتلپذیره 
هر کدام از آنها دارد. کالو ن و همکاران (12) با بررسی ارقام 
گذشته مشاهده نمودند که ارزیابی و انتخاب، تحت شرایط 
روطینی تهدید به بهره (قابل تنش رطوبی) باعث حصول 
ورالتپذیری بالا و باعث همبستگی (انتخاب غیر مستقیم) می‌گردد.
اما ارزیابی و انتخاب در شرایط خشک شیزارد عادتی انتخاب شد و نشان می‌دهد، 
حفظ زننده مقاوم به شرایط اطمینان حاصل شود. 

شناختی هناللهی برای ارائه گاهنواز زراعی بر اساس 
عملکرد پیشنهاد شده است که عضوی بر میانی عملکرد کبایی در 
محیط نش و غیر نش تعیین می‌شوند (15). ویژوال و 
همایش (33) شاخص تحلیل و میانگین تولید را معرفی کردند. 
فهم و مور (16) شاخص حساسیت به خشکی را بر مبنای 
عملکردی محیط نش و غیر نش پیشنهاد نمودند. فرمانی‌زاده 
(15) شاخص‌های تحلیل به تنش و میانگین هندسی تولید را 
پیشنهاد نمود.

اثر تنش خشکی و سایر تنش‌ها در گیاهان مختلف، توسط 
پژوهشگران تغذیه مورد پژوهش قرار گرفته است. باید و 
به‌اهمیت (14) با بررسی اثر تنش خشکی بر عملکرد 300 رقم 
ارزیابی بین کردند که میتوان عملکرد دانه در شرایط تنش 
72/.

392
ارزیابی تحلیل به خشکی در ارگام پولاف در شرایط آب و هوای اصفهان

با همکاران (۷) ارژیابی زنوتیپ‌های لوپی اظهار داشتند که علمرک داده در شرایط تنش بی‌میزان (۶۲٪ کاهش یافته) همچنین نتایج نشان داد که تنش خشکی باعث کاهش روز تا گلدهی و روز تا رسیدگی می‌گردد. در این پژوهش از ۶ شاخص میانگین حساد، میانگین هندسی، شاخص پایه به خشکی، ضعف حساسیت به تنش، واکنش به خشکی و درصد کاهش استفاده شد. طبق این مثابه، متفاوتی در صورتی که تنش روز تا گلدهی به درون زنوتیپ‌ها متفاوت باشد، شاخص پایه به خشکی در برای شبیه‌سازی زنوتیپ‌های متحمل به خشکی مناسب است. این میانگین هندسی تولید را برای تأثیر مورد مطالعه بهتر شاخص معرفی کردند.

ایران به دلیل موقعیت جغرافیایی خاص، دارای اقلیم خشک (۶۵٪) است (۵). کاهش بارندگی در برخی سالها در اثر مناطق به بروز تنش خشکی باعث شده است. مکانیک طبیعی بر زبان شکوفا در محیط انتقالی به آبگیران منجر می‌گردد. این توجه به نتایج اغلب بررسی به شکوفا معمای و اثرات زراعی ۲۰ رقم پولاف و ارزیابی تحلیل به خشکی آنها بود.

مواد و روش‌ها

این آزمایش در سال زراعی ۱۳۸۷-۸۸ در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان واقع در لوری تجربه آباد با عرض جغرافیایی ۳۳ درجه و ۲۳ دقیقه شمالی و طول جغرافیایی ۵۱ درجه و ۴۲ دقیقه شرقی و ارتفاع ۱۵۰۰ متر از سطح دریا انجام شد. زنوتیپ‌های پولاف مورد بررسی شامل ۱۹ رقم معروف شده طالسی‌های ۱۹۹۷ و ۱۳۹۸ در کانادا و یک رقم معروف شده در آمریکا (مال ۱۳۸۳) و یک رقم معروف شده در سوئیس (مال ۱۳۸۷) و ۴ این اصلاح شده ترکیبی به وقوع که در قابل طرح بلوک‌های کامل تصویف در ۳ تکرار و به طور جدی‌تر در شرایط رطوبی مختلف شاخص آبیاری بر اساس ۳:۲:۱ میلی متر تبخیر از نشتن تیخر کلاس

