اصلاح رطوبت تعادلی شلوک برنج (سیبزرو) برای شیب سازی خشک کردن

توده برست نازک

شاهین رفیعی

چکیده
خشک کردن سرعی می‌تواند ترک‌های داخلی در دانه ایجاد کند که این ترک‌ها زمانی را برای شکسته شدن دانه در طول عملیات تبدیل مسأ>({کربنی. فرآیند خشک کردن با یک کنترل نیاز به شرح دقیق مکانیزم خشک کردن دارد. رطوبت تعادلی توده بکار از خصوصیاتی است که به طور مستقیم بر پدیده خشک کردن محصول داخلی توده اثر می‌کند. اصلاح مقدار رطوبت تعادلی (Equilibrium moisture content) وضعیت است که به طور مستقیم بر پدیده خشک کردن محصول داخلی توده اثر می‌کند.

توده برست نازک شلوک برنج سیبزرو به وسیله خشک کن از آزمایشگاهی خشک شد. در طول مدت خشک کردن، وزن توده شلوک در یک مورد مدل میانگین اندازه گرفته شد و با داده‌های حاصل شد. رطوبت شلوک محاسبه گردید. مقدار میانگین مربعات خطا برای رطوبت تعادلی 7/5 درصد (بر پایه خشک) بود. مقدار میانگین انحراف میانگین برای رطوبت تعادلی 11/5 درصد (بر پایه خشک) بود. مقدار میانگین انحراف نسبی برای رطوبت برای 2/5 و 2/3 کود. به توجه به مقدار خطای مدل نسبی به داده‌ها آزمایشگاهی رطوبت تعادلی توده برست نازک 11/5 درصد (بر پایه خشک) پیشینی نتیجه را به دست داد.

واژه‌های کلیدی: دانه شلوک، خشک کردن، روش اجزای محدود، شیب سازی، انتقال جرم، رطوبت تعادلی

مقدمه
به‌طور کلی خشک کردن به‌طور معمول به دقت بهتر در تخمین پدیده‌های طبیعی یکی از مباحث جدی در مهندسی می‌باشد. به‌طور کلی افراد ممکن است اکنون جای خود را در آثار صنعتی بپذیرند.

1. استفاده مکانیک مایلینی‌ها به‌معنی داشته‌ای که واژه‌هایی به‌راستی، دانشگاهی و کشاورزی، دانشگاه تهران

175
ابن عوامل در شیب‌سازی رطوبت توده در فرآیند خشک‌شدن

(3) از روش شیب‌سازی فرآیند خشک‌شدن برای کنترل پیشرفت و
دقیق تر نحوه خشک‌شدن می‌باشد. از میان فرآیند توزیع گذاری
کاهش آنزیم‌ها و باعث خشک‌سازی در عمایق‌بندی خشک‌با
امید و یزی‌پردازی است. شلوک هر نیکی از
محصولاتی است که خشک کردن، نقش بسیار مهمی در میزان
ضایعات در طول عملیات خشک‌کرایی آن دارد. در نتیجه شیب‌سازی
فرآیند خشک‌شدن مرحله اولیه است.

توی در سال 1983 برای نخ‌های مختلف خشک‌کردن،
رطوبت یا توزیع فشار در یک ماده متخلف مواده غیر
نگمک تحقیقات را انجام داد. نتیجه گرفت که برای مواد
سولولی دهنده بافت محصولات کشاورزی، مکانیزم خشک
کردن از یکی‌دستگی یافته برخوردی است. علت این امر
ساخته‌های ناهنجار مواد است. محصولات کشاورزی در اثر
افت رطوبت منتقل می‌شوند و یکی‌های خشک کردن خشک‌کردن که در مواد
تغییرات ژنتیکی و شیمیایی محصولات کشاورزی در حین
فرآیند کاهش رطوبت در اثر خشک کردن. تحقیقات گسترده‌ای
انجام گردید (17).

یا اگرچه و موجود در آزمایش‌های با خشک‌کردن برای
نامگوشی به وسیله روش آزمایش‌های با رطوبت‌های یا درجه حرارت‌های اولیه
انجام داده شده و با استفاده از این روش‌ها محدود، معادله
انتشار رطوبت در برخی فرآیند‌ها را برای چسباندن دانه‌برنگ به
شکل یک همگن چال می‌کند. آن‌ها منحنی‌های کاشش
رطوبت در طی خشک کردن به دست آمده از مدل‌های تئوری
را با داشته‌ها آزمایش‌گاهی مقابله کردن (19).

