مطالعه تفکیک اجزای چربی شیر به روش کریستالیزاسیون جزء به جزء

مجید جمشیدیان، محمدعلی سعیدی و محسن برزگر

چکیده

به منظور اصلاح چربی شیر، کریستالیزاسیون جزء به جزء آن پس از سرم گیری با دکتانور در سه دامنه دماهای 35-37، 37-39 و 40-42 درجه سانتی‌گراد و سه زمان کریستالیزاسیون 15، 30 و 45 دقیقه به مدت زمان 15 دقیقه جدا شد. جزء مایع با اولین بانی مانده وارد مرحله بعد کریستالیزاسیون (Low melting fraction) LMF، جزء به جزء گردیده و این عمل تا سه مرحله تکرار شد. در پایان در 27 نمونه (Middle melting fraction) MMF و 14 نمونه (High melting fraction) HMF متوسط پایه دستگاه (Solid fat content) SFC و درصد چربی جامد یا (Weifs) به دست آمد. هدف از بررسی این آزمایشات گرفتن داد هکه یابد و برای HMF، MMF و SFC اخلاق برای معنی درآورد. از نظر SFC و MMF لیمیت به دست آمد. از نظر SFC و MMF لیمیت به دست آمد. از نظر SFC و MMF لیمیت به دست آمد.

واژه‌های کلیدی: چربی شیر، کریستالیزاسیون جزء به جزء

مقدمه

چربی شیر بجیه‌های ترین چربی طبیعی و تركیبی از جعل است. گلیسول‌های است که دارای وزن مولکولی 58-60 دارند و به شکل است. این چربی می‌تواند از نظر تعداد کربن می‌باشد. چربی شیر همچنین دارای مقداری کلسترول دارد و چربی اسیدهای چرب آن منحصر به فرد است. چربی بجیه اسیدهای چرب در دامنه طول زنجیر اسید چرب، میزان وجود اشباع آن و توزیع وزه فضایی است. سه‌وپنجم چرب یا بر رفتار

201
فراورده‌های چربی مواد غذایی به کار برد (7). هریا و همکاران سنتیک تیلوئر چربی شیر را بررسی نمودند (31). اوش و همکاران اثر کلسترول‌برداری جریان انتقال چربی هریا و افرازایی تیلوئری فیبر کاربرد درمانی را انجام می‌دهند.

(Conjugated linoleic acid) (CLA)

شمانی که قبلاً از مصرف کندنگان عمدی کره بودند را می‌توان به گرانی قسمت‌های حیوانی و کمی خاصیت گسترش بدنی آن در مقایسه با مارگارین، همچنین بالا بودن (Spreadability) تری آسیل گلیسرول آن انبای، اسیدهای چرب زنگر کوئن، افزایش تری-الیپید خون و افرازایی خطر ابتلا به بیماری‌های قلبی و عروقی آن نسبت داد (31). از آنجا که چربی شیر دارای تری آسیل گلیسرول مختلف با ناپکته ذوب متفاوت می‌باشد می‌توان آنها را جداسازی نمود و در فرآورده‌های مختلف متفاوت مانند شکلات، نان‌های، کیک‌های، فراورده‌های لبنی، پوست‌های ترکیبی، نان‌های، روش خرک قدري، شورت‌های میوه آزایش و دارویی استفاده کرد (13).

برای نخستین مرتبه به محسس کرتیلیازیون جریان به جوهر در اروپا توسط وارک‌شتال رونگ کاتاوان از سریلانکا یپ بردی شد (16). رونگ گرم مایع که در داخل یک پیچ‌های جوهری بلند به ریخته می‌شد، زمانی که به سمت آب و Ceylon pipes نام گرفت و جریان به جوهر می‌شود. به‌عده‌ی قسمتی از آن که بلورین شده بود توسط وارک‌شتال‌های دریافت کننده چربی مورد ارزیابی قرار گرفت. آنها در این‌البیکه که جریان استاربان در صنعت یوکره‌ها و محاصف، از سال 1970 جاری‌الکه از چیک دما برای کرتیلیازیون جریان به جوهر چربی استفاده نمود و در نرم و سخت را جداسازی کرد که اختلاف بین نقط‌های این دو جریان 18/11°C و اختلاف بین ده‌ها بلندتر از 0/5 بود (10). آشیلیا و همکاران برای جریان به جوهر سازی از سبک‌ترین صفحات کننده در آمیپاشکوده و سطح پایلوت استفاده کرده‌اند (1). کابلیگان و همکاران قابلیت استفاده از اجزای چربی شیر را در کره گسترش داده بررسی کرده‌اند (12). دیفس سیروری کامل به کرتیلیازیوین جریان به جریان چربی شیر و عوامل مؤثر بر آن ارائه نمود. وقتی پیش‌داد که اجزای چربی شیر را می‌توان به تهیه آنها به صورت مخلوط با نسبت‌های مختلف در

