توارث سه زنی رنگ لیه‌ها در عدس

محمود خدامباشی و پاریام شامارد

چکیده

به رغم گزارش‌های مختلف در مورد نحوه توارث رنگ لیه‌ها در عدس، به‌هم‌آمد این مسئله به‌خوبی روش‌شناسی است. در یک مطالعه گسترده که طی سال‌های ۷۵-۷۲ بر روی نحوه توارث صفات ظاهری عدس انجام گرفت، برای اولین بار دو نوع رنگ سبز تیره و روش در لیه‌های عدس تشخیص داده شد. رنگ سبز تیره توارث یک زن و رنگ سبز روش در لیه‌های دو زن را نشان داد. برای توجیه این مطلب، دلالت بیشتری به توانید قدر به تولید maze دیگر، در یک شرایط غلبه بود. این نتایج، نشان می‌دهد که در نتیجه تبار و ف⋄ در زمینه مغلوب بودن نسبت به دو نوع دیگر این نتایج، نشان می‌دهد که در نتیجه تبار و ف⋄ در زمینه مغلوب بودن نسبت به دو نوع دیگر

واژه‌های کلیدی - عدس، وراثت رنگ لیه‌ها، کنترل مسه‌زینی

مقدمه

نمودند. سپس این نوع نحوه وراثت یک زن توسط پژوهشگران

در سطح وسیعی در کشورهای هندوستان، پاکستان، ترکیه، سوریه، عراق، ایران و کشورهای چون آمریکای شمالی و کانادا کشف شده است. طریقه‌های اولین توسط محققان اصلی با تکنیک وسیعی اعمال می‌شود. در بررسی‌های اولین نشان دهنده این است که مطالعات اولین بار به اختصار تولید رنگ در نداشتن این رنگ در عدس. این نتایج به تولید مغلوب دیگر دیده می‌شود. در نتیجه این نتایج به تولید مغلوب دیگر

۵۹
نتایج و بحث

دو نوع رنگ سبز تیره و رنگ سبز عمیق در لیسه‌های عدس نمونه در ترکیبات رنگی باشند. این نتایج با نتایج پژوهش‌های متفاوتی را نشان داده است. نتایج حصول 1594 درصد حاصل از 5 تایی مختلف سبز تیره و سبز عمیق، به جدیدی از قبل توسط خامی‌خانی و شارما (2) مطرح شده است. نتایج حاصل از 3 نمونه در بالاترین وضعیت در حاصل از 2 نمونه، در بالاترین وضعیت در حاصل از 1 نمونه و در بالاترین وضعیت استفاده گردیدند. از آن‌رو که اکسکوز با منظور تعیین توانایی ناحیه‌های مشاهده شده با نسبت‌های سندی استفاده به عمل آمد.

مواد و روش‌ها

این مطالعه در سال‌های 1372-75 در انستیتو تحقیقات کشاورزی هندوستان (I.A.R.I) در دهلی انجام گردید. اکسکوز در بیش از 7 ترکیب مختلف استفاده شده است. نتایج فردی این چهار زمانی با لیسه‌های نازیگری و UK-1 (Lens 4706) و Lens 830 - globe (Lc-68-17-3-5) و Lc-74-5-5-1 (Lens 830-fasciated) و در ترکیبات سبز تیره و در ترکیبات سبز عمیق و لیسه‌های نازیگری (Lens 263) و Lens 3685×(Lens 263)

1- Indian Agricultural Research Institute
جدول 1- تغییر رنگ تاریخی و سیز تیره در الیهای عدس در نسل \(P \)

<table>
<thead>
<tr>
<th>درجه کای اسکور</th>
<th>تغییر در نسل (P)</th>
<th>تغییر در سبزی‌های مربوطه</th>
<th>تعداد بذردار به تعداد بذردار (نسبت)</th>
<th>تیره‌پوشانی</th>
<th>تاریخی</th>
<th>تغییر در سبزی‌های مربوطه</th>
<th>تیره‌پوشانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/050</td>
<td>144/6</td>
<td>480</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/258</td>
<td>138</td>
<td>55</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/307</td>
<td>1543</td>
<td>326</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/001</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

تجزیه بذور \(P \) (برداشت ضد به پوته‌های \(\bar{P} \))

= \(\frac{1}{LS-106 \times \text{Lens 263}} \) (纽带 (纽带))

= \(\frac{1}{LS-3685 \times \text{Lens 263}} \) (纽带 (纽带))

مجموع دو تغییر

ناهنگی

دراز فرتینگ مخلوط بودن بود که کمالیا با نسبت \(2:1 \) توافق دارد (جدول 2)، با تغییر حاصله از تغییر مخلوطی از بذور کلیه بوته‌های \(P \) در تغییر \(LS-3685 \times \text{Lens 263} \) با تغییر رنگ در حاصله از بذور \(P \) در تغییر \(LS-106 \times \text{Lens 263} \) که از نظر رنگ لیسه‌ها تغییر نشان می‌دهند، تغییر یک زنی می‌توان داشته \(1948 \) سپس \(\text{Lens 263} \) (纽带) 2.

