پروتئنز‌ها چاپ‌گره ممکن در مداخلات غذایی و دارویی دارند. اکتین‌ها، یک سیستم پروتئنز است که در میوه کیوبی به وفور پائت می‌شود. در این مطالعه محتوا پروتئین و آنزیم اکتین‌ها در چهار واریته کیوبی رایج در کشور بررسی شد و آنزیم اکتین‌ها با روش‌های مختلف به‌کار گرفته شد. برای تعیین وزن مولکولی و سنجش فعالیت آنزیمی، به وسیله اکتین‌ها در زنک‌های بزرگ آزمون (SDS-PAGE) آزمون وزن مولکولی آنزیم به دست آمده حداکثر ۲۴ کیلودانالتان است. این داده‌ها مربوط به وزن مولکولی آنزیم به دست آمده ۱۶۰۰۰ است. حداکثر آن داد که خلقت پروتئین با سد پروتئین در دو روش دفعی و روش دفعی در کیوبی نسبت به دو روش دیگر است.

واژه‌های کلیدی: کیوبی، اکتین‌ها، خالص‌سازی، پروتئین

مقدمه
میوه کیوبی حاوی مقدار زیادی از یک نوع آنزیم پروتئنز است که این نوع آنزیم پروتئنز از یک نوع آنزیم پروتئنز است. یکنون به‌کار گرفته در علوم و تحقیقات در منطقه بیولوژی پزشکی و یکنون به‌کار گرفته در علوم پزشکی. روزانه این محصولات به‌کار رفته در منطقه بیولوژی پزشکی و یکنون به‌کار رفته در علوم پزشکی. روزانه این محصولات به‌کار رفته در منطقه بیولوژی پزشکی و یکنون به‌کار رفته در علوم پزشکی. روزانه این محصولات به‌کار رفته در منطقه بیولوژی پزشکی و یکنون به‌کار رفته در علوم پزشکی.

۱. دانشیار ازمون‌های بیولوژی پزشکی، دانشگاه علوم پزشکی کرمانشاه
۲. کارشناس ارشد میکروبیولوژی، مرکز تحقیقات بیولوژی پزشکی، دانشگاه علوم پزشکی کرمانشاه

۲۲۳
نردیکی دانه، گزارش نموده‌اند (۱۷)؛ مقدار اکتینبین و میزان فعالیت پروتئزیکی آن در گونه‌ها و واریته‌های کیوی که با روش‌های رنگ‌سنجی و الکترورافزیون تعیین شده، با یکدیگر مقایسه است (۱۸). اگرچه نشان پیوسته اکتینبین‌های به رغم وفور آن در میوه‌های کیوی، به طور دقت شناسانه نشد، اما در آن آزمایشات نمونه‌برداری توانست در صنعت و پزشکی داشته باشد. برای مثال از آن می‌توان به عنوان یک پروتئز مربوط به ترسکان کیوی با مانندی یا دیگر موارد پروتئزی با هدف ساختن کیسکس در پیمان‌های دارای مشکلات گوارشی استفاده نمود (۲). در این مطالعه مقدار اکتینبین‌های محیطی و پروتئزهای در جهار واریته کیوی رایج در کشور بررسی گردید و به هدف دستیابی به آن‌زیم خالص بارای استفاده‌های بعدی، این آزمایش به روش‌های ساده و مناسب تحلیل گردید.

مواد و روش‌ها

نمونه‌ها

در این مطالعه از میوه واریته‌های کیوی موجود در ایران شامل چهار واریته ییازدو، موئتی، برونو و آبیت، نمونه‌گیری به عمل آمده و به ترتیب نمونه‌های این چهار واریته از هر نمونه به محتوای آزمایش در مرکز تحقیقات بیولوژی پزشکی منتقل گردید.

عصاره‌گیری

ابتدا پوست‌های نمونه کنده شد. سپس بخش گوشتی نمونه از دانه‌ها جدا گردید. بخش گوشتی (یک کیلوگرم) با مخلوط کننده کم‌کم یک‌تخته‌گردید. عصاره به دست آمده از چند لیوان صافی پارچه‌ای بطور داده شد. به عصاره صافه فلزی ویژه‌ای در C غلظت نهایی یک میلی‌مولار اضافه گردید و متود یک ساختار دمای اول‌ین قرار داده شد. عصاره به مدت ۳۰ دقیقه در دمای ۴ درجه سانتی‌گراد در ۱۵۰۰ سانتی‌فاز شد. مایع روبی‌ی جمع آوری و رسوب دور ریخته شد.