اسکارک و همکارانش به منظور مقایسه انتشار رطوبت در
اندوسیرم، سیوس و پوست برنگ. خشک کردن شلوک با را
روش اجزاء رطوبت شیب‌سازی کردن و نتیجه گرفتند که
انتقال رطوبت به ترتیب در اندوسیرم، پوست و پوست برنگ
کاهش می‌یابد آن‌ها تغییرات ذره حرارت را مورد توجه قرار
داده بودند (16).

176
مواد و روش‌ها

تغییر سطح مداخل 1 معادله حاکم انتقال جرم بر اساس مدل بیضوی را بیان می‌کند.

\[
\frac{\partial W}{\partial t} = \text{div}(D(r,z,t)\nabla W(r,z,t))
\]

1: زمان
2: ضریب انتشار رطوبت در مختصات \((r,z)\)
3: رطوبت در مختصات \((r,z)\)
4: زمان (دبیت روزانه)
5: شرط اولیه و محدودیت جرم
6: شرط اولیه و محدودیت حرارت
7: شرط اولیه و محدودیت حرارت
8: شرط اولیه و محدودیت حرارت
9: شرط اولیه و محدودیت حرارت

هر دو معادله انتقال حرارت و جرم به صورت هم‌زمان حل شده و از آنجا که در این مقاله شیب‌های سطحی رطوبت دانه الگویی می‌شود، فقط معادله سیستم انتقال جرم استخراج می‌گردد. برای استخراج معادله سیستم از معادله حاکم انتقال جرم، از روش گالرکین (Galerkin method) استفاده شده. به‌دین محدودیت گرفته شده \(W^n = 0\) در هر نقطه از دامنه را می‌توان آن مقدار را به صورت دوباره در محدودیت‌های دیگر را در محدودیت‌های دیگر اعمال کرد.

کاستون و همکاران مدل سیستمی خشک داده توده بسته نازک گندم را به وسیله روش اجزای محدود با فرض دو شکل کروی و بیضوی دانه گندم استخراج کرده‌اند و به این نتیجه رسیدند که: با توجه به داده‌های آزمایشگاهی مدل بیضوی دانه گندم فرضی خشک شدن را بهتر شیب‌سازی می‌کند.

در این تحقیق برای شیب‌سازی دقیق تر خشک شدن شلوتوک، رطوبت تعادلی که یکی از پارامترهای مهم در مدل سیاسی انتقال جرم می‌باشد اصلاح شد. برای مثال، رطوبت دانه شلوتوک وارد شده سپس در هر نقطه خشک شده و شرکت جرم و عضوی به دست آمده سپس مدل عددی برای مقادیر مختلف رطوبت تعادلی حل شده و مقدار محاسبه می‌گردد. مربعات خطاف و مدول معنایی آزمایشگاهی و مدل عددی محاسبه گردد و بررسی آن بهترین رطوبت تعادلی بیشتر شده.

شکل 1: نمای مقطع طولی یک چهار دانه شلوتوک شیب‌سازی شده

با 21 گره و 25 ژئه

لایه نازک توده گندم مقابله شده و جواب‌ها قابل قبول بود (11). آبی‌آلو و همکاران نیز این شیب‌سازی را برای سیب زمین انجام داده و سپس بررسی انتشار رطوبت را در داخل سیب زمینی تحقیق زمان داشتند (3).

گومبختون و همکاران مدل سیستمی خشک شدن توده بسته نازک گندم را به وسیله روش اجزای محدود با فرض دو شکل کروی و بیضوی دانه گندم استخراج کرده‌اند و به این نتیجه رسیدند که: با توجه به داده‌های آزمایشگاهی مدل بیضوی دانه گندم فرضی خشک شدن را بهتر شیب‌سازی می‌کند.
روش انجام آزمایش

مواد و وسایل مورد استفاده در این تحقیق، خشک کن آزمایش‌گاهی با دمای سانتی‌گراد 370 درجه سانتی‌گراد (زاده‌رود در دفیقه)، فشار استاندارد 162 پاسکال و کره الکتریکی، رطوبت و دمای هوا و محیط از داده‌های آزمایش‌گاهی استفاده می‌گردد.

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (W_{pre,i} - W_{exp,i})^2}
\]

\[
P = \frac{\sum_{i=1}^{n} W_{exp,i} - W_{pre,i}}{W_{exp,i}}
\]

روش انجام آزمایش

به متوسط صحرای بزرگ شیب سازی شده محضی

خشک کن داده‌های لازم را می‌تواند از شیب‌های حاصل از داده‌های آزمایش‌گاهی خشک کن شلوک مقایسه شود.

\[
W(t) = \int V W(r, z, t) dm
\]

که در آن

\[
W(t) = \int V W(r, z, t) dm
\]

به متوسط رطوبت دانه در زمان t دقیقه پس از شروع خشک کردن می‌باشد.