ʒQ = 0.۶۹۸۳LH

\( Q = \frac{A}{0.۶۹۸۳LH} \)

\( Q = \frac{A}{0.۶۹۸۳LH} \)
نتایج و بحث

تجزیه واریانس و مقایسه میانگین‌های صفات

نتایج تجزیه واریانس نشان داد که تفاوت بین زنوتیب‌های در شرایط آب و هوا، دمای محیط و فشار بارشی در طول دوره طولانی بوده است. جزئی از میانگین‌ها در صفر، ریجیا و گردانگی بود. بدین ترتیب این میانگین‌ها ممکن است باعث تغییرات مختلف در صفات مختلف باشد.

عبارت بودن در زمان ظهور کامل خوش‌خوابی ۵ درصد از نتایج ارتفاع در زمان خوش‌خوابی، تعداد خوش‌خوابی بارور در سه متر مربع تعداد دانه در خورش، وزن هزار دانه، عملکرد دانه و بیولوژیک (بر اساس برداشت ۱/۵ متر مربع از رشد‌های میانی) و شاخص برداشت، با توجه به این که در پرورش زنوتیب‌ها در دو محیط تنک می‌باشد، در پرورش و بسترسی رشد تنک‌ها، که تنک و بسترسی عملکرد و میزان دانه و گردانگی دانه در دو محیط که تعادل میانگین به درجه گرفته، می‌باشد.

(Stress Susceptibility Index) (Tolerance) (TOL) (Productivity) (MP) (Mean Productivity) (GMP) (Geometric Mean Productivity) (STI) (Stress Tolerance Index) (SI) (DROSH)
جدول ۱: درصد تغییرات صفات مختلف در محيط تنش نسبت به غیر تشن

<table>
<thead>
<tr>
<th>صفت</th>
<th>بدون تنش</th>
<th>تنش</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز تا خوشه دهن</td>
<td>۱۸۰/۷۵</td>
<td>۱۸۰/۷۵–۱۸۰/۷۵</td>
</tr>
<tr>
<td>ارتفاع در زمان خوشه دهن</td>
<td>۷۵/۷۵</td>
<td>۷۵/۷۵–۷۵/۷۵</td>
</tr>
<tr>
<td>عامل‌کردن دانه (کیلوگرم در هکتار)</td>
<td>۹۰/۷۵</td>
<td>۹۰/۷۵–۹۰/۷۵</td>
</tr>
<tr>
<td>عامل‌کردن پیله‌ینک (کیلوگرم در هکتار)</td>
<td>۱۵۰/۷۵–۱۵۰/۷۵</td>
<td></td>
</tr>
<tr>
<td>شاخ صبا را برشته</td>
<td>۹۰/۶۰</td>
<td>۹۰/۶۰–۹۰/۶۰</td>
</tr>
<tr>
<td>تعداد دانه در منبع حیوان</td>
<td>۹۰/۵۰–۹۰/۵۰</td>
<td></td>
</tr>
<tr>
<td>تعداد دانه در خوشه</td>
<td>۱۵۰/۶۰–۱۵۰/۶۰</td>
<td></td>
</tr>
<tr>
<td>وزن هزارادانه (گرم)</td>
<td>۱۵۰/۷۵–۱۵۰/۷۵</td>
<td></td>
</tr>
</tbody>
</table>

*؛ علائم متقابل نشان دهنده کاهش صفت در اثر تنش رطوبی می‌باشند.