(۱۴) مقدار اکتینبین و میزان فعالیت پروتئزیکی آن در گونه‌ها و واریته‌های کیوی که با روش‌های رنگ‌سنجی و الکترورافزیون تعیین شده، با یکدیگر مقایسه است (۱۸).

کرومکتografی تعیین یون

این آزمایش بر اساس روش مکدول (۱۴) با یک تغییرات انجام گرفت. مقدار کافی از رنگ‌یادی آمپتولین سفارز (فارماسیا) در بافر سیراتور ۱/۵ مولار با pH ۵/۵ و در یک سیستم شیشه‌ای به قطر ۵ و ارتفاع ۱۵ سانتی‌متر ریخته شد. بعد از تعادل رسیدن سیستم با بافر سیراتور، نمونه بر پرینتیپ دیالیز شده در غلظت ۱۰ میلی‌گرم در میلی‌لیتر وارد الکترورافزیون گردید. پس از ورود نمونه به سیراتور با جریان ۱۰۰ میلی‌لیتر در ساعت گیاه گردید. نمونه‌های حجم‌های ۲۵ میلی‌لیتر توسط دستگاه جمجمه‌کننده جمع‌آوری و چند بار نمونه در طول موج ۲۸۰ تا ۳۰۰ نانومتر فرآیند گردید. پس از رسیدن جذب خروجی سیستم به کمتر از ۰/۰۵ شیب خطی، مایل‌کردن سدیم در بافر سیراتور به سیستم وارد گردید. نمونه‌های حجم‌های ۲۵ میلی‌لیتر توسط دستگاه جمجمه‌کننده جمع‌آوری و چند بار نمونه در طول موج ۲۸۰ تا ۳۰۰ نانومتر فرآیند گردید. پس از رسیدن جذب خروجی سیستم به کمتر از ۰/۰۵ شیب خطی، مایل‌کردن سدیم در بافر سیراتور به سیستم وارد گردید.
اندازه‌گیری فعالیت پروتئاز اکتین‌ریان
برای بررسی فعالیت پروتئاز اکتین‌ریان از آزمون هضم کازتین
شیر استفاده شد (27). برای این اکتین، آنزیم در pH 4 به نسبت
وزنی یک درصد (وزن آنزیم به سویترا) به محلول کازتین
اضافه شد. محلول 2 ساعت در دما 37 درجه سانتی‌گراد
قرار گرفت. سپس محتوای لوله‌های آزمون و شاهد، الکترورفورز
و درصد هضم کازتین با تراکم سنجی بانده‌ها تعیین گردید.

نتایج
غلظت پروتئین نام عصاره کیوی واریته‌های هیوآر، بروتو،
مونتو و آبیت به سه روش لوری، برادفورد و UV در جدول
1 آمده است. همان گونه که اطلاعات نشان می‌دهد، نتایج
غلظت پروتئین در عصاره دیالیز شده واریته در روش لوری
و UV تفاوت بسیار زیادی داشت (تا چهار برابر) با روش برادفورد
داد. بدین ترتیب هر عصاره در مقابل بافر اندازه‌گیری مقدار
پروتئین با سه روش فوق غلظت پروتئین هر واریته کاهش کمی
در روش برادفورد و کاهش شدیدی در روش لوری و UV
نشان داد. به نحوی که نتیجه اندازه‌گیری پروتئین هر عصاره با
این سه روش به هم می‌گذرد و به نتایج روش برادفورد تغییر
گردید.