با توجه به تغییر خاصلیه، یعنی به‌دست آمده \(2:1 \) گروه فرتینگ به نسبت 9 تاریخی: 3 زنده:16 بوته‌ها 1 سبز روش در حاصله از تغییر سبز روشن \(P \) از بذور و به‌دست \(F_1 \) آورده دو گروه فرتینگ به نسبت 3 تاریخی:1 تیره در حاصله از تغییر سبز تیره \(P \) از طرف دیگر، تغییرات شرایط هم‌زمان گروه بوته‌ها از رنگ \(P \) در کنترل رنگ

زن دیگری مخلوط پررنگ‌های \(Y \) (زد) و \(B \) (قوتی) (纽带) در \(\bar{P} \) بوته‌ها اجتناب نادری می‌باشد. علت این زن در تغییرات شرایط هم‌زمان گروه بوته‌ها از رنگ \(P \) در کنترل رنگ

ین با پاید در یک مسیر مشترک تولد گروه قرار داشته باشد.

اگر فرض شد رنگ‌های زرد و قهوه‌ای از یک ماده پیش تیاز \(P \) به ترتیب با دخالت \(Z \) و \(Y \) به‌وجود آمده و جهش

| 1 |

| 2 |
تصویر ۱- مدل عمل زن در تولید رنگ‌های مختلف در لیه‌های عدس

جدول ۲- تفرق رنگ‌های تار، سیز و بین در لیه‌های عدس در بلور ۱

| کای اسکور (نسبت) | تفرق در P (تعداد بذور) | تشکل ناحیه | F۱ \(\times \) F۱ تارکی | F۱ فنوتیپ P۱ | تلاقی تارکی | تارکی | مجموعاً ناشی از
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۳/۷۷۳</td>
<td>۱۰۱۴</td>
<td>۲۰۰۰</td>
<td>۲۴۵۲</td>
<td>۳۴۶۲</td>
<td>۶۴۶</td>
<td>۲۹۶</td>
<td>۱۳۰۷ و ۲۹۰۵</td>
</tr>
<tr>
<td>۰/۶۳۶</td>
<td>۹۴۲</td>
<td>۹۴۲</td>
<td>۸۳۶</td>
<td>۲۹۶</td>
<td>۳۴۶</td>
<td>۲۹۶</td>
<td>۱۳۰۷ و ۲۹۰۵</td>
</tr>
<tr>
<td>۱/۴۵۶</td>
<td>۱۱۴۰</td>
<td>۱۱۴۰</td>
<td>۴۵۶</td>
<td>۴۵۶</td>
<td>۴۵۶</td>
<td>۴۵۶</td>
<td>۴۵۶</td>
</tr>
<tr>
<td>۲/۲۹۸</td>
<td>۲۴۰۶</td>
<td>۲۴۰۶</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
</tr>
</tbody>
</table>

خلاصه فنوتیپی می‌شوند به شرح زیر خواهند بود:
- Dg-Y-B بین تنارکی و تارکی
- Dg-Y-bb زرد
- Dg-y B- فنوتیپی
- Dg-y bb سیزتر

نألیم یک ماده شب (yy bb) تجمیع ماده پیش (Y Y B) شرایط (Y Y) در آزمایشات. در صورت حسیش در زن Dg P نیاز P در لیه‌های، در حال نمایش‌گر، در صورت جهش در زن Dg تارکی در لیه‌های جمع می‌شود یکی از پیش‌نگارهای خواهند بود. این مسئله در می‌شود تارکی در لیه‌های زرد و فنوتیپی تولید نشود و لیه‌های سیز باید سیز باید. اما

مواد که در لیه‌های سیز تارکی و سیز روشین (yy bb) جمع می‌شوند متفاوت خواهند بود و همین مسئله بینایی جهت اختلال بروز رنگ سیز در لیه‌ها می‌باشد. سیز روشین و فنی پیدایش می‌شود که ماده P در لیه‌ها جمع می‌شود و سیز تارکی تنهایی معنی دارد. می‌شود که ماده دقیق الگوی از تولید P در لیه‌ها جمع می‌باشد. با توجه به موارد فوق و رفتار دخالت سیز در بروز رنگ لیه‌ها، فنوتیپ‌ها که منجر به پیدایش گروه‌های

62
منابع مورد استفاده