202
مطالعه تفکیک اجزای چربی شیر به روش کریستالیازیون جزو به جزو

می‌گردد. به نظر می‌رسد با استفاده از جزو سخت چربی شیر به‌طور کامل قیمت‌بندی دانه‌شیر و می‌تواند حجم زیادی از مصرف کرک کاهشی را کم کند. از میزان واردات این جز ماده اولیه کاسته می‌شود.

در این تحقیق چربی شیر تحت عمل کریستالیازیون جزو به‌طور قوی و پره‌بر و روز اجرایی به دست آمده، آزمایش‌های درصد چربی‌های جامد (SFC) و عدد یدید انجام و مقیاس گردید و بر اساس تناوب به دست آمده، کاربرد هر جزء در صنایع غذایی معروف شد.

مواد و روش‌ها

ماده عمدب مورد نیاز کره بوده که از کاربران خانه (کم‌مصرف) یا گوگرد (SFC) به دست آمده، چند شده‌است که گوگرد خیریداری شده از منطقه) و سایر مواد شیمیایی از گیاهی مربی در جریان آنالیز یک‌پهنه شد.

تعیین خصوصیات شیمیایی کره مورد استفاده

در مراحل اول خصوصیات شیمیایی کره شامل مقدار چربی و روپتیزی به‌طور کمی‌تر در دوره‌زیر و روپتیزی بی‌تولونه (SFC) عدد یدی، عدد صابعی، عدد اسیدی و عدد پراکسیدی طبق روش‌های انجام‌گیری گردید (2).

کریستالیازیون جزو به جزو

در مرحله بعد کره در دمای ۶۵ درجه سانتی‌گراد ذوب شده و در این دمای توسط دکتانور آب گیری (سرم گیری) گردید. بعد از آن روغن کرک به دست آمده به دست نیم ساعت در دمای ۶۵ درجه سانتی‌گراد نگهداری شد. علت انتخاب دما ۶۵ درجه SFC گردان یک بود که در این دما کلیه هسته‌های آلویه بلورین چربی و بیابان ترین کریستالهای موجود در آن ذوب شود. (5)

روغن کرک سپس در ظرف دستگاه بلور (انکوپیلاتور خجیدن دار VELP, FOC 22SI) به فهرم دستگاه هموئزن با دوز متغیر به مقدار کیفیت شده شکر گرفته‌شد، در دمای مناسب و زمان‌های تعیین شده قرار گرفته تا کریستالیازیون جزو به جزو صورت گیرد. سپس مدت
جدول 1. خصوصیات شیمیایی کره مورد استفاده

<table>
<thead>
<tr>
<th>خصوصیات</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>چربی (%)</td>
<td>85</td>
</tr>
<tr>
<td>رطوبت (%)</td>
<td>0.4</td>
</tr>
<tr>
<td>عضد بدن (%)</td>
<td>0.2</td>
</tr>
<tr>
<td>تعداد سایبانی</td>
<td>232/8</td>
</tr>
<tr>
<td>تعداد پراکند</td>
<td>0.4</td>
</tr>
<tr>
<td>تعداد اسیدی</td>
<td>0.22</td>
</tr>
</tbody>
</table>

اندازه‌گیری درصد چربی جادم (SFC) اجزای به دست آمده درصد چربی جادم در بیک مخلوط روان یا چربی بسیار مهم بوده و بر نقطه ذوب، پلاستیتیج و خواص فیزیکی‌شیمیایی محصول مؤثر است و دامنه کاربرد آن مشخص می‌باشد (14). در این روش نمونه چربی ابتدا در هر دما برای SFC که اندازه‌گیری گردیده به مدت 3 دقیقه نگه‌داری شده و سپس نمونه در محیط به لغت دستگاه (Bruker, Minispec pc 100, Germany) NMR درصد چربی جادم در دامنه دما یا 40-60 درجه سانتی‌گراد تعیین گردید (81-160).

اندازه‌گیری عدد بندی اجزای به دست آمده از آنها که عدد بندی نیز مالکی برای انجام بررسی اشتقاک درجه اسباعی چربی هاست، عدد بندی اجزای مطالب یا روش AOCs Cd16-25 اندازه‌گیری شد.