این هورمون باز دارنده رشد است، این کاهش ارتفاع ممکن است ناشی از افزایش آن باشد. به لحاظ آن چه که کاهش ارتفاع بونه با کاهش تجمیع مواد فتوسنتزی در این اندازه همراه است، توجه به ارقام بند و زنون‌هایی که از نظر ارتفاع کمتر تحت تأثیر تنش قرار می‌گیرند، حاصل امید است. پانوان و همکاران (۲۲) در گیاه بیرنگ، کاهش ۲۲ درصدی را در ارتفاع بونه در شرایط رطوبی و در مقایسه با شرایط بدون تنش مشاهده کردند.

میزان کاهش تعداد خوشه در متر مربع در اثر تنش رطوبی ۲۷/۵ درصد تیمار بدون تنش بود (جدول ۱). روی و مورتی (۲۴) بین میزان همکاران (۱۱) کاهش ۴۷ درصدی را در تعداد سنبله گندم در متر مربع در شرایط خشکی کردند. پانوان و همکاران (۲۴) نیز به کاهش ۱۵ درصدی تعداد خوشه بیرنگ در اثر تنش خشکی اشاره کردند. همچنین پاندان و همکاران (۲۱) اظهار داشتند که در کندم، شرایط تنش رطوبی در صورت عدم مصرف نیتروژن، تعداد سنبله در متر مربع را ۲۴/۳ درصد و در صورت مصرف ۱۵۰ کیلوگرم در هکتار نیتروژن آن را ۱۵ درصد کاهش می‌دهد.

تعداد دانه در خوشه در تیمار عادی رطوبی به طور متوسط ۲۰ عدد بیشتر از تیمار تنش بود. به عبارت دیگر میانگین این میزان اسید آسیسیک (ABA) افزایش می‌یابد (۲۳). از انجایی که
جدول 2. میانگین صفات در شرایط بدون تنش و دارای تنش رطوبت زنوتیب

<table>
<thead>
<tr>
<th>زنوتیب</th>
<th>روز تا خوشه</th>
<th>عملکرد خوشه (کیلوگرم در هکتار)</th>
<th>عملکرد بیولوژیک (درصد)</th>
<th>شاخص برداشت</th>
<th>تعداد خروشه در متر مربع</th>
<th>تعداد دانه در خوشه (گرم)</th>
<th>وزن هزار دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simece</td>
<td>117/06.4</td>
<td>0.26</td>
<td>0.32</td>
<td>0.28</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Ajax</td>
<td>112/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Alaska</td>
<td>08/00.4</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Beacon</td>
<td>07/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Eagle</td>
<td>05/00.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Glen</td>
<td>05/00.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Random</td>
<td>05/00.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Oxford</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Sioux</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Calibre</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Derby</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Donald</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Rigodon</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Paiskey</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Paser</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Boyer</td>
<td>04/00.3</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>BL2</td>
<td>03/00.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>BL28</td>
<td>03/00.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>BL32</td>
<td>03/00.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>BL36</td>
<td>03/00.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>LSD 75</td>
<td>0</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
</tbody>
</table>
ارزیابی تحلیل بهت‌کشی در ارقام بولوک در شرایط آپ و حواض اسفهان

مرجع: کاهش عاملکده دانه را در اثر تنش سطحی گارش کردن. پانوان و همکاران (32) دلیل این امر به کاهش تعداد خونه در سطح دادن را به وجود و وزن هزار دانه اعلام کرده. بلومن و همکاران (11) دلیل کاهش عاملکده را در تعداد پنجه و مسیله در واحد سطح دانستند. مظفری و همکاران (4) در افتتاحیه گزارش کردند و دلیل آن را کاهش طول دوره زایشی و تأخیر آن بر نظر طبق و وزن هزار دانه دانستند. مطالعه سهپور و همکاران (2) نشان دادند که در عملکده در داخل دانه به دلیل بروز سطح فستونیزی از طرف کم شدن سطح برج و کاهش فتوستنیز در واحد سطح برج به دلیل افزایش طولی نسبت و تانسیل آب برگ کردن دنیاب و شار (14) نیز کاهش عملکده را در مرحله زایشی خاطر نمی‌گیرد و علت این ناخستین که به کاهش تعداد دانه‌های باور منجر می‌شود.