در خشک کن آزمایش‌گاهی که برای انجام آزمایش از آن استفاده شد، شیب جریان یافته به وسیله دمده از کوره گذشته و کرم شده و به سیستم کانال به زیر توده مستر نازک شلوک

\[
DR = \frac{W_{d+dt} - W_t}{dt}
\]

مدل بر اساس معادله 1 و با تغییر رطوبت تعادلی خشک کن برابر است 7.4 درجه کلمین و رطوبت تغییر

\[
W(t) = \int V W(r, z, t) dm
\]

به متوسط رطوبت دانه در زمان t دقیقه پس از شروع خشک کردن می‌باشد.

در خشک کن آزمایش‌گاهی که برای انجام آزمایش از آن استفاده شد، شیب جریان یافته به وسیله دمده از کوره گذشته و کرم شده و به سیستم کانال به زیر توده مستر نازک شلوک

\[
W(t) = \int V W(r, z, t) dm
\]

به متوسط رطوبت دانه در زمان t دقیقه پس از شروع خشک کردن می‌باشد.

در خشک کن آزمایش‌گاهی که برای انجام آزمایش از آن استفاده شد، شیب جریان یافته به وسیله دمده از کوره گذشته و کرم شده و به سیستم کانال به زیر توده مستر نازک شلوک

\[
W(t) = \int V W(r, z, t) dm
\]
جدول 1 مقدار ورودی‌های لازم برای حل مسئله

<table>
<thead>
<tr>
<th>مقدار ورودی برنامه</th>
<th>عنوان ورودی برنامه</th>
<th>مقدار ورودی برنامه</th>
<th>عنوان ورودی برنامه</th>
<th>رطوبت محیطی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 m/s^2</td>
<td>ضریب انتشار رطوبت دانه</td>
<td>0.25 m/s^2</td>
<td>دمای هوا محیطی</td>
<td>19 °C</td>
</tr>
<tr>
<td>27/64 W/m² K</td>
<td>ضریب انتقال جایی حریر</td>
<td>27/64 W/m² K</td>
<td>رطوبت اولیه دانه شلوک</td>
<td>17/33 درصد</td>
</tr>
<tr>
<td>101 m</td>
<td>فشار باریک بیضی</td>
<td>101 m</td>
<td>دمای عامل خشکی کننده</td>
<td>99 °C</td>
</tr>
<tr>
<td>0.27 m</td>
<td>فشار کارکرده بیضی</td>
<td>0.27 m</td>
<td>دمای اولیه دانه شلوک</td>
<td>15/27 درصد</td>
</tr>
<tr>
<td>0.25 m/s</td>
<td>سرعت عامل خشکی کننده</td>
<td>0.25 m/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تعادلان متفاوت با داده‌های آزمایشگاهی به دست آمده که نتایج آن در جدول 2 آورده شده است. مقدار برای رطوبت RMSE 0.5 درصد. RMSE تعادلان 0.75 درصد (پایه خشک) و 0.5 درصد (پایه خشک) به ترتیب بیشترین و کمترین مقدار خطای را داشته که برای 0.25 و 0.001 و مقدار 0 به ترتیب برای 1/4 و 1/2 و به سمت آوردن (4).

منحنی خشک شدن داده‌های آزمایشگاهی و داده‌های حاصل از مدل‌های شبیه‌سازی با رطوبت تعادل متفاوت شلوک در شکل 2 نشان داده شده است. همان‌گونه که از شکل مشخص است روند تغییرات مدل‌های با رطوبت تعادلی شلوک (11، 15، 15 و 12 درصد (پایه خشک) تزیک به و سرعت رطوبت تعادلی 0/5 و 0/8 درصد نسبت دور از داده‌های آزمایشگاهی می‌باشد. مطلق به شکل هرچه رطوبت تعادلی افزایش یابد شیب منحنی خشک شدن کاهش می‌یابد. علت این امر را می‌توان به ولتاژ ماده در 0 و تغییر بار در که رطوبت تعادلی (Wc) افزایش یابد طرفیت بار و در نتیجه طرف دوم ماده به نیا که در نهایت کشش رطوبت شبیه‌سازی شده در کم‌های باعث (Xc) خشک شدن کننده می‌شود.