اندازه‌گیری غلظت پروتئین
برای تعیین مقادیر پروتئین از سه روش برادفورد (8)، لوری
(13) و UV (16) استفاده شد. در روش برادفورد به معروف
برادفورد (شامل 1) گرم کوماسی 250 میلی‌لیتر اتانول
95 درصد، 100 میلی‌لیتر اسید-فسفوریک 10 درصد در حجم
نهایی یک لیتر، غلظت پروتئین در ارتفاعی مختلف کیوی بر
اماس غلظت‌های مشخص آلبومین سرم گاوار (سیگما)
اندازه‌گیری شد. در این روش با استفاده از جذب غلظت‌های
مختلف آلبومین سرم گاوار در دامنه 0/1-9 میلی‌گرم در
میلی‌لیتر منحنی استاندارد رسم گردید و بر اساس منحنی
استاندارد، غلظت پروتئین در نمونه‌ها اندازه‌گیری شد. در روش
لوری که اساس آن احیای بیوس است، تنظیم واحد به
تیروزین و تریپتوفان است. از آن روش (سیگما) در دامنه غلظت
0/1-100 میلی‌گرم در میلی‌لیتر برای برای رس
منحنی استاندارد و تعیین غلظت پروتئین در نمونه‌ها استفاده
شد. در روش UV جذب نمونه‌ها در طول موج 280 و

225
جدول 1. باکیفیتی گل‌فیروز در واریته‌های مختلف کیوی به سه روش استاندارد قبل و بعد از دیالیز عصاره‌ها

<table>
<thead>
<tr>
<th>روش</th>
<th>Lowry (mg/ml) قبل از دیالیز</th>
<th>UV (mg/ml) قبل از دیالیز</th>
<th>Bradford (mg/ml) قبل از دیالیز</th>
<th>روش</th>
<th>Lowry (mg/ml) بعد از دیالیز</th>
<th>UV (mg/ml) بعد از دیالیز</th>
<th>Bradford (mg/ml) بعد از دیالیز</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayward</td>
<td>11/7 ± 0/5</td>
<td>10/5 ± 0/5</td>
<td>2/7 ± 0/5</td>
<td>Bruno</td>
<td>11/6 ± 1/2</td>
<td>10/2 ± 0/8</td>
<td>2/7 ± 0/4</td>
</tr>
<tr>
<td>Monty</td>
<td>8/3 ± 0/5</td>
<td>7/5 ± 0/3</td>
<td>5/2 ± 0/3</td>
<td>Monty</td>
<td>11/1 ± 1/0</td>
<td>8/0 ± 0/8</td>
<td>4/2 ± 0/5</td>
</tr>
<tr>
<td>Abbots</td>
<td>1/9 ± 0/4</td>
<td>2/4 ± 0/4</td>
<td>3/1 ± 0/0</td>
<td>Abbott</td>
<td>11/1 ± 1/8</td>
<td>7/2 ± 0/8</td>
<td>3/2 ± 0/0</td>
</tr>
</tbody>
</table>

Mean ± SE

الکتروفورز نمونه‌های مربوط به پنج سلسله مختلف در سه آماده است. برای گروه‌های میکروکاکا، مربوط به پنج این نمونه‌های به سه روش استاندارد پنج است. حاصل از کروماتوگرافی تعیین بیش از 3 آماده است. این نتایج نشان داد که در در دو کروماتوگرافی میکروپلستیکی، مربوط به پنج گروه است. مقدار کمپلکس میکروپلستیکی مشخص است که همان آنزیم اکتین‌گرایانه می‌باشد. مقدار نسبت این پروتئین به پروتئین تام عصاره در واریته‌های آبیت، مونتي، هیوبرد و برونور به ترتیب 42، 29، 28 و 23 درصد بود.

به منظور کنترل نمونه، ابتدا عصاره میوه کیوی با سولفات آمونیوم در غلظت‌های 0، 0.5، 1 و 2 درصد رسوپ داده شد. محتوای هر بخش رسوپ داده شده بود. سپس و آزمون هضم کازیآتیکی عصاره اولیه مقابله SDS-PAGE و گردید. نتایج نشان داد که عصاره میوه کیوی به غلظت 4 درصد سولفات آمونیوم تمام اکتین‌گرایانه و در غلظت 3 درصد سولفات آمونیوم به غلظت 90 درصد آزمون رسوپ نمی‌شود. بین 10 درصد کم و 90 درصد بالا رسوپ نمی‌شود.

برای آزمون مواده، محتوای هر بخش عصاره تا اکتین‌گرایانه G2 به کمک گروه‌های کازیآتیکی عصاره اولیه مقابله WD-PAGE و گردید. نتایج نشان داد که عصاره میوه کیوی به غلظت 4 درصد سولفات آمونیوم تمام اکتین‌گرایانه و در غلظت 3 درصد سولفات آمونیوم به غلظت 90 درصد آزمون رسوپ نمی‌شود. بین 10 درصد کم و 90 درصد بالا رسوپ نمی‌شود.