نظر رطوبتی و میکروکول وزن 17 درصد کاهش یافته (جدول 1). کاهش تعداد دانه در اثر تنش رطوبتی در گندم (11 و 21) حدود 2 و 37/8 تا 24/2 در در (2) از 37/2 در درصد گزارش شده است. کمربد آب در مرحله گردش‌آمیزی و گل‌دهی باعث نمی‌گردد که به طور متوسط میانگین وزن هزار دانه در اثر تنش خشکی به متوسط 7 کرم کاهش یافته. یعنی میزان کاهش وزن هزار دانه در اثر تنش خشکی 24/79 درصد تیمار بدون تنش یافته (جدول 1).

پانوان و همکاران (31) کاهش وزن هزار دانه در اثر تنش رطوبتی و در شرایط عدم مصرف و مصرف 150 کیلوگرم در هفت تیمار بدون به ترتیب 94 و 19/14 درصد عامل کردن. پانوان و همکاران (22) اظهار داشتند وزن هزار دانه زنیت‌های بریج در اثر تن‌نش خشکی در مراحل گل‌دهی و رویتی به ترتیب 87 و 26 درصد کاهش یافته است. 

سهپور و همکاران (4) در پژوهش اثر تن‌نش خشکی در درخت عامل کردن که تأثیر تن‌نش بر وزن هزار دانه بهتر از تعداد دانه در بالای بود و این کاهش پایه وزن دانه در اثر تن‌نش در مرحله رویتی، زایشی و رویتی-زایشی به ترتیب 10/5. ۲۷/۶ درصد گزارش شد. واقع تن‌نش در هنگام پرشدن دانه‌های بیشتری تأثیر را بر وزن دانه دارد (3). تن‌نش رطوبتی در طول دوره رسیدگی دانه معمولاً سبب کاهش شد. کاهش وزن دانه در شرایط تن‌نش رطوبتی خواهد شد (14). احتمالاً کنترلی شدند طول دوره رشد زایشی نیز نسبت اقلام کنترل شدند خیزه‌های به دانه‌ها می‌گردد و وزن هزار دانه کاهش می‌یابد.

نتایج نشان داد که عملکده دانه در شرایط بدون تن‌نش، بین 387/4 تا 398/3 کیلوگرم در هکتا و در شرایط دایر تن‌نش بین 287/2 تا 288/3 کیلوگرم در هکتا متفاوت بود (جدول 2). تن‌نش رطوبتی بیشترین اثر را بر عملکده دانه داشت و باعث شد تا میانگین این صفت 24 درصد کاهش یابد (جدول 1).

رویتی و میکروکولی (24) در گندم و پانوان و همکاران (22) در
شاخص‌های تحلیل و حساسیت به نش رطوبی

شدت نش در این پژوهش برای 0/5 پرورده گردید. تفاوت بین زننده‌ها از نظر شاخص حساسیت به نش، تحلیل، میانگین عملکرد در دو محسوس، میانگین هندسی عملکرد در دو محسوس و شاخص تحلیل به نش در سطح اختلاف 5/0 معنی‌دار بود. نتایج حاصل از میانگین‌های (جدول 3) نشان داد که در بین زننده‌ها مورد بررسی، رقم آزاکس بیا/24 و رقم Alaska با 2/76 به ترتیب حساسیت ترین و متحمل ترین زننده‌ها به نش بودند.