طرح آماری

به منظور بررسی آماری نتایج از طرح تجربی واریانس (ANOVA) و مقایسه میانگین‌ها از آزمون 1 چهفش و براز تجزیه و تحلیل آنها از نرم‌افزار آماری SPSS استفاده شده است.

نتایج و بحث

خصوصیات کره اولیه در جدول 1 و عدد بندی اجزای به دست

204
جدول 2. عدد یک اجزای به دست آمده از کریستالیزاسیون جزء به جزء نمونه چربی

<table>
<thead>
<tr>
<th>عدد یک یا فراکسیون</th>
<th>6 ساعت</th>
<th>12/5 ساعت</th>
<th>18 ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMF</td>
<td>35 °C</td>
<td>32/5 °C</td>
<td>30 °C</td>
</tr>
<tr>
<td>MMF</td>
<td>22 °C</td>
<td>19/5 °C</td>
<td>17 °C</td>
</tr>
<tr>
<td>LMF</td>
<td>10 °C</td>
<td>7/5 °C</td>
<td>5 °C</td>
</tr>
</tbody>
</table>

حرف a و b: نشان دهنده اختلاف معنی دار بین اعداد یک اجزای به در سطح 5%.
و حرف c نشان دهنده عدم اختلاف معنی دار در این سطح می‌باشد.

جدول 3. درصد اجزای به دست آمده (راندمان) از کریستالیزاسیون جزء به جزء نمونه چربی

<table>
<thead>
<tr>
<th>مدت زمان کریستالیزاسیون(ساعت)</th>
<th>درصد</th>
<th>جزء</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HMF</td>
</tr>
<tr>
<td>18/6</td>
<td>27/8</td>
<td>40</td>
</tr>
<tr>
<td>35/6</td>
<td>34</td>
<td>39/3</td>
</tr>
<tr>
<td>51/4</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMF</td>
</tr>
<tr>
<td>40/5</td>
<td>44/6</td>
<td>45</td>
</tr>
<tr>
<td>28/2</td>
<td>28/1</td>
<td>28/4</td>
</tr>
<tr>
<td>28/4</td>
<td>33/1</td>
<td>15/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMF</td>
</tr>
<tr>
<td>37/9</td>
<td>44/6</td>
<td>31</td>
</tr>
<tr>
<td>33/2</td>
<td>44/9</td>
<td>29/2</td>
</tr>
<tr>
<td>18/3</td>
<td>27/8</td>
<td>20/8</td>
</tr>
</tbody>
</table>

205
کریستال‌دانیون جزه به جزه روی آن انجام گیرد و نمی‌توان بدون مشخص نمود مورد استفاده دمای بهینه جداسازی را مشخص کرد (۱۲). مثالی در مورد روش‌های وسیعی که از آن در دمایی های جداسازی در چری مورد استفاده در درجه حرارت به کمتر از آن در دمایی HMF، نسبت به جزه هMF مشخص می‌شود. بنابراین بهتر است جداسازی جزه فازهای تشکیل شده است. زیرا عموماً مقداری از فاز مالح در شکلی که توسط جامده به دست می‌آورد به این ترتیب سبب کاهش درصد چری جامده می‌شود. ...

برای بررسی می‌توان درون درصد چری جامده دست‌آمده مطلق جدول ۴ نمونه‌های جفت شده را روی آزمون ۴ مقایسه آماری گردید و معیار داری تفاوت آن‌ها مشخص شد. ...

نمونه این جدول نشان می‌دهد که به جز HMF8-MMF8، HMF5-MMF5، HMF1-MMF1 جفت‌ها می‌شود. بنابراین ۲۲ جفت به بهترین نتیجه در نتیجه داده بود. ...