برای کنترل مکانیزم دسته‌بندی، محتوای هر بخش عصاره تا اکتین‌گرایانه G2 به کمک گروه‌های کازیآتیکی عصاره اولیه مقابله WD-PAGE و گردید. نتایج نشان داد که عصاره میوه کیوی به غلظت 4 درصد سولفات آمونیوم تمام اکتین‌گرایانه و در غلظت 3 درصد سولفات آمونیوم به غلظت 90 درصد آزمون رسوپ نمی‌شود. بین 10 درصد کم و 90 درصد بالا رسوپ نمی‌شود.

برای کنترل مکانیزم دسته‌بندی، محتوای هر بخش عصاره تا اکتین‌گرایانه G2 به کمک گروه‌های کازیآتیکی عصاره اولیه مقابله WD-PAGE و گردید. نتایج نشان داد که عصاره میوه کیوی به غلظت 4 درصد سولفات آمونیوم تمام اکتین‌گرایانه و در غلظت 3 درصد سولفات آمونیوم به غلظت 90 درصد آزمون رسوپ نمی‌شود. بین 10 درصد کم و 90 درصد بالا رسوپ نمی‌شود.
شکل 1. تراکم-سنگینی الگوی SDS-PAGE عصاره واریته آبیوت (الف)، موتی (ب)، هیبارد (ج) و پرودون (د).

شکل 2. کروماتوگرام تهیه پون عصاره میوه کیوی در سطون دی اتانل آمینو اتیل سفارز.
شکل ۳ عصاره کیوی (ستون‌های اول). بخش اول (ستون‌های ۱و۲) و بخش دوم (ستون‌های ۳و۴) حاصل از کروماتوگرافی SDS-PAGE تعیین یون. ستون M شامل مارکرهای وزنی بترنید ۹۷، ۶۰، ۴۲ و ۱۴ کیلودانن. در ستون‌های ۲و۳ غلظت پروتئین ۲و۳ است و در بیاب ستون‌های ۴و۵ است.

بحث

محصول پروتئینی میوه کیوی که مقدار نسبی آن ۸/۰ درصد گزارش شده (۱۹) شامل انواع معدودی پروتئین در دامنه وزنی ۳۰-۱۰۰ کیلودانن است (ستون‌های ۱و۴ شکل ۳). پرمقدارترین پروتئین این میوه، آنزیم اکتین‌پذیر است که در
آکتینی‌دان میوه کیوی: خالص‌سازی و بررسی مقدار آن در واریته‌های داخلی

(الف) عکس 1

(ب) عکس 2

گردد. برخلاف نتایج نوری، نشان داد که با ارتفاع رادیان بالا در استحکام آزمون و اثاث درصد کمی از آن در مرحله جداسازی، مقدار آکتینی‌دان به دست آمده کمتر از حد انتظار است. برای روش‌های
شندن موضع غلظت پروتئین‌های نوری به روش برادفورد نیز
اندازه‌گیری شد. نتایج به دست آمده از این روش نشان‌داد که
تولید یک پرویژن لوری UV داشت (جدول 1). با دیالیز
غلظت‌ها در میزان یافته و اندازه‌گیری مجدد پروتئین با سه روش
فوق، روش گردیده که غلظت پروتئین کاهش شدیدی (د) به
برای دادن لوری UV و کاهش ضعیفی در روش
برادفورد دارد، به طوری که نتایج غلظت پروتئین میزان
قبل
و بعد از دیالیز در دو روش لوری UV و
UV معنی‌دار (0.000) (P)

است و در روش برادفورد نشان‌داده می‌دارد در این
خصوص دیده نشود (جدول 1). اگرچه دیالیز در کیسه‌های
دیالیز معمولی (با انتداز سوخت حدود 12 کیلوالتن) باعث
خروج پروتئین‌های کوچک (کمتر از 12 کیلوالتن) از محیط
عمل می‌گردد، با این حال با توجه درصد اندک پروتئین‌های
کم‌وزن در عصاره کیوی (شکل 3)، محتوای پروتئین و

۲۲۹

1. Mصطفایی، ع. 1378. راهنمای نظیری و عملیات کلونی‌ورزشی در زل. چاپ دوم. انتشارات باداوران. نهآم.