۲۰۰
جدول 3 مقایسه میانگین‌های عملکرد (کیلوگرم در هکتار) در شرایط نشا (Ys) و بدون نشا (Yp) و شاخص‌های تحمل به‌شکل در ارقام پولاف

<table>
<thead>
<tr>
<th>STI</th>
<th>SSI</th>
<th>TOL</th>
<th>GMP</th>
<th>MP</th>
<th>Ys</th>
<th>Yp</th>
<th>رنگ</th>
<th>زنون‌پی‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/25</td>
<td>0/97</td>
<td>291/0/7</td>
<td>433/0/4</td>
<td>490/0/9</td>
<td>312/0/7</td>
<td>400/0/4</td>
<td>Simcoe</td>
<td>1</td>
</tr>
<tr>
<td>0/22</td>
<td>1/25</td>
<td>219/0/1</td>
<td>417/0/3</td>
<td>530/0/9</td>
<td>356/0/3</td>
<td>480/0/4</td>
<td>Ajax</td>
<td>2</td>
</tr>
<tr>
<td>0/28</td>
<td>0/47</td>
<td>161/0/3</td>
<td>438/0/9</td>
<td>248/0/9</td>
<td>420/0/3</td>
<td>370/0/9</td>
<td>Alaska</td>
<td>3</td>
</tr>
<tr>
<td>0/50</td>
<td>1/10</td>
<td>369/0/7</td>
<td>585/0/1</td>
<td>596/0/9</td>
<td>30/0/2</td>
<td>260/0/1</td>
<td>Beacon</td>
<td>4</td>
</tr>
<tr>
<td>0/48</td>
<td>1/9</td>
<td>352/0/4</td>
<td>532/0/4</td>
<td>310/0/7</td>
<td>650/0/1</td>
<td>20/0/1</td>
<td>Eagle</td>
<td>5</td>
</tr>
<tr>
<td>0/62</td>
<td>0/88</td>
<td>296/0/8</td>
<td>510/0/3</td>
<td>590/0/2</td>
<td>230/0/3</td>
<td>580/0/1</td>
<td>Glen</td>
<td>6</td>
</tr>
<tr>
<td>0/55</td>
<td>1/2</td>
<td>533/0/9</td>
<td>473/0/9</td>
<td>480/0/7</td>
<td>30/0/2</td>
<td>70/0/3</td>
<td>Random</td>
<td>7</td>
</tr>
<tr>
<td>0/50</td>
<td>1/04</td>
<td>288/0/7</td>
<td>508/0/4</td>
<td>320/0/7</td>
<td>624/0/4</td>
<td>280/0/7</td>
<td>Oxford</td>
<td>8</td>
</tr>
<tr>
<td>0/22</td>
<td>1/02</td>
<td>342/0/8</td>
<td>456/0/1</td>
<td>440/0/9</td>
<td>244/0/9</td>
<td>480/0/4</td>
<td>Sioux</td>
<td>9</td>
</tr>
<tr>
<td>0/57</td>
<td>0/99</td>
<td>249/0/3</td>
<td>540/0/2</td>
<td>460/0/3</td>
<td>266/0/4</td>
<td>570/0/6</td>
<td>Calibre</td>
<td>10</td>
</tr>
<tr>
<td>0/50</td>
<td>1/12</td>
<td>380/0/2</td>
<td>550/0/1</td>
<td>410/0/5</td>
<td>650/0/4</td>
<td>580/0/7</td>
<td>Derby</td>
<td>11</td>
</tr>
<tr>
<td>0/56</td>
<td>1/02</td>
<td>245/0/0</td>
<td>410/0/4</td>
<td>410/0/4</td>
<td>590/0/4</td>
<td>580/0/4</td>
<td>Donald</td>
<td>12</td>
</tr>
<tr>
<td>0/50</td>
<td>0/50</td>
<td>510/0/9</td>
<td>470/0/4</td>
<td>460/0/4</td>
<td>450/0/4</td>
<td>450/0/4</td>
<td>Rigdon</td>
<td>13</td>
</tr>
<tr>
<td>0/60</td>
<td>0/92</td>
<td>351/0/1</td>
<td>540/0/6</td>
<td>420/0/9</td>
<td>350/0/3</td>
<td>730/0/5</td>
<td>Paisley</td>
<td>14</td>
</tr>
<tr>
<td>0/55</td>
<td>0/89</td>
<td>302/0/7</td>
<td>475/0/1</td>
<td>380/0/4</td>
<td>360/0/4</td>
<td>470/0/4</td>
<td>Pacer</td>
<td>15</td>
</tr>
<tr>
<td>0/73</td>
<td>1/21</td>
<td>306/0/3</td>
<td>533/0/1</td>
<td>460/0/6</td>
<td>390/0/4</td>
<td>580/0/7</td>
<td>boyer</td>
<td>16</td>
</tr>
<tr>
<td>0/44</td>
<td>1/08</td>
<td>270/0/5</td>
<td>530/0/7</td>
<td>420/0/4</td>
<td>310/0/3</td>
<td>630/0/4</td>
<td>BL2</td>
<td>17</td>
</tr>
<tr>
<td>0/55</td>
<td>0/50</td>
<td>280/0/3</td>
<td>550/0/3</td>
<td>460/0/7</td>
<td>430/0/4</td>
<td>580/0/7</td>
<td>BL28</td>
<td>18</td>
</tr>
<tr>
<td>0/18</td>
<td>0/85</td>
<td>270/0/3</td>
<td>530/0/4</td>
<td>410/0/3</td>
<td>320/0/3</td>
<td>630/0/4</td>
<td>BL32</td>
<td>19</td>
</tr>
<tr>
<td>0/25</td>
<td>0/00</td>
<td>340/0/8</td>
<td>580/0/3</td>
<td>550/0/3</td>
<td>220/0/4</td>
<td>570/0/3</td>
<td>BL36</td>
<td>20</td>
</tr>
</tbody>
</table>