با توجه به جدول 2 و شکل 1 رطوبت تعادلی 11/5 درصد هدایت می‌شود. گرادیان رطوبتی و حرارتی هوایی که از توده در گذرانه به دست آمده، رطوبت دانه را گذشته و باعث کردن آن می‌شود. 70 گرم شلوک روی صفحه مسپخت خشک کننده گونه‌ای ریخته می‌شود که ارتفاع توده یکسان و حداکثر یک سانتی‌متر باشد (9). جریان هوا با سرعت 1/25 m/s (که به وسیله دندنه ایجاد می‌شود) و دمای 69 °C (که به وسیله کوره ایجاد می‌شود) توده شلوک را خشک می‌کند. وزن توده شلوک در زمان مختلف و تسیل نشان می‌دهد. دیجیتال اندوزه‌گرفته شد. در پایان خشک شدن توده در داخل آن قرار داده و طی 24 ساعت با دمای 130 درجه سانتی‌گراد کامل خشک شد و وزن شکف خشک شمالی وزن خشک داده می‌باشد. به وسیله وزن اولیه و وزن توده در طی خشک شدن و وزن خشک توده رطوبت توده پایه خشک به دست آمده. شرایط خشک شدن آزمایشگاهی و توری برای بوده است (6).

نتایج و بحث

داده‌ها و ضرایب خطی ورودی در حل برنامه در جدول 1 آورده شده است (2).

ماده 4 با روش اجزای محدود برای مقادیر مختلف رطوبت تعادلی شلوک حل و همگانی داده‌ها به دست آمده با داده‌های تجربی محاسبه شده (جدول 2). با استفاده از ماده 10 و 11 به ترتیب مقدار میزانی از تغییرات خط و مدول میانگین انحراف نسبی بین هر یک از مدل‌ها باید برای رطوبت‌های
جدول ۲: مقدار دقت و هیپستگی داده‌های آزمایشگاهی با مدل‌های اصلاح‌شده

<table>
<thead>
<tr>
<th>هیپستگی</th>
<th>RMSE</th>
<th>رطوبت تعادلی توده پستر نازک (درصد، بر پایه خشک)</th>
<th>دبی (سی‌پی‌پی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۹۹۳۶</td>
<td>۸/۱۸۰</td>
<td>۱۰۲۵</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۹۹۳۸</td>
<td>۸/۱۸۰</td>
<td>۱۰۲۵</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۹۹۳۷</td>
<td>۸/۱۸۰</td>
<td>۱۰۲۵</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۹۹۴۶</td>
<td>۸/۱۸۰</td>
<td>۱۰۲۵</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۹۹۴۶</td>
<td>۸/۱۸۰</td>
<td>۱۰۲۵</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۹۹۲۵</td>
<td>۸/۱۸۰</td>
<td>۱۰۲۵</td>
<td>۱</td>
</tr>
</tbody>
</table>

شکل ۲: مقایسه داده‌های آزمایشگاهی با مدل‌های خشک شدن توده پستر نازک برای رطوبت تعادلی مختلف
نحوه گیری
۱. افزایش رطوبیت تعادلی منجر به کاهش شدید منفی شکف شدن می‌گردد.
۲. برای رطوبیت تردره ۱/۵ دصرد مدل شیشه‌سازی برابر تخمین منفی شکف شدن توده پستر نازک شلاتوک برتین سپیدرود مناسب است.
۳. همیشه در داده‌های مدل با داده‌های آزمایشگاهی باش از درجه ۹۳/۷٪ است.
۴. در شش دقیقه نخست، نرخ شکف شدن سریع کاهش یافته و سپس کاهش نرخ شکف شدن آب تا میانگین کمی کاهش می‌یابد.

برای شیبه‌سازی رطوبیت انتخاب شد. مدل‌های خشک شدن بر اساس رطوبیت تردره ۱/۵ دصرد تا ثابت دیققه اول شکف کردن داده‌های شیبه سازی را پیش‌بینی از داده‌های آزمایشگاهی تخمین زده و سپس کمتر پیش بینی کرده است. با توجه دقت بسیار خوب مدل شیبه سازی شده با رطوبیت تردره اصلاحی، منحنی شکف شدن شلاتوک را می‌توان با دقت خوب پیش بینی نمود و گزاره بار و نش رطوبیت وارد بر دانه شلاتوک را در طی شکف شدن شیبه سازی نمود.

با قرار دادن داده‌های به دست آمده از مدل اصلاح شده با رطوبیت تردره ۱/۵ دصرد، داده‌های تجربی در معادله ۹ نرخ شکف شدن به دست آمده و در شکل ۳ منحنی نرخ شکف شدن داده‌های تجربی و داده‌های داده نشان داده شده است. همان طور که در این شکل دیده می‌شود، در شش دقیقه نخست، نرخ شکف شدن سریع کاهش یافته و سپس کاهش نرخ شکف شدن، با شیب کم کاهش یافته است. ضریب میان‌مرد استفاده

۱. تکلیف هشت‌جین، ت. ش. دربعی و م. ح. خوش‌تپا. ۱۳۸۲. بررسی دمای داهه شلاتوک برتین سپیدرود در طی فرآیند خشک شدن. دانش‌کارزاری ۶:۱۲-۱۳.

۲۰۱۹-۰۷-۲۰