در مورد این که کدام مدت زمان نگهداری برای کریستال‌دانیون جزه به جزه مناسب است، نتایج نشان می‌دهد (جدول ۲-۳). مدت زمان ۵ ساعت، اجازه تشکیل کامل‌تر تری‌گلیسریدهای جامده از روند کره را نداشت و اجرای به دست آمده از مدت زمان نگهداری ۸ ساعت نیز تفاوت زیادی با مدت زمان نگهداری ۱۳/۵ ساعت ندارد. به نظر می‌رسد که مدت زمان نگهداری هزینه و وقت بیشتری است. بنابراین زمان ۱۳/۵ ساعت توصیه می‌شود. همچنین در مورد دامنه دماهی مناسب با ثابت گفته که در هر دما درصدی از روند کر به صورت جامده و درصدی به صورت مالح در می‌آید. برای نمونه این درصد در دماهای ۱۲ و ۱۳ درجه سانتی‌گراد، تفاوت است. بنابراین به توصیه کالیبرهای لازم ابتدا نشته مورد نظر جزه در ماده غذایی بررسی شود، آن گاه عمل
جدول ۲: میانگین درصد چربی جامد ۲۷ جزو جدا شده از نمونه چربی در دمای‌های مختلف

<table>
<thead>
<tr>
<th>دمای جزء (°C)</th>
<th>زمان جزء اجزاء (ساعت)</th>
<th>جدا شده (ساعت)</th>
<th>جدا شده در SFC</th>
<th>درصد در SFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>6.0</td>
<td>0/15</td>
<td>93</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>73</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>70</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>67</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>64</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>61</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>58</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>55</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>52</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>49</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>46</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>43</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>40</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>37</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>34</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>31</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>28</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>25</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>22</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>19</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>16</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>13</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
<tr>
<td>10</td>
<td>6.0</td>
<td>0/15</td>
<td>90</td>
<td>25</td>
<td>3/26</td>
<td>36</td>
<td>1/26</td>
<td>36</td>
<td>1/26</td>
</tr>
</tbody>
</table>

جدول ۵: مقایسه اجزاء به دست آمده به روش آزمون ۴ جفت شده

207
<table>
<thead>
<tr>
<th>مقياس جفت به جفت</th>
<th>اختلاف میانگین</th>
<th>معیار</th>
<th>جفت شده</th>
<th>معیار</th>
<th>جفت شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMF5 - LMF5</td>
<td>0.002**</td>
<td>0.063</td>
<td>0.91</td>
<td>4/45</td>
<td>0.000</td>
</tr>
<tr>
<td>HMF6 - MMF6</td>
<td>0.002**</td>
<td>0.056</td>
<td>0.97</td>
<td>6/10</td>
<td>0.000</td>
</tr>
<tr>
<td>HMF6 - LMF6</td>
<td>0.001**</td>
<td>0.148</td>
<td>1.02</td>
<td>4/27</td>
<td>0.000</td>
</tr>
<tr>
<td>MMF6 - LMF6</td>
<td>0.008**</td>
<td>0.090</td>
<td>0.95</td>
<td>1/94</td>
<td>0.000</td>
</tr>
<tr>
<td>HMF7 - MMF7</td>
<td>0.001**</td>
<td>0.073</td>
<td>0.91</td>
<td>7/35</td>
<td>0.000</td>
</tr>
<tr>
<td>HMF7 - LMF7</td>
<td>0.001**</td>
<td>0.086</td>
<td>0.86</td>
<td>4/15</td>
<td>0.000</td>
</tr>
<tr>
<td>MMF8 - MMF8</td>
<td>0.003**</td>
<td>0.078</td>
<td>0.91</td>
<td>8/13</td>
<td>0.000</td>
</tr>
<tr>
<td>HMF8 - LMF8</td>
<td>0.005**</td>
<td>0.080</td>
<td>0.91</td>
<td>4/27</td>
<td>0.000</td>
</tr>
<tr>
<td>MMF9 - MMF9</td>
<td>0.001**</td>
<td>0.073</td>
<td>0.91</td>
<td>6/24</td>
<td>0.000</td>
</tr>
<tr>
<td>HMF9 - LMF9</td>
<td>0.001**</td>
<td>0.086</td>
<td>0.86</td>
<td>4/15</td>
<td>0.000</td>
</tr>
<tr>
<td>MMF9 - LMF9</td>
<td>0.001**</td>
<td>0.073</td>
<td>0.91</td>
<td>6/24</td>
<td>0.000</td>
</tr>
</tbody>
</table>

**: اختلاف معیار در سطح 1%.

تا حد زیادی رضایت بخش بود. گرچه پیشنهاد می‌شود در بهینه‌سازی روش مورد استفاده که جنبه کاربردی بهتری داشته باشد، معیارهای مختلف و تحقیقات دنبال گردید.

نتایج گیری

همانطور که جدول 2 نشان می‌دهد بین نقطه ذوب، عدد پیدا، درصد جنگلی پیش‌بینی و در تیجی جوایز فیزیکوشهیمیائی بستر از اجزای به دست آمده در دماهای مختلف اختلاف وجود 208