معیار مناسب برای تشخیص زنون‌پی‌های سازگار به‌شکل STI رطوبی است. به اعضا فنلاندی (15) انتخاب بر اساس MP اباعث گریزی MP. SSI اباعث گریزی‌های با پایین‌تر عملکرد بالا و برای اباعث GMP اباعث گریزی‌های متوالی به‌شکل Ys و با پایین‌تر عملکرد بالا به‌شکل Yp به‌شکل Yp توسط نوارهای گرفته و از نظر شاخص‌های کردار به‌شکل SSI اباعث MP و GMP اباعث گریزی‌ها دانست. اب پرداخت را در (7) و اشیا داد. اباعث GMP را برای اباعث‌های لوییای معمولی پرتره داشتند. پدر و پشتوان (2) را در کردن که
جدول ۲: ضرایب همبستگی اسپرمین بین رتبه ارقام از نظر شاخص های مختلف تحت تاثیر بدننش و غیربدننش داده در شرایط تنش (Ys) و بدون تنش (Yp) 

<table>
<thead>
<tr>
<th>SSI</th>
<th>TOL</th>
<th>GMP</th>
<th>MP</th>
<th>Ys</th>
<th>Yp</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۰</td>
<td>۰/۳۰</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۰/۷۱**</td>
<td>۰/۷۱**</td>
</tr>
<tr>
<td>۰/۲۵**</td>
<td>۰/۲۵**</td>
<td>۰/۲۵**</td>
<td>۰/۲۵**</td>
<td>۰/۲۵**</td>
<td>۰/۲۵**</td>
</tr>
</tbody>
</table>

* و ** به ترتیب غیر معنی‌دار و معنی‌دار در سطح احتمال ۰/۰۵ و ۰/۰۱ درصد.

را از دو گروه زننیتهایی که فقط در محیط بدننش تنش (A) غیربدننش داشتند، همبستگی حاصل گردید. غیربدننش داده (B) با فقط در شرایط تنش (گروه C) همبستگی نسبی‌ای بازی دارند. نتایج کنکارنده، نتایج ارایه کرد.

ضرایب همبستگی بین رتبه زننیتهایی بر اساس مقادیر واکنش (شکل 1) و Ys و Yp مثبت و بسیار معنی‌دار بودند (جدول ۲). این نتایج با نظریه روزویل و هم‌الهنین (۲۳) مثبت بودند که انتصاب بر اساس متوسط شاخص MP (معمولاً به افزایش عضله در هر دو محیط تنش و غیرتنش منجر می‌گردد، مطابقت دارد. همبستگی های بین رتبه ارقام از نظر GMP با رتبه آنها انتظار Ys و Yp منابعی دارد. بر این اساس می‌توان گفت که انتصاب بر اساس GMP، باعث افزایش عضله در هر دو محیط Xو Y implکه خواهد شد. همبستگی رتبه ارقام از نظر شاخص MP و TOL مثبت و معنی‌دار بود. بنابراین انتصاب بر اساس زننیتهای گروه اول (پسر بودن) برای عملکرد پایین در شرایط به‌دست آمده می‌تواند بر روی عملکرد همبستگی با توضیح عملکرد پایین در شرایط به‌دست آمده در تنش می‌شود. روزویل و هم‌الهنین (۲۳) بیان نمودند که خطر ضروری برای این که همبستگی رتبه ارقام از نظر شاخص‌های Ys و Yp مثبت شود این است که نسبت واریانس زننیتهای MP و TOL و GMP عملکرد در شرایط تنش به مقدار آن در شرایط غیرتنش به‌بیش از یک بانده.

همان‌طور که در جدول ۲ نشان داده شده است، همبستگی رتبه زننیتهایی از نظر مقادیر واکنش و SSI Ys و Yp مثبت بود آما
شکل 1: پراکنش زوتیپ‌ها بر اساس عملکرد در محیط تنش (Y)، و بدون تنش (Yp) و شاخص STI در شدت تنش 0.5/0.25 نام‌زوتیپ‌ها بر اساس شماره آنها در جدول 3 آورده شده است.

معنی‌دار نبود، ولی بین رتبه زوتیپ‌ها از نظر مقادیر همبستگی مثبت و معنی‌داری وجود داشت. به‌پارایانت انتخاب برازیدار مقدار پایین تأثیری STI و SSI باعث افزایش عملکرد در شرایط تنش می‌شود. اشتباه دو و همکاران (25) در بررسی زوتیپ‌های لویای معمولی نتیجه‌گیری کردند که انتخاب برازیدار مقدار پایین موجب افزایش STI و SSI می‌گردد که با نتایج این پژوهش مطابقت دارد. اینکه مشخصه‌ها و مورور (37) نیز این مطلب را تأیید کردند.

هم‌بستگی رتبه زوتیپ‌ها از نظر شاخص‌های YS و SSI مثبت و معنی‌دار بود (جدول 4)، به‌پارایانت انتخاب بمناسبت TOL باعث کاهش زوتیپ‌های با عملکرد پایین در شرایط بدون تنش می‌شود. همبستگی مثبت و سیستم معنی‌دار زوتیپ‌ها از نظر شاخص‌های STI، MP و GMP و...
منابع مورد استفاده

1.  رضائی، غ. 1362. (مطالعه و نتایج بررسی‌ها). انتشارات دانشگاه صنعتی اصفهان.

2.  بهرامی، غ. و س. مدرس‌نژاد. خ. دوره باغبانی، دی. 1381. تأثیر تنش آب و مقادیر مختلف نیتروژن بر مراحل رشد و نمو، عملکرد و اجزای عملکرد ذرت. علم زراعی ایران 4(2): 184-201.

3.  سرمدتبی، غ. و کوچکی، غ. 1368. گیاه‌های نیزه‌پورانی در حال تریم (ترجمه). انتشارات جهاد دانشگاهی مشهد.

4.  کوچکی، غ. 1372. ارزیابی عملکرد زراعی و بهبود در زراعت دیم (ترجمه). انتشارات جهاد دانشگاهی مشهد.